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Abstract

Languages of declarative logic programming
differ from other modal nonmonotonic for-
malisms by lack of syntactic uniformity. For
instance, negation as failure can be used in
the body of a rule, but not in the head; in
disjunctive programs, disjunction is used in
the head of a rule, but not in the body; in ex-
tended programs, negation as failure can be
used on top of classical negation, but not the
other way around. We argue that this lack
of uniformity should not be viewed as a dis-
tinguishing feature of logic programming in
general. As a starting point, we take a trans-
lation from the language of disjunctive pro-
grams with negation as failure and classical
negation into MBNF—the logic of minimal
belief and negation as failure. A class of the-
ories based on this logic is defined, theories
with protected literals, which is syntactically
uniform and contains the translations of all
programs. We show that theories with pro-
tected literals have a semantics similar to the
answer set semantics used in logic program-
ming, and investigate the expressiveness of
these theories.

1 Introduction

Investigations on the semantics of negation as fail-
ure have shown that declarative languages of logic
programming are closely related to the nonmonotonic
formalisms developed in Artificial Intelligence. It is
known, for instance, that general logic programs can
be reduced to default theories in the sense of [Reiter,
1980] by identifying a rule

Ag — Ay, Ap not Apyr, .. not Ay (1)
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with the default

Al/\/\Am : _|Am+1,...,_|An/A0
[Bidoit and Froidevaux, 1987]. Alternatively, general
logic programs can be viewed as a special case of

autoepistemic theories [Gelfond, 1987].

These ideas have a profound significance for the the-
ory of knowledge representation. They show that rep-
resenting knowledge in declarative logic programming
i1s very similar to representing knowledge in default
logic or in modal nonmonotonic logics. A particularly
striking example can be found in research on the frame
problem. It is known that expressing temporal persis-
tence by the formula

Holds(f,s) N=Ab(f,a,s) D Holds(f, Result(a,s))

leads to difficulties [Hanks and McDermott, 1987].
This fact prompted several authors ([Eshghi and
Kowalski, 1989], [Evans, 1989], [Apt and Bezem,
1990]) to experiment with the corresponding logic pro-
gramming rule

Holds(f, Result(a, s)) — Holds(f,s), not Ab(f, a,s).
(2)
Independently, Morris [1988] proposed to express the
same principle of reasoning by the default

Holds(f,s) : mAb(f,a,s) / Holds(f, Result(a, s)).

It is clear that this default is the counterpart of (2)
under the Bidoit/Froidevaux translation.

Although general logic programs are a special case of
default theories, it is not true that declarative logic
programming as a whole is merely a subset of default
logic. This can be demonstrated on the example of



“disjunctive logic programs.” Gelfond and Lifschitz
[1991] discuss disjunctive rules of the form

L1|...|Ll<—Ll+1,... .,noth,

(3)
(n > m > 12> 0), where each L; is a literal (an atom
possibly preceded by —). Tt is not clear how to repre-
sent such a rule by a default or by a set of defaults; ap-
parently, default logic and the language of disjunctive
programs only partially overlap. Disjunctive default
logic [Gelfond et al., 1991] was proposed as a non-
monotonic formalism which can serve as a common
extension of these two languages.

s L, not Lyyyq, ..

The logic of minimal belief and negation as failure
(MBNF)' is another such formalism. It uses two
independent nonmonotonic modalities: the minimal
belief operator B and the negation as failure operator
not. A default

a:Bi,.. By

is represented in this language by the formula?

Ba A not=51 A ... Anot—S, D By. (4)

A disjunctive rule (3) can be identified with the
formula

BLiy1 Ao ABLy, Aot Lypyy Ao Anot Ly,
OBLV...VBL;.
(5)

It is also possible to embed a rather general form of
circumscription into MBNF [Lifschitz, 1992]; circum-
scribing a predicate P 1s expressed by the axiom

Va(not P(x) D B-P(x)).

These facts show that the logic of minimal belief and
negation as failure is very expressive. We should note,

!See [Lifschitz, 1992]. This is a modified version of
the system described in the preliminary report [Lifschitz,
1991]. The description of the propositional fragment is
reproduced in Section 2 below. The system is a modifica-
tion and extension of the “logic of grounded knowledge”
introduced by Lin and Shoham [1990]. The concept of
minimal belief (or “minimal knowledge,” or “maximal ig-
norance”) was formalized earlier, in various ways, by sev-
eral authors, including Konolige [1982], Halpern and Moses
[1984], Shoham [1986] and Lin [1988].

?In the propositional case, this formula represents the
meaning of the default as originally defined by Reiter
[1980]. In the presence of variables, it corresponds to the
modification of default logic proposed in [Lifschitz, 1990].

however, that the interesting concept of “strong intro-
spection” [Gelfond, 1991] is apparently not expressible
in it.

The embedding of logic programs into MBNF stresses
the epistemic character of the “connectives” < and
|. The rule Ly < Ly is different from the implication
Ls D Ly; 1t i1s rendered by the combination BLs D
BL1, which includes both the classical connective D
and the epistemic operator B. The rule Ly | Ly « is
different from the disjunction Li V Ls; it is rendered
by the epistemic combination BL; V BLs.

Another reason why this embedding may be of interest
is related to the fact that the syntax of MBNF 1is
uniform. Propositional connectives and the epistemic
operators B, not can be applied in formulas of MBNF
any number of times and in any order. The syntax of
rules (3) is, in this sense, different. Each rule contains
only one occurrence of «; we are not allowed to form
a “nested” rule by applying «— to two rules formed
earlier. Epistemic disjunction is allowed in the head
of a rule, but not in the body. Negation as failure can
be used in the body, but not in the head. Classical
negation can be applied to atoms only—mnever on top
of not, | or —.

In this paper we argue that this lack of uniformity
is not an essential feature of logic programming. We
define a class of formulas of MBNF that includes all
formulas (5) and is syntactically rather uniform, and
show that such formulas are, in a sense, “semantically
similar” to logic programming rules. If all axioms of a
theory T belong to this class, we call T a “theory with
protected literals,” or a “PL-theory.” We hope that
the study of PL-theories will help us better understand
the place of declarative logic programming among
nonmonotonic formalisms in general.

At this stage, we restrict our attention to the proposi-
tional case.

The semantics of rules (3) is defined in [Gelfond and
Lifschitz, 1991] in terms of “answer sets.” An answer
set of a program is a set of literals. The semantics
of MBNF 1s defined in terms of Kripke-style sets of
“possible worlds.” The relationship between the two
systems is described in [Lifschitz, 1992] by establishing
a simple correspondence w between sets of literals and
sets of possible worlds. If the axioms of a theory have
the form (5), then the sets of worlds that appear in its
models have the form w(X), where ¥ is an answer set
of the corresponding program.

We show that w serves as a correspondence between
the answer sets and the models not only for disjunctive
programs, but for all PL-theories. This theorem
suggests that theories of this type, in spite of the
relatively general syntactic form of their axioms, can
be viewed as logic programs.

Next we want to compare the expressive power of



arbitrary PL-theories with the expressive power of
disjunctive programs. Two theories are said to be
equivalent if they have the same models; in the case
of PL-theories, we can alternatively say, “the same
answer sets.” Given a PL-theory, can we always find
an equivalent disjunctive program?

The answer to this question is no, because of an
interesting syntactic feature that one can find in a PL-
theory: The operator not may occur in the axioms
positively. (It is clear that all occurrences of not in a
disjunctive rule (5) are negative.) We give examples
of PL-theories that are not equivalent to disjunctive
programs.

2 Propositional MBNF

The review of the propositional fragment of MBNF
below follows [Lifschitz, 1992], except that, in this
presentation, the language is assumed to include the
propositional constant T (“true”). We start with a
set of propositional symbols, atoms, which includes T.
Formulas are built from atoms using the propositional
connectives = and A and the modal operators B and
not. The other connectives are defined in terms of
- and A in the usual way; F (“false”) stands for the
literal =T. A theory is a set of formulas (azioms).

If a formula or a theory does not contain the operator
not, we call it positive. This terminology is suggested
by the use of the word “positive” in logic program-
ming, and 1t is not related to the distinction between
positive and negative occurrences, familiar from clas-
sical logic. In MBNF, the sign of an occurrence of
a symbol in a formula can be defined as follows: An
occurrence is positive if it is in the range of an even
number of =’s and not’s, and negative otherwise.

An interpretationis aset I of atomssuch that T € 1. A
structure is a pair (I, S), where I is an interpretation,
and S a set of interpretations.

The relation < between structures is defined as follows:
(I,S) < (I';S") if S is a proper subset of S’. The
maximality of a structure relative to this relation
expresses the idea of “minimal belief”: The larger the
set of “possible worlds” is, the fewer propositions are

believed.

We define when a positive formula F' is frue in a
structure (7, 5), as follows.

o If F'is an atom, F'is true in (I, S) iff I € I.
e —Fis true in (7,5) iff ' is not true in (I, 5).

e FFAG is true in (I, S) iff F' and G are both true
in (I,9).

e BF is true in (I, S) iff, for every J € S, F is true
in (J,5).

A model of a positive theory T is any structure

maximal among those in which the axioms of T' are
true. For instance, the models of {Bp}, where p is an
atom, are the structures of the form (I, {J : p € J}),
where I is any interpretation. The models of {B-p}
have the form (I,{J : p € J}). The models of
{Bp V B¢} have the forms (I,{J : p € J}) and
(I,{J : ¢ € J}). The models of {B(pV ¢)} have
the form (I, {J:pe Jor g€ J}).

A positive formula F' is a theorem of a positive theory
T if F' is true in every model of 7. This relation
is nonmonotonic. For instance, —=Bgq is a theorem of
{Bp}, but not a theorem of {Bp, Bq}.

In order to extend the definition of a model to
nonpositive theories, we first need to extend the
definition of truth to nonpositive formulas. In the
presence of both B and not, truth will be defined
relative to a triple (I, 5%, S™), where S® and S" are
sets of interpretations; S serves as the set of “possible
worlds” for the purpose of defining the meaning of B,
and S™ plays the same role for the operator not.

For an interpretation I and two sets of interpretations
Sb 8", we define when a formula F is true in

(1,8, 8™), as follows.

o If F is an atom, F is true in (I, 5%, 5™)iff F € I.

e =F is true in (I,S% S") iff F is not true in
(1,S°%, 8m).

e FAG is true in (I,S%,8") iff F and G are both
true in (I, 5%, S™).

e BF is true in (I, S%,5") iff, for every J € S*, F
is true in (J, S%, ™).

e not F is true in (I,S%, S") iff, for some J € S”,
Fis not true in (J, 5%, S7).

This definition is a generalization of the definition of
truth for positive formulas, in the sense that a positive
formula is true in (7, 8%, S™) iff it is true in (I, S%).

For any theory 7" and any set of interpretations S, by
I(T,S) we denote the set of all maximal structures
(I, 8" such that the axioms of T" are true in (I, 5, S).
Intuitively, T'(7,.S) consists of the structures that can
be considered the models of T provided that the
negation as failure operator is interpreted relative to
the set of possible worlds S.

A structure (I,5) is a model of T if (I,5) € T(T, S).
It is easy to check, for instance, that the models
of {not p D Bg} are the structures of the form
(I,{J :q € J}). For positive theories, this definition
is equivalent to the one given before. The reader is
referred to [Lifschitz, 1992] for further examples.

3 Answer Sets

Let X be a set of literals. By X? we denote the set of
atoms that belong to X, and by X" the set of atoms



whose negations belong to X, so that

N=YPU{-A: AN}

Furthermore, w(X) stands for the set of interpretations
I such that ¥ C T and X" NI = 0. For example,

w{p,~¢}) =w{T,p,~q})={1 :pel,qg I},
w({p,—p}) =w({F}) = 0.

We want to define, for theories T of a possibly more
general form, when a set of literals ¥ 1s an “answer
set” of T, in such a way that the models of T" will be
the structures of the form (7, w(X)). For example, this
can be done for the theory {Bp} by declaring {p} (or
{T,p}) to be its only answer set. It can be also done
for {B—p}, {BpV Bq} and {not p O Bq}, but not for
{B(pVa)}.

What is different about the last axiom is that a
connective is applied in 1t to two atoms directly,
without first “protecting” them by a modal operator.
This observation suggests the following definitions.

Protected literals are formulas of the forms BL and
not L, where L is a literal, and the atom T. (Including
T in this definition is convenient, but not essential.) A
formula F' is a formula with protected literals, or a PL-
formula, if each occurrence of an atom in F is a part of
a protected literal. Alternatively, PL-formulas can be
characterized as the formulas that can be built from
protected literals using —, B, not and A. For instance,
every formula of the form (5)—and, more generally,
every propositional combination of protected literals—
is a PL-formula. Clearly, not B—p is a PL-formula also;
p and B(p V ¢q) are not PL-formulas.

A theory with protected literals, or a PL-theory, 1s
a theory whose axioms are PL-formulas. We will
define the concept of an answer set for arbitrary PL-
theories. This will be done in three steps. First, we will
consider the theories whose axioms are propositional
combinations of positive protected literals (that is,
of protected literals that do not contain not). This
class covers the translations of positive disjunctive
programs. Then the definition will be extended to the
combinations of arbitrary protected literals. This class
covers the translations of all disjunctive programs.
Finally, the definition will be extended to arbitrary
PL-theories.

By Lit we denote the set of all literals. A set ¥ C Lit
1s closed if 1t satisfies two conditions:
' =D

e If X contains a pair of complimentary literals, then
Y = Lit.

Note that, for any closed set of literals X, F € ¥ if and
only if ¥ = Lit.

The satisfaction relation between a set ¥ of literals and
a propositional combination F' of positive protected
literals is defined inductively, as follows:

e X ET.

YEBLIff LeX.
SE-Fiff S F.
YEFAGIHfESEF and X =G.

The Definition of Answer Sets, Step 1. Let T be
a theory whose axioms are propositional combinations
of positive protected literals. A set X of literals 1s
an answer set of T if it is a minimal (relative to set
inclusion) closed set such that, for every axiom F of

T SEF.

For instance, the only answer set of {Bp} is {T,p}; the
only answer set of {Bp D Bq} is {T}; the answer sets
of {BpV Bq} are {T,p} and {T,¢}. The only answer
set of {BF} is Lit; {F} has no answer sets.

For any propositional combination F' of protected
literals and any set X of literals, the reduct of F' relative
to ¥ is the formula F'™ obtained by replacing each
subformula of the form not L in /" by Fif L € X,
and by T otherwise. For instance, if F' is not p D Byg,
then F? is T O Bg, and F{P} is F D Bq. This is a
generalization of the procedure used in the definition

of “stable models” [Gelfond and Lifschitz, 1988].

If the axioms of T are propositional combinations of
protected literals, then T stands for {F*¥ : F € T'}.
For theories of the form 7%, the notion of an answer
set was defined in Step 1.

The Definition of Answer Sets, Step 2. Let T be
a theory whose axioms are propositional combinations
of protected literals. A set X of literals 1s an answer
set of T'if it is an answer set of T,

It is easy to check, for instance, that the only answer
set of {not p D Bq} is {T,¢}. The theories {not p D
Bp}, {—not p} and {not T} have no answer sets; the
only answer set of {not F} is {T}.

For a theory corresponding to a set of disjunctive
rules (3), this definition is essentially equivalent to the
one given in [Gelfond and Lifschitz, 1991]; the only
difference is that an answer set as defined here includes
T, and, if it is inconsistent, also F.

For any PL-formula F, let F”* be the propositional
combination of protected literals defined inductively,
as follows:

e [ 1s F if F' is a protected literal.



o (~F)* is ~F*,

o (FAG) is F* NG™.

e (BF)* is F™* VvV BF, if F is not a literal.

o (not F)*is =F™* A not F,if F is not a literal.

For any PL-theory T', T* stands for {F* : F € T}.
For theories of the form 7™, the notion of an answer
set was defined in Step 2.

The Definition of Answer Sets, Step 3. Let T be
a PL-theory. A set X of literals is an answer set of T'
if it 1s an answer set of T™.

Take, for instance, T' = {B(BpA—Bp)}. The definition
tells us that 7" has the same answer sets as

{(Bp A —Bp) V BF}. (6)

Consequently, the only answer set of T is Lit. We see
that 7" is not equivalent to the theory {BpA—Bp}—the
latter has no answer sets.

The following theorem shows that we have achieved
the goal stated at the beginning of this section.

Theorem 1. A structure (I,S) is a model of a PL-
theory T if and only if S = w(X) for some answer set

Y of T.

The proofs of theorems are given in the appendix.

4 Disjunctive Rules

A disjunctive rule is a formula of the form (5) in which
none of the literals L; is T or F. We would like
to compare the expressiveness of the theories whose
axioms are disjunctive rules with the expressiveness of
arbitrary PL-theories.

The definition of answer sets for arbitrary PL-theories
(Step 3) reduces the axioms to propositional combina-
tions of protected literals by a simple transformation,
which does not change significantly the syntactic struc-
ture or the size of the formula. Consequently, without
loss of generality, we can restrict our attention to the
theories whose axioms are propositional combinations
of protected literals.

Furthermore, a propositional combination of protected
literals can be replaced by its “conjunctive normal
form”—a set of digjunctions of protected literals and
their negations. For instance,

((Bp V not q) A not r) D Bs

will turn into the pair of disjunctions which can be
written as

(Bp A not r) D Bs,
(not ¢ A not r) D Bs.

This is similar to the transformation of logic programs
proposed in [Lloyd and Topor, 1984]. Note, however,
that this reduction may lead to the exponential growth
of the axiom set.

A disjunction of protected literals and their negations
can be written as a disjunctive rule (5) if

e it contains no positive occurrences of not, and

e it contains no occurrences of BT, BF, not T, not F.

The following theorems show that the second restric-
tion 1s inessential.

Theorem 2. Let T be a theory whose axioms are
propositional combinations of protected literals, and
let T' be obtained from it by substituting T for all
occurrences of BT, and F for all occurrences of not T,
in every axiom. Then T and T’ have the same answer
sets.

Theorem 3. Let T be a theory whose axioms are
propositional combinations of protected literals, and
let T be obtained from it by substituting F for all
occurrences of BF, and T for all occurrences of not F,
in every axiom. For any set of literals ¥ other than
Lit, X is an answer set of T' if and only if it is an answer
set of T".

The answer set Lif may be lost as the result of the
last transformation, as can be seen from the examples

{BF} and (6).

On the other hand, the first restriction—the absence of
positive occurrences of not—turns out to be essential.
Axiom sets without positive occurrences of not have
the following property.

Theorem 4. If the axioms of a PL-theory contain
no positive occurrences of not, then it cannot have
two answer sets of which one is a proper subset of the
other.

This is a generalization of Lemma 1 from [Gelfond
and Lifschitz, 1991]. It is similar to the minimality
of extensions property in default logic ([Reiter, 1980],
Theorem 2.4).

Corollary. Ifthe axioms of a PL-theory T' contain no
positive occurrences of not, and Lit is an answer set
of T, then T" has no other answer sets.

This is a generalization of Proposition 1 from [Gelfond
and Lifschitz, 1991]. It is similar to Corollary 2.3 from
[Reiter, 1980].



Using Theorem 4, we can show that a PL-theory
may have a combination of answer sets that would be
impossible without positive occurrences of not in the
axioms. For instance, the theory

{BpV not p} (7)

has two answer sets, {T} and {T,p}. By Theorem
4, 1t 1s not equivalent to any set of disjunctive rules.
Moreover, a PL-theory can have Lit as one of several
answer sets. For instance, the answer sets of the theory

{Bp V not p, B=p V not—p}

are {T}a {Tap}a {T,_'p} and Lit.

5 Discussion

1. Where is the line separating the languages of
“declarative logic programming” from other modal
nonmonotonic formalisms? Qur view on what is
essential about logic programming is that 1ts semantics
can be described in terms of sets of literals—objects
that are much simpler than Kripke models.

Another possible view is that a logic programming lan-
guage, unlike nonmonotonic formalisms of other kinds,
always comes equipped with a standard query evalu-
ation method; 1t has a procedural semantics, in ad-
dition to the declarative one. From this perspective,
sets of rules of the form (1) can be counted as logic
programs because one can execute them using a Pro-
log interpreter. But if we intend to use the language
for the purpose of representing knowledge, and not for
programming, then there is no reason to ascribe any
special role to the Prolog search strategy. Much work
has been done on alternative query evaluation meth-
ods, such as the “magic set” method of [Bancilhon et
al., 1986), which may produce an answer when Pro-
log would not terminate. The development of better
query evaluation procedures in logic programming is
similar to the development of more powerful theorem
provers for other kinds of nonmonotonic formalisms.
The existence of incomplete, but useful query evalua-
tion procedures is not a distinguishing feature of logic
programming,.

2. The use of (some syntactic variant of ) nested combi-
nations of protected literals may give representational
advantages over a “flat” syntax, similar to the advan-
tages of the extension of Prolog described by Lloyd and
Topor [1984]. There are several differences between
our proposal and theirs. First, the answer set seman-
tics has grown from the use of minimal models by van
Emden and Kowalski [1976] and from the generaliza-
tions of this idea in [Apt et al., 1988], [Przymusinski,
1988], [Gelfond and Lifschitz, 1988], rather than from

the completion semantics of [Clark, 1978]. Second, we

include rules with disjunctive heads. Third, we distin-
guish between negation as failure and classical nega-
tion.

3. A disjunction of protected literals and their
negations can be written in the form

BLiy1 Ao ANBLy, Anot Ly AL Anot Ly,
DBLV...VBL; Vnot Ly V...V ot L,

or, in “logic programming notation,” as

Li|...| Lg | not Lggy | ... | not Ly
— Liy1,..., Ly, not Liypyq, ..., n0t Ly

For example, (7) is, in this notation,

p| not p—.

This rule has two answer sets; one of them includes p
(“p is true”), and the other includes neither p nor —p
(“the truth value of p is unknown”). It remains to be
seen whether rules like this may have applications to
knowledge representation.

4. There is a possibility that including a rule of
the form (8) in a program may be computationally
advantageous, when this rule is redundant from the
point of view of the declarative semantics. Let II be
a set of rules (1) which includes, among others, the
positive rule

p—qr.

If we know that ¢ succeeds, but p fails, then we can
conclude that r fails. This reasoning can be formally
represented as using the “contrapositive” rule

not r «— q, not p.

We have shown that such rules can be given a declar-
ative semantics. It is easy to prove that adding this
rule to I does not change its answer sets.

This idea was suggested to us by the informal discus-
sion of “contrapositive rules” in [Kowalski and Kim,

1991]. About the rule

demo(T, Q) — demo(T, or(P,Q)), demo(not(P))

Kowalski and Kim observe that it would be useful also
“in its contrapositive form”



not demo(not(P))
— demo(T,or(P,Q)), not demo(T, Q).

“Such use of contrapositives, however, is not possi-
ble within currently available logic programming sys-
tems.” The generalization of answer sets proposed in
this paper may provide a theoretical foundation for the
use of contrapositives.
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Appendix. Proofs of Theorems

Al. Preliminary Lemmas

The following facts are used in the proofs of Theorems
1-4.

Lemma 1 [Lifschitz, 1992]. Let ¥, %/ be closed sets

of literals.

(a) w(X)=0iff L = Lit.

(b) ﬂIEw(E) I=xr.

(c) UIEw(E)I = Y7 where " denotes the comple-
ment of 7.

(d) T CY iffw(X) Cw(X).

(e) L=%" iffw(X) =w(X).

As defined in [Lifschitz, 1992], two sets of interpreta-
tions 57, 5% are equivalent if

N1=()Iand |J1I=|J I

IeS, I€S, IeS, IesS,

Lemma 2. Let I, J be interpretations, and S, S, 52
sets of interpretations. If S1 and Ss are equivalent,
then, for any PL-formula F,

Fis true in (I, 51, S) iff F is true in (J, S3, S).
O

This is a generalization of an observation made in
[Lifschitz, 1992]. The assumption that F is a PL-
formula is essential; a simple counterexample is B(p V

q), with S = {{p}, {¢}} and Sz = {{}, {p, ¢} }.

Proof. By structural induction.
(1) Base case. Protected literals.

o T. Straightforward.
e BA, where A is an atom.
BA is true in (1,571, 5)
iff VK €S5;:Aistruein (K,5,5)
ft VKeS ::AekK
iff  {set theory}
A€ ges, K
iff  {S] equivales S5}
A€ Nkes, K
iff  {set theory}
VKeS::Ae K
iff VK €Sy:Aistruein (K, Ss,5)
iff  BA is true in (J, S2, 5)
e B—A where A is an atom.
B-4 is true in (7,51, .5)
iff VK €5S5;:-4is truein (K,S1,95)
iff YK €5;:Aisnot true in (K, S1,95)
it VKeS :AeK
iff  {set theory}
A¢Uges, K
iff {5y equivales S2}
A¢Uges, K
iff  {set theory}
VEES, :AdK
iff YK €5S5:Aisnot true in (K, S2,5)
iff VK €Sy:-41is true in (K, S2,5)
iff  B-A is true in (J,S2, 5)

e not L, where L 1s a literal.



not L is true in (I, 51, 5)
iff 3K €S5:Lisnot true in (K, 51, 5)
if 3KeS:L¢K
iff 3K €S5:Lisnot true in (K, Sa,.5)
iff  mot L is true in (J, Sa,5)

(2) Induction step. The formula has one of the forms
=F, BF, not F or FF A (G, where F' and G are PL-
formulas. Straightforward. i

Using Lemma 2, it is easy to observe that (I,S) is a
model of a PL-theory T'if and only if (J,.5) is a model
of T.

Lemma 3 [Lifschitz, 1992]. For any set of interpreta-
tions S, there exists a closed set of literals 3. such that
w(X) contains S and is equivalent to it.

A2. Proof of Theorem 1

A PL-formula is basic if it is a propositional combina-
tion of protected literals. For example, not p D Bp 1s
a basic PL-formula, while B not p A Bp 1s not. A basic
PL-theory is a PL-theory whose axioms are basic. We
prove Theorem 1 via two steps. In step 1 (Part A),
we establish the theorem for basic PL-theories. Then
in step 2 (Part B), we extend the theorem to all PL-
theories using Part A as a lemma.

Lemma 4. Let I be an interpretation, S a set of
interpretations, Y a closed set of literals, and I a
literal. Then

not L is true in (I, S,w(X)) iff L € X.
Proof.
Case 1. L is A, where A is an atom.

not A is true in (I, S,w (X))
iff 3T €w(X): Aisnot true in (J, S,w(X))
iff IJecw@:A¢gJT
iff  {set theory}
AE Nrewm /
iff  {Lemma 1(b)}
Agxr
iff AgX

Case 2. L is = A, where A is an atom.

not mA is true in (I, S,w(X))
iff 3J €w(X): A4 is not true in (J, S,w(X))
iff 3T ew@): Ais truein (J, S,w(X))
iff IJew®@:Aed
iff  {set theory}

A€ Usewm /
iff  {Lemmal(c)}

Aexn
iff 4¢3

O

Lemma 5. Let I be an Interpretation, S,5S’ sets of
interpretations, Y a closed set of literals, and F' a basic
PL-formula. Then

F¥is true in (I,S,5") iff F is true in (I, S,w(X)).
Proof. By structural induction.

(1) Base case.

e T and BL.

These are positive PL-formulas, hence F¥ is
identical to F'. It remains to notice that the truth
of positive formulas relative to a triple (I, 5,5")
does not depend on S’.

e not L, where L 1s a literal.

Recall that

(not L)E is { T, ifLgx,

F, if LeX.
Thus
(not L)* is true in (I, S,5) iff L ¢ .

By Lemma 4, we obtain
(not L)¥ is true in (I,5,5") iff not L is true in
(I, S, w(X)).

(2) Induction step. The formula has the form =F or

F' A G, where F' and G are PL-formulas. Straightfor-
ward. i

Lemma 6. Let I be an interpretation, S a set of
interpretations, Y. a set of literals, and F' a positive
basic PL-formula. Then

Y | Fiff Fis true in (1, w(X), S).
Proof. By structural induction.

(1) Base case. Protected literals.

o T. Straightforward.



e BA, where A 1s an atom.
BA is true in (I,w(X), S)
iff VJewlX): Aistruein (J,w(X),S5)
iff VJew®X:AelJ
iff  {set theory}
A€ Nyews) !
iff  {Lemma 1(b)}

Aexr
iff Aex
iff SEBA

e B—A, where A is an atom.
B-4 is true in (I,w(X),5)
iff VJew®) :—Aistrue in (J,w(X)
iff VJewX): Aisnot true in (J,w(
iff VJew®X):A¢J
iff  {set theory}
A€ Usewm)/
iff  {Lemma 1(c)}

)
):5)

Ae¥xn”
i —-AeX
iff ¥ EB-A

(2) Induction step. The formula has the form =F or
F' N G, where F and G are PL-formulas. Straightfor-
ward. ad

Let T be a PL-theory, and ¥ a set of literals. We define
an operator similar to I' as below:

3>/ is a minimal

closed set such that
YcCcLit|VFeT: F

1s true in

(L, w(X), w(X))

Iy(7T,%) =

Note that I is an arbitrary interpretation; recall that,
by Lemma 2, the choice of I has no effect on whether
or not F' is true relative to a triple (I, S,5").

Lemma 7. Let I be an interpretation, and S a set of

interpretations. Then (I,5) is a model of a PL-theory

T if and only if S has the form w(X) for a closed set

of literals ¥ such that ¥ € T'y(T, X).

Proof. We first define a predicate @ as follows:
S(X)=VFeT: Fistruein (I,X,5).

Clearly, if S; and Sy are equivalent then ®(S;)
B(S2).

Left to right: Let (I,S) be a model of 7. Thus,
(I,S) € I(T,S), which means that (7,.5) is a maximal
structure such that S satisfies ®. That is:

(i) ®(S) holds, and
(i) if S C S’ then ®(5") does not hold.

By Lemma 3, there is a closed set X of literals such
that S C w(X) and S, w(X) are equivalent.

We want to show:

(1) S=w(®).
Suppose the contrary, that is, S C w(X). From
the fact that S and w(X) are equivalent and (i),
we conclude that ®(w(X)) holds as well, which
contradicts (ii).

(2) X eTy(T,%).
To prove this, we need to show that X is a minimal
closed set such that ®(w(X)) holds. From (1) and
(i), w(X) satisfies ®. It remains to show that ¥
is minimal. Assume that ¥ C ¥. By (1) and
Lemma 1(d), S = w(X) C w(X'); by (ii), it follows
that ®(w(X')) does not hold.

Right to left: Let ¥ be a set of literals such that
Y € T'g(T,X). This means that ¥ is a minimal closed
set such that w(X) satisfies ®. That is:

(i) ®(w(X)) holds and,
(i) if ¥/ € X, then ®(w(X')) does not hold.

To prove that (I,w(X)) is a model of 7', we need
to show that (7,w(X)) € T(T,w(¥)), which means
that (I,w(X)) is a maximal structure such that w(X)
satisfies ®. We know from (i) that w(X) satisfies ®.
Assume that w(X) C S’. By Lemma 3, there exists a
closed set of literals ¥/ such that " C w(X’) and S’
is equivalent to w(X’). Then w(X) C 5" C w(¥'), and
it follows by Lemma 1(d) that ¥’ C X. Then, by (ii),
w(X’) does not satisfy ®. Since this set is equivalent
to S, we conclude that S’ does not satisfy ® either.

O

Lemma 8. Let T be a positive basic PL-theory, and
¥ aset of literals. Then T'o(T, X) is the set of all answer
sets of T'.

Proof. Using Lemma 6, we can restate the definition
of I'y as

3>/ is a minimal
' C Lit | closed set such that
VFeTX EF

[o(T,%) =

Clearly, the condition for being an element of 'y (7, X)
is exactly the same as that for an answer set of 7. O

Lemma 9. LetT be a basic PL-theory, and X a closed
set of literals. Then

[o(T%,8) =To(T, %).



Proof. By definition

3>/ is a minimal
closed set such that
VEFeTEF

1s true in

(L, w(X), w(X))

[o(T¥,8) = X' C Lit

Since T stands for {F*®
rewritten as

F € T}, this can be

¥/ is a minimal
closed set such that
YFeT:F*

1s true in

(L, w(X), w(X))

[o(T¥,8) = X' C Lit

Lemma 5 shows that the right-hand side is equal to
Io(T,X). O

Theorem 1 (Part A). A structure (I,S) is a model
of a basic PL-theory T if and only if S = w(X) for
some answer set > of T'.

Proof. By Lemma 7, it is sufficient to show that,
for any set of literals X, ¥ is an answer set of T iff
Y € Tyo(T,X). By the definition of answer sets for
basic PL-theories, X is an answer set of 7" iff X is an
answer set of 7%, By Lemma 8, this can be expressed
as X € To(T¥,%). By Lemma 9, this is equivalent to
Y elo(T,%). |

Lemma 10. Let I be an interpretation, S, S’ sets of
interpretations, and F' a PL-formula. Then

F*is true in (I, 5,5") iff F is true in (I, S, 5").
Proof. By structural induction.

(1) Base case. Protected literals. F™* coincides with F.

(2) Induction step.

o —F. Straightforward.

e BF'. Using Lemma 2, we can conclude that

F is true in (I, 5,5") iff BF is true in (J, 5, 5")
(9)
for any PL-formula 7', any nonempty S, and any
S’

(BF)~ is true in (I, 5,5")
ifft  F* v BFistruein (I,S5,5")
iff  F*istruein (1,5,5") or

BF is true in (I, S, 5")
iff  {ind. hyp.}

Fis true in (I, S,5") or

BF is true in (I, S, 5")
i Fistruein (Z,5,5)or S=90
it {(9)}

BF is true in (7,5,5) or S =0
iff  BF is true in (I, S,5")

e not F. Using Lemma 2, we can conclude that

= Fis true in (I, S, 5") iff not F is true in (J, S, 5")
(10)
for any PL-formula F', any S, and any nonempty
S’
(not Fy~is true in (I,5,5")
iff  =F* A not Fistruein (I,5,5)
iff  =F*, not F are true in (I,5,5")
iff  {ind. hyp.}
—F, not F are true in (7,5,5")
iff  —Fistruein (1,5,5) and 5" # 0
iff  {(10)}
not F is true in (1, 5,5") and 5" # 0
iff  mot Fis true in (I,5,5)
o F' N\ (. Straightforward.

O

Lemma 11. Let [ be an interpretation, S a set of
interpretations, and T a PL-theory. Then (I,S) is a
model of T if and only if (I, 5) is a model of T*.

Proof. Immediate from Lemma 10. O

Theorem 1 (Part B). A structure (I,S) is a model
of a PL-theory T if and only if S = w(X) for some
answer set X of T'.

Proof. By Lemma 11, T* and T have the same
models; by the definition of an answer set, they have
the same answer sets. Consequently, the statement of
the theorem follows from Theorem 1 (Part A). O

A3. Proofs of Theorem 2 and Theorem 3

Lemma 12. Let F' be a basic PL-formula, and X, X
closed sets of literals. Let F' be the formula obtained
from F' by substituting T for all occurrences of BT,
and F for all occurrences of not T. Then

X EFYiff X = (F)*.



Proof. It is clear that (F/)* can be obtained from F'*
by substituting T for all occurrences of BT. ad

Theorem 2. Let T be a basic PL-theory, and let
T’ be obtained from it by substituting T for all
occurrences of BT, and F for all occurrences of not T,
in every axiom. Then T and T’ have the same answer
sets.

Proof. Clearly, 7" = {F' | F € T}. Let X be a closed
set of literals.

Y is an answer set of T"
iff X is an answer set of (7")*
VFe(T)®: X F, and
{ foreach X C X, 3F € (T")* : X £ F
iff { VFeT:XE(F)® and
foreach X C X, 3F € T : X £ (F')™
iff  {Lemma 12}
VFeT:XE F¥ and
{ foreach X C X, IF € T : X }£ F*
iff ¥ is an answer set of T=

iff

iff X 1s an answer set of T

O

Lemma 13. Let F' be a basic PL-formula, and X, X
closed sets of literals. Let F’ be the formula obtained
from F' by substituting F for all occurrences of BF, and
T for all occurrences of not F. Suppose 2 # Lit. Then

X EFYiff X = (F)*.

Proof. If ¥ # Lit, then F ¢ X, and consequently
(F")* can be obtained from F'¥ by substituting F for
all occurrences of BF. ad

Theorem 3. Let T be a basic PL-theory, and let
T' be obtained from it by substituting F for all
occurrences of BF, and T for all occurrences of not F,
in every axiom. For any set of literals ¥ other than

Lit, X is an answer set of T' if and only if it is an answer
set of T".

Proof. Similar to the proof of Theorem 2, except that
only answer sets different from Lit are considered. 0O

A4. Proof of Theorem 4

Lemma 14. Let I’ be a basic PL-formula that con-
tains no positive occurrences of not, and let ¥, ¥/ be
two closed sets of literals such that ¥ C X'. Then, for
any closed set of literals X, if X |= F* then X |= F¥'

Proof. Since F' is a basic PL-formula, we can rewrite
it in conjunctive normal form as

Gy A oA Gy,

where all occurrences of not in each G; are preceded by
a negation. Thus it follows easily that, for any closed

set of literals X, if X = G¥ then X = G¥'. Hence if
X | F® then X | F¥' 0

Theorem 4. If the axioms of a PL-theory contain
no positive occurrences of not, then it cannot have
two answer sets of which one is a proper subset of the
other.

Proof. It is sufficient to prove the theorem for basic
PL-theories, because not occurs positively in a general
PL-theory if and only if it occurs positively in the
basic PL-theory T*. Let T be a basic PL-theory whose
axioms contain no positive occurrences of not. Let X,
Y’ be two answer sets of 7" such that ¥ C ¥/, As ¥
is an answer set of T, we have, for all axioms F' € T,
Y = F*. By Lemma 14, this implies for all axioms
FeT Xk F¥'. This contradicts the minimality of

Y among all closed sets satisfying the axioms of T
O



