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Abstract

Recent research on applications of nonmonotonic reasoning to the semantics

of logic programs demonstrates that some nonmonotonic formalisms are bet-

ter suited for such use than others. Circumscription is applicable as long as

the programs under consideration are strati�ed. To describe the semantics of

general logic programs without the strati�cation assumption, one has to use

autoepistemic logic or default logic. When Gelfond and Lifschitz extended

this work to programs with classical negation, they used default logic, be-

cause it was not clear whether autoepistemic logic could be applied in that

wider domain. In this paper we show that programs with classical negation

can be, in fact, easily represented by autoepistemic theories. We also prove

that an even simpler embedding is possible if re
exive autoepistemic logic is

used. Both translations are applicable to disjunctive programs as well.

1 Introduction

Recent research on applications of nonmonotonic reasoning to the semantics

of logic programs demonstrates that some nonmonotonic formalisms are bet-

ter suited for such use than others. Circumscription is applicable as long as

the programs under consideration are strati�ed [10]. To describe the seman-

tics of general logic programs without the strati�cation assumption, one has

to use autoepistemic logic [4], [5] or default logic [1], [2]. When Gelfond and

Lifschitz extended this work to programs with classical negation, they used

default logic, because it was not clear whether autoepistemic logic could be

applied in that wider domain.

In this paper we show that programs with classical negation can be, in



fact, easily represented by autoepistemic theories. The new translation is

applicable to disjunctive programs as well. This last fact is particularly

striking, because disjunctive rules do not seem to be reducible to defaults

[7].

Recall that a general logic program is a set of rules of the form

A

0

 A

1

; : : : ; A

m

; not A

m+1

; : : : ; not A

n

; (1)

where each A

i

is an atom. Gelfond's transformation maps such a rule into

the axiom

A

1

^ : : : ^A

m

^ :BA

m+1

^ : : :^ :BA

n

� A

0

; (2)

where B is the \belief" operator of autoepistemic logic.
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The declarative

semantics of a program can be characterized in terms of the autoepistemic

theory obtained by this transformation ([4], Theorem 5; [5], Theorem 3).

An extended logic program consists of rules of the same form (1), except

that each A

i

is allowed to be a literal (an atom possibly preceded by :).

Thus an extended rule may contain two kinds of negation|classical nega-

tion : and negation as failure not . Such rules are useful for representing

incomplete information. Their semantics, de�ned in terms of \answer sets"

[6], is noncontrapositive, in the sense that it distinguishes between the rules

P  Q and :Q :P . The former is, intuitively, an \inference rule" allow-

ing us to derive P from Q; the latter allows us to derive :Q from :P . For

example, the answer set of the program

Q 

P  Q

is fP;Qg; the answer set of

Q 

:Q :P

is fQg.

When applied to an extended rule, Gelfond's transformation may distort

its meaning. For instance, it maps P  Q and :Q  :P into equivalent

formulas, Q � P and :P � :Q.

Can we come up with a \noncontrapositive" modi�cation of Gelfond's

mapping? One possibility could be to insert B before each literal in the rule,

not only before the literals preceded by not , so that (1) will be represented

by

BA

1

^ : : :^ BA

m

^ :BA

m+1

^ : : :^ :BA

n

� BA

0

: (3)

This transformation maps P  Q and :Q :P into nonequivalent axioms,

BQ � BP and B:P � B:Q. However, this idea does not work: The program

consisting of just one rule with the empty body, P  , would correspond to

the autoepistemic theory fBPg, which has no stable expansions.
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Considerations of this sort have led the authors of [6] to the rejection

of autoepistemic logic as an instrument for the study of logic programming.

We prove, however, in this paper that a simple hybrid of (2) and (3) does

the job. We propose to replace every literal A

i

in (1) that is not preceded

by the operator not by the conjunction A

i

^ BA

i

(\A

i

is a true belief"), so

that (1) will be represented by the axiom

(A

1

^BA

1

) ^ : : :^ (A

m

^BA

m

)^ :BA

m+1

^ : : :^ :BA

n

� (A

0

^BA

0

): (4)

For instance, the rule P  turns into the axiom P ^ BP .

We show that this transformation correctly represents the meaning of

a rule, in the sense that there is a one-to-one correspondence between the

consistent answer sets of an extended program and the consistent stable

expansions of the autoepistemic theory whose axioms are obtained in this

way from its rules. Speci�cally, the propositional closure of each answer set

is the nonmodal part of the corresponding stable expansion.

The same result holds for disjunctive programs, if a disjunctive rule

A

1

j : : : j A

l

 A

l+1

; : : : ; A

m

; not A

m+1

; : : : ; not A

n

(5)

is transformed into the autoepistemic axiom

(A

l+1

^ BA

l+1

) ^ : : :^ (A

m

^ BA

m

) ^ :BA

m+1

^ : : :^ :BA

n

� (A

1

^ BA

1

) _ : : : _ (A

l

^ BA

l

):

(6)

Logic programs can be also translated into re
exive autoepistemic logic|

the modi�cation of autoepistemic logic introduced in [19]. That translation

is even simpler; the axiom corresponding to (5) is, in this case,

BA

l+1

^ : : : ^ BA

m

^ B:BA

m+1

^ : : :^ B:BA

n

� BA

1

_ : : :_ BA

l

: (7)

Our results are, in fact, slightly more general. They are stated in terms

of propositional combinations of \protected literals" of the logic of mini-

mal belief and negation as failure (MBNF) [12], which include disjunctive

programs as a special case.

The correspondence between logic programs and re
exive autoepistemic

theories, given by translation (7), was independently found by Marek and

Truszczy�nski [16]. They also analyze translations (6) and (7) in detail, and

stress the special role of re
exive autoepistemic logic for the analysis of the

semantics of extended logic programs.

The correspondence between logic programs and autoepistemic logic,

given by translation (6), was independently found by Jianhua Chen [3]. In-

terestingly, he also uses logic MBNF as a starting point of his considerations.

In Section 2, we give a brief review of three modal nonmonotonic systems:

autoepistemic logic, re
exive autoepistemic logic, and the propositional frag-

ment of the logic of minimal belief and negation as failure. The main results

are stated in Section 3 and proved in Section 4.



2 Modal Nonmonotonic Logics

Formulas of autoepistemic logic are built from propositional atoms using

propositional connectives and the modal operator B. Formulas of MBNF

may contain, in addition, a second modal operator, not . We will distinguish

between the two languages by calling their formulas unimodal and bimodal,

respectively. Formulas not containing modal operators will be called non-

modal.

An interpretation is a set of atoms. A unimodal structure is a pair (I; S),

where I is an interpretation, and S a set of interpretations. A bimodal

structure is a triple (I; S

b

; S

n

), where I is an interpretation, and S

b

, S

n

are

sets of interpretations.

2.1 Autoepistemic Logic

For any sets T , E of unimodal formulas, E is said to be a stable expansion

of T if it satis�es the equation

E = f : T [ f:B' : ' =2 Eg [ fB' : ' 2 Eg `  g

[18]. Intuitively, T is a \theory," the elements of T are its \axioms," and the

elements of E are the \theorems" that follow from the axioms in autoepis-

temic logic.

Autoepistemic logic can be also described in terms of models [17]. The

satisfaction relation j=

ae

between a unimodal structure and a unimodal for-

mula is de�ned inductively, as follows. For an atom ', (I; S) j=

ae

' i� ' 2 I .

For any formula ', (I; S) j=

ae

B' i�, for every J 2 S, (J; S) j=

ae

'. The

propositional connectives are handled in the usual way. Now we can de�ne

the notion of a model: For a set T of unimodal formulas and a set S of

interpretations, S is said to be an autoepistemic model of T if it satis�es the

equation

S = fI : for each ' 2 T; (I; S) j=

ae

'g:

For any set S of interpretations, by Th(S) we denote the theory of S|the

set of all formulas ' such that, for every I 2 S, (I; S) j=

ae

'.

The relationship between stable expansions and autoepistemic models is

described by the following proposition:

Proposition 2.1 For any sets T , E of unimodal formulas, E is a consis-

tent stable expansion of T if and only if E = Th(S) for some nonempty

autoepistemic model S of T .

This fact may be extracted from [17]. It is also presented in [8], in

somewhat di�erent terms, and is discussed in [20] in more detail.



2.2 Re
exive Autoepistemic Logic

For any sets T , E of unimodal formulas, E is said to be a re
exive expansion

of T if it satis�es the equation

E = f : T [ f:B' : ' =2 Eg [ f' � B' : ' 2 Eg `  g

[19], [14]. Note the di�erence between this de�nition and Moore's de�ni-

tion of a stable expansion: Positive introspection for a formula ' 2 E is

represented by the term ' � B', rather than B'.

Re
exive expansions admit a semantical characterization similar to the

one given above for stable expansions. The de�nition of the satisfaction

relation j=

rae

is similar to the de�nition of j=

ae

, except that the clause for

B reads as follows: (I; S) j=

rae

B' i�, for every J 2 fIg [ S, (J; S) j=

rae

'.

We say that S is a re
exive autoepistemic model of T if

S = fI : for each ' 2 T; (I; S) j=

rae

'g:

Clearly, if I 2 S then the conditions (I; S) j=

rae

' and (I; S) j=

ae

' are

equivalent. It follows that Th(S) can be equivalently described as the set of

all formulas ' such that, for every I 2 S, (I; S) j=

rae

'.

The following counterpart of Proposition 2.1 is proved in [20].

Proposition 2.2 For any sets T , E of unimodal formulas, E is a consis-

tent re
exive expansion of T if and only if E = Th(S) for some nonempty

re
exive autoepistemic model S of T .

There exist simple translations from re
exive autoepistemic logic into

autoepistemic logic and back [19]. We will need the following fact, which

easily follows from the de�nitions:

Proposition 2.3 For any nonmodal formula ' and any unimodal structure

(I; S),

(a) (I; S) j=

rae

B' if and only if (I; S) j=

ae

' ^ B',

(b) If S 6= ; then (I; S) j=

ae

B' if and only if (I; S) j=

rae

:B:B'.

2.3 The Logic of Minimal Belief and Negation as Failure

MBNF, the logic of minimal belief and negation as failure, is de�ned in [11]

3

.

Here we only consider its propositional fragment.

The satisfaction relation j=

mbnf

between a bimodal structure and a bi-

modal formula is de�ned inductively, with the usual clauses for atoms and

propositional connectives, and the following clauses for the modal opera-

tors: (I; S

b

; S

n

) j=

mbnf

B' i�, for every J 2 S

b

, (J; S

b

; S

n

) j=

mbnf

';

(I; S

b

; S

n

) j=

mbnf

not ' i�, for some J 2 S

n

, (J; S

b

; S

n

) 6j=

mbnf

'.



Let T be a set of bimodal formulas. We write (I; S

b

; S

n

) j=

mbnf

T if

(I; S

b

; S

n

) j=

mbnf

' for each ' 2 T . A unimodal structure (I; S) is an

MBNF-model of T if (I; S; S) j=

mbnf

T and, for every proper superset S

0

of

S, (I; S

0

; S) 6j=

mbnf

T .

In this paper, we mostly deal with modalized formulas, that is, formulas

in which every occurrence of an atom is in the scope of a modal operator.

It is easy to see that, for modalized ', the relation (I; S

b

; S

n

) j=

mbnf

' does

not depend on I . Consequently, if all formulas in T are modalized, then the

relation \(I; S) is an MBNF-model of T" does not depend on I .

Protected literals are formulas of the forms B' and not ', where ' is

a literal. If every formula in T is a propositional combination of protected

literals, then the models of T have a particularly simple structure: Each

of them has the form (I;Mod(M)), where M is a set of literals. (For any

set M of nonmodal formulas, Mod(M) stands for the set of models of M

in the sense of propositional logic|the set of all interpretations that make

the formulas from M true.) Moreover, one can de�ne, for any such T , when

a set of literals is an \answer set" of T , so that the models of T can be

characterized as the pairs (I;Mod(M)) for all answer sets M of T [12]. For

our purposes, the exact de�nition of this concept is inessential. We only

need to know that it is a generalization of the de�nition of an answer set for

disjunctive logic programs [6], provided that we agree to identify a rule (5)

with the bimodal formula

BA

l+1

^ : : :^ BA

m

^ not A

m+1

^ : : :^ not A

n

� BA

1

_ : : : _ BA

l

:

4

(8)

The property of answer sets mentioned above ([12], Theorem 1) can be

stated as follows:

Proposition 2.4 Let T be a set of propositional combinations of protected

literals. A unimodal structure (I; S) is an MBNF-model of T if and only if

S = Mod(M) for some answer set M of T .

3 Main Results

Let ' be a propositional combination of protected literals. De�ne '

a

and '

r

to be the unimodal formulas obtained from ' as follows:

� '

a

is the result of replacing each protected literal B by  ^ B , and

each protected literal not  by :B ;

� '

r

is the result of replacing each protected literal not  by B:B .

Furthermore, if T is a set of propositional combinations of protected literals,

we de�ne:

T

a

= f'

a

: ' 2 Tg; T

r

= f'

r

: ' 2 Tg:

It is clear that if ' has the form (8), then '

a

is (6), and '

r

is (7).

Consequently, when applied to logic programs, the mappings T 7! T

a

and



T 7! T

r

turn into the two representations of programs by formulas discussed

in the introduction.

The following theorem shows that these mappings correctly represent the

semantics of bimodal formulas in autoepistemic logic and re
exive autoepis-

temic logic, respectively.

Main Theorem. Let T be a set of propositional combinations of protected

literals. For any interpretation I and any nonempty set of interpretations

S, the following conditions are equivalent:

(i) (I; S) is an MBNF-model of T ,

(ii) S is an autoepistemic model of T

a

,

(iii) S is a re
exive autoepistemic model of T

r

.

Moreover, for any consistent set M of literals, the following conditions are

equivalent:

(iv) M is an answer set of T ,

(v) Th(Mod(M)) is a stable expansion of T

a

,

(vi) Th(Mod(M)) is a re
exive expansion of T

r

.

Moreover, each consistent stable (re
exive) expansion of T

a

(of T

r

) has the

form Th(Mod(M)) for some consistent set M of literals.

Without the assumption that S is nonempty (or M consistent), the as-

sertions of the theorem would be incorrect. Take, for instance, T to be any

of the sets fnot pg, f:Bp;:B:pg, or

f:Bp _ B:p;Bp _ :B:pg:

(The last example can be written as the program f:p  p; p  :pg.) In

each case, ; is an autoepistemic model of T

a

and a re
exive autoepistemic

model of T

r

, and it does not correspond to any MBNF-model of T .

As an immediate corollary, we get an autoepistemic interpretation of

disjunctive logic programs with classical negation. An extended disjunctive

program is a set � of rules of the form (5), where each A

i

is a literal. By �

a

we will denote the modal theory obtained from � by replacing each rule (5)

with the modal formula (6). By �

r

we denote the modal theory obtained by

replacing each rule of the form (5) with the formula (7).

Corollary 3.1 Let � be an extended disjunctive program. For any consis-

tent set M of literals, the following conditions are equivalent:

(i) M is an answer set of �,

(ii) Th(Mod(M)) is a stable expansion of �

a

,



(iii) Th(Mod(M)) is a re
exive expansion of �

r

.

Moreover, each consistent stable (re
exive) expansion of �

a

(of �

r

) has the

form Th(Mod(M)) for some consistent set M of literals.

Corollary 3.1 applies, in particular, to general logic programs, when Gel-

fond's translation, transforming (1) into (2) [4], is applicable also. In this

special case, there is an essential di�erence between Gelfond's translation

G and our translation � 7! �

a

. The main property of G is that there is

a one-to-one correspondence between the answer sets of � and the stable

expansions of G(�), such that an answer set coincides with the set of atoms

of the corresponding stable expansion. Because di�erent stable sets can

have the same atoms, it may happen that two programs have the same an-

swer sets, but their G-translations have di�erent stable expansions. In other

words, G can transform two equivalent logic programs into nonequivalent

autoepistemic theories. For the translation � 7! �

a

, the stable expansion

corresponding to an answer set M equals Th(Mod(M)), so that it is uniquely

determined by M .

Consider, for example, two logic programs: �

1

= fp  qg and �

2

=

fp  pg. The only answer set of each program is ;. However, the stable

expansions of their G-translations are di�erent. Indeed,

G(�

1

) = fq � pg; G(�

2

) = fp � pg;

the only stable expansion of G(�

1

) is Th(Modfq � pg), and the only stable

expansion of G(�

2

) is Th(Mod(;)). For our translation,

�

a

1

= f(Bq ^ q) � (Bp ^ p)g; �

a

2

= f(Bp ^ p) � (Bp ^ p)g;

each theory has Th(Mod(;)) as the only stable expansion.

The proof of the main theorem is based on the \main lemma" stated

below. In the statement of the lemma, every axiom F is required to satisfy

the following condition: Each occurrence of an atom in F is a part of a

protected literal. Such formulas are called formulas with protected literals,

or PL-formulas [12]. Alternatively, PL-formulas can be characterized as the

formulas built from protected literals using propositional connectives and the

operators B and not . Obviously, this includes propositional combinations of

protected literals as a special case.

We say that a unimodal structure (I; S) locally models a set T of bimodal

formulas if (I; S; S) j=

mbnf

T and, for every interpretation J 62 S,

(I; S [ fJg; S) 6j=

mbnf

T:

This de�nition is similar to the de�nition of an MBNF-model (Section 2.3),

except that, instead of arbitrary supersets of S, we consider the supersets

obtained from S by adding exactly one interpretation J .

5

It is clear that

every MBNF-model of T locally models T . The main lemma asserts that

the converse also holds if every axiom of T is a PL-formula:



Main Lemma. Let T be a set of PL-formulas, and let (I; S) be a unimodal

structure with S 6= ;. If (I; S) locally models T , then it is an MBNF-model

of T .

4 Proofs

Proof of the Main Lemma. Let T be a set of PL-formulas, and let

(I; S) be a structure which locally models T , with S 6= ;. Assume that

(I; S) is not an MBNF-model of T . Then, for some proper superset S

0

of S,

(I; S

0

; S) j= T .

Let G 2 S

0

n S. De�ne the interpretation J as follows: For any atom p,

(a) if p 2 H for each H 2 S, then p 2 J i� p 2 H for each H 2 S

0

;

(b) if p 62 H for each H 2 S, then p 2 J i� p 2 H for some H 2 S

0

;

(c) if none of the above holds, then p 2 J i� p 2 G.

(The conditions in (a) and (b) cannot apply simultaneously, because S is

nonempty.)

First we will show that J 62 S. Assume that J 2 S. Since G 62 S, it

follows that J 6= G. Take an atom p which belongs to one of the sets J , G,

but not to the other. It is clear that case (c) from the de�nition of J does

not apply to p. If case (a) applies, that is, p 2 H for each H 2 S, then, in

particular, p 2 J . Consequently, p 2 H for each H 2 S

0

, and, in particular,

p 2 G, which contradicts the choice of p. If case (b) applies, that is, p 62 H

for each H 2 S, then, in particular, p 62 J . Consequently, p 62 H for each

H 2 S

0

, and, in particular, p 62 G, which again contradicts the choice of p.

Thus J =2 S.

Since (I; S) locally models T , it follows that

(I; S [ fJg; S) 6j=

mbnf

T: (9)

We claim, furthermore, that, for each PL-formula ',

(I; S

0

; S) j=

mbnf

' i� (I; S [ fJg; S) j=

mbnf

': (10)

This will be proved by induction on '. First, let ' be a protected literal.

If ' has the form not p or not :p for an atom p, then (10) is obvious,

because the possible worlds for not in both structures coincide. Let ' be

Bp. If (I; S

0

; S) j=

mbnf

Bp, then p 2 H for each H 2 S

0

, and, in particular,

for each H 2 S. Then, according to the de�nition of J , p 2 J . Hence

(G; S [ fJg; S) j=

mbnf

Bp. Conversely, if (G; S [ fJg; S) j=

mbnf

Bp, then

p 2 H for each H 2 S [ fJg. Then, according to the de�nition of J ,

p 2 H for each H 2 S

0

, so that (I; S

0

; S) j=

mbnf

Bp. Now let ' be B:p.

If (I; S

0

; S) j=

mbnf

B:p, then p 62 H for each H 2 S

0

, and, in particular,

for each H 2 S. Then, according to the de�nition of J , p 62 J . Hence



(G; S [ fJg; S) j=

mbnf

B:p. Conversely, if (G; S [ fJg; S) j=

mbnf

B:p, then

p 62 H for each H 2 S [ fJg. Then, according to the de�nition of J , p 62 H

for each H 2 S

0

, so that (I; S

0

; S) j=

mbnf

B:p. The induction step is trivial

if the main symbol of the formula is a propositional connective. In the case

when the main symbol is B, it is su�cient to observe that (I; S

0

; S) j=

mbnf

B'

is equivalent to (I; S

0

; S) j=

mbnf

', and (I; S[fJg; S) j=

mbnf

B' is equivalent

to (I; S[fJg; S) j=

mbnf

', because ' is modalized and S is nonempty. When

the main symbol is not , the reasoning is similar, using the fact that S

0

is

nonempty (because it is a superset of S). This concludes the proof of (10).

It remains to observe now that, from (9) and (10),

(I; S

0

; S) 6j=

mbnf

T;

which contradicts the choice of S

0

. 2

A few more lemmas are needed in order to establish the main theorem.

Lemma 4.1 For any propositional combination ' of protected literals, any

interpretation I and any nonempty set of interpretations S, (I; S) j=

rae

'

r

if and only if (I; S [ fIg; S) j=

mbnf

'.

Proof. Clearly, it is su�cient to prove the statement of the lemma for

protected literals. Case 1: ' is B , where  is a literal. Then '

r

is B 

also. Each of the conditions (I; S) j=

rae

B , (I; S[ fIg; S) j=

mbnf

B means

that the literal  is true in all interpretations from S [ fIg. Case 2: '

is not  , where  is a literal. Then '

r

is B:B . By Proposition 2.3(b),

(I; S) j=

rae

B:B if and only if  is false in some interpretation from S,

which is equivalent to (I; S [ fIg; S) j=

mbnf

not  . 2

Lemma 4.2 For any propositional combination ' of protected literals, any

interpretation I and any nonempty set of interpretations S, (I; S) j=

ae

'

a

if

and only if (I; S) j=

rae

'

r

.

Proof. Clearly, it is su�cient to prove the statement of the lemma for

protected literals. Case 1: ' is B , where  is a literal. Then '

a

is  ^ B 

and '

r

is B , so that the assertion of the lemma follows from Proposition

2.3(a). Case 2: ' is not  , where  is a literal. Then '

a

is :B and '

r

is

B:B , so that the assertion of the lemma follows from Proposition 2.3(b).

2

Lemma 4.3 Let M , M

0

be sets of literals. If M is consistent and

Th(Mod(M)) = Th(Mod(M

0

));

then M = M

0

.



Proof. Clearly, M

0

is consistent also. A literal ' belongs to Th(Mod(M))

if and only if it is a logical consequence of M , which is equivalent to ' 2M ;

similarly for M

0

. 2

Recall that our goal is to prove the following fact:

Main Theorem. Let T be a set of propositional combinations of protected

literals. For any interpretation I and any nonempty set of interpretations

S, the following conditions are equivalent:

(i) (I; S) is an MBNF-model of T ,

(ii) S is an autoepistemic model of T

a

,

(iii) S is a re
exive autoepistemic model of T

r

.

Moreover, for any consistent set M of literals, the following conditions are

equivalent:

(iv) M is an answer set of T ,

(v) Th(Mod(M)) is a stable expansion of T

a

,

(vi) Th(Mod(M)) is a re
exive expansion of T

r

.

Moreover, each consistent stable (re
exive) expansion of T

a

(of T

r

) has the

form Th(Mod(M)) for some consistent set M of literals.

Proof. Let T be a set of propositional combinations of protected literals,

I an interpretation, and S a nonempty set of interpretations. We will show

�rst that conditions (i) and (iii) are equivalent. By the main lemma, (i) can

be stated as the conjunction of two conditions:

(a) (I; S; S) j=

mbnf

T ,

(b) for each J 62 S, (I; S [ fJg; S) 6j=

mbnf

T .

On the other hand, (iii) is expressed by the equation

S = fJ : for each ' 2 T

r

; (J; S) j=

rae

'g;

which can be stated as the conjunction of two conditions:

(c) for each J 2 S and each ' 2 T , (J; S) j=

rae

'

r

,

(d) for each J 62 S there is ' 2 T such that (J; S) 6j=

rae

'

r

.

By Lemma 4.1, (c) is equivalent to the condition: For each J 2 S,

(J; S; S) j=

mbnf

T:

Since S is nonempty and all formulas in T are modalized, this is equivalent

to (a). Furthermore, by Lemma 4.1, (d) is equivalent to the condition: For



each J 62 S, there is ' 2 T such that (J; S [ fJg; S) 6j=

mbnf

'. Since all

formulas in T are modalized, this is equivalent to (b).

The fact that (ii) is equivalent to (iii) immediately follows from Lemma

4.2.

Let M be a consistent set of literals. By Proposition 2.1, condition (v)

is equivalent to the condition: Th(Mod(M)) = Th(S) for some nonempty

autoepistemic model S of T

a

. Using the equivalence of (i) and (ii) and

Proposition 2.4, this can be further reformulated as follows: Th(Mod(M)) =

Th(Mod(M

0

)) for some answer set M

0

of T . By Lemma 4.3, the equality

Th(Mod(M)) = Th(Mod(M

0

)) is equivalent to M = M

0

, so that we can

conclude that (v) is equivalent to (iv). For condition (vi) the proof is similar,

with Proposition 2.2 used instead of Proposition 2.1.

Now let E be a consistent stable expansion of T

a

. By Proposition 2.1,

E = Th(S) for some nonempty autoepistemic model of T

a

. Using the equiv-

alence of (i) and (ii), we conclude that (I; S) is an MBMF-model of T . By

Proposition 2.4, it follows that S = Mod(M) for some answer set M of T .

For re
exive expansions of T

r

, the proof is similar, with Proposition 2.2

and the equivalence of (i) and (iii) used, instead of Proposition 2.1 and the

equivalence of (i) and (ii).

2
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Notes

1. In [18], this operator is denoted by L.

2. Inserting B in front of every literal in the body of the rule, but not in the

head [15], is another idea that may �rst seem promising. But if we apply it

to the trivial rule P  P , the result will be the axiom BP � P , which has

two stable expansions.

3. MBNF was developed as a generalization to the full predicate language of

the system GK, proposed by Lin and Shoham [13]. The propositional frag-

ment of MBNF is essentially equivalent to GK, as long as nested modalities

are not involved.

4. Propositional combinations of protected literals are more general than

disjunctive rules, because they may include positive occurrences of not . If '

is a propositional combination of protected literals in which not occurs only



negatively, then it can be written as a conjunction of (formulas corresponding

to) disjunctive rules. If, as in [12], the language is assumed to include the

logical constant \true", then the use of this constant in the scope of modal

operators is another source of formulas that do not correspond to disjunctive

rules.

5. This is reminiscent of the relationship between circumscription and point-

wise circumscription [9].
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