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Abstract

Languages of declarative logic programming

di�er from other modal nonmonotonic for-

malisms by lack of syntactic uniformity. For

instance, negation as failure can be used in

the body of a rule, but not in the head; in

disjunctive programs, disjunction is used in

the head of a rule, but not in the body; in ex-

tended programs, negation as failure can be

used on top of classical negation, but not the

other way around. We argue that this lack

of uniformity should not be viewed as a dis-

tinguishing feature of logic programming in

general. As a starting point, we take a trans-

lation from the language of disjunctive pro-

grams with negation as failure and classical

negation into MBNF|the logic of minimal

belief and negation as failure. A class of the-

ories based on this logic is de�ned, theories

with protected literals, which is syntactically

uniform and contains the translations of all

programs. We show that theories with pro-

tected literals have a semantics similar to the

answer set semantics used in logic program-

ming, and investigate the expressiveness of

these theories.

1 Introduction

Investigations on the semantics of negation as fail-

ure have shown that declarative languages of logic

programming are closely related to the nonmonotonic

formalisms developed in Arti�cial Intelligence. It is

known, for instance, that general logic programs can

be reduced to default theories in the sense of

[

Reiter,

1980

]

by identifying a rule
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with the default
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[

Bidoit and Froidevaux, 1987

]

. Alternatively, general

logic programs can be viewed as a special case of

autoepistemic theories

[

Gelfond, 1987

]

.

These ideas have a profound signi�cance for the the-

ory of knowledge representation. They show that rep-

resenting knowledge in declarative logic programming

is very similar to representing knowledge in default

logic or in modal nonmonotonic logics. A particularly

striking example can be found in research on the frame

problem. It is known that expressing temporal persis-

tence by the formula

Holds(f; s) ^ :Ab(f; a; s) � Holds(f;Result(a; s))

leads to di�culties

[

Hanks and McDermott, 1987

]

.

This fact prompted several authors (

[

Eshghi and

Kowalski, 1989

]

,

[

Evans, 1989

]

,

[

Apt and Bezem,

1990

]

) to experiment with the corresponding logic pro-

gramming rule

Holds(f;Result(a; s)) Holds(f; s); not Ab(f; a; s):

(2)

Independently, Morris [1988] proposed to express the

same principle of reasoning by the default

Holds(f; s) : :Ab(f; a; s) = Holds(f;Result(a; s)):

It is clear that this default is the counterpart of (2)

under the Bidoit/Froidevaux translation.

Although general logic programs are a special case of

default theories, it is not true that declarative logic

programming as a whole is merely a subset of default

logic. This can be demonstrated on the example of



\disjunctive logic programs." Gelfond and Lifschitz

[1991] discuss disjunctive rules of the form

L

1

j : : : j L

l

 L

l+1

; : : : ; L

m

; not L

m+1

; : : : ; not L

n

;

(3)

(n � m � l � 0), where each L

i

is a literal (an atom

possibly preceded by :). It is not clear how to repre-

sent such a rule by a default or by a set of defaults; ap-

parently, default logic and the language of disjunctive

programs only partially overlap. Disjunctive default

logic

[

Gelfond et al., 1991

]

was proposed as a non-

monotonic formalism which can serve as a common

extension of these two languages.

The logic of minimal belief and negation as failure

(MBNF)

1

is another such formalism. It uses two

independent nonmonotonic modalities: the minimal

belief operator B and the negation as failure operator

not . A default

� : �

1

; : : : ; �

m

= 


is represented in this language by the formula

2

B� ^ not:�

1

^ : : :^ not:�

m

� B
: (4)

A disjunctive rule (3) can be identi�ed with the

formula

BL

l+1

^ : : :^ BL

m

^ not L

m+1

^ : : :^ not L

n

� BL

1

_ : : :_ BL

l

.

(5)

It is also possible to embed a rather general form of

circumscription into MBNF

[

Lifschitz, 1992

]

; circum-

scribing a predicate P is expressed by the axiom

8x(not P (x) � B:P (x)):

These facts show that the logic of minimal belief and

negation as failure is very expressive. We should note,

1

See

[

Lifschitz, 1992

]

. This is a modi�ed version of

the system described in the preliminary report

[

Lifschitz,

1991

]

. The description of the propositional fragment is

reproduced in Section 2 below. The system is a modi�ca-

tion and extension of the \logic of grounded knowledge"

introduced by Lin and Shoham [1990]. The concept of

minimal belief (or \minimal knowledge," or \maximal ig-

norance") was formalized earlier, in various ways, by sev-

eral authors, including Konolige [1982], Halpern and Moses

[1984], Shoham [1986] and Lin [1988].

2

In the propositional case, this formula represents the

meaning of the default as originally de�ned by Reiter

[1980]. In the presence of variables, it corresponds to the

modi�cation of default logic proposed in

[

Lifschitz, 1990

]

.

however, that the interesting concept of \strong intro-

spection"

[

Gelfond, 1991

]

is apparently not expressible

in it.

The embedding of logic programs into MBNF stresses

the epistemic character of the \connectives"  and

j. The rule L

1

 L

2

is di�erent from the implication

L

2

� L

1

; it is rendered by the combination BL

2

�

BL

1

, which includes both the classical connective �

and the epistemic operator B. The rule L

1

j L

2

 is

di�erent from the disjunction L

1

_ L

2

; it is rendered

by the epistemic combination BL

1

_ BL

2

.

Another reason why this embedding may be of interest

is related to the fact that the syntax of MBNF is

uniform. Propositional connectives and the epistemic

operators B, not can be applied in formulas of MBNF

any number of times and in any order. The syntax of

rules (3) is, in this sense, di�erent. Each rule contains

only one occurrence of  ; we are not allowed to form

a \nested" rule by applying  to two rules formed

earlier. Epistemic disjunction is allowed in the head

of a rule, but not in the body. Negation as failure can

be used in the body, but not in the head. Classical

negation can be applied to atoms only|never on top

of not , j or  .

In this paper we argue that this lack of uniformity

is not an essential feature of logic programming. We

de�ne a class of formulas of MBNF that includes all

formulas (5) and is syntactically rather uniform, and

show that such formulas are, in a sense, \semantically

similar" to logic programming rules. If all axioms of a

theory T belong to this class, we call T a \theory with

protected literals," or a \PL-theory." We hope that

the study of PL-theories will help us better understand

the place of declarative logic programming among

nonmonotonic formalisms in general.

At this stage, we restrict our attention to the proposi-

tional case.

The semantics of rules (3) is de�ned in

[

Gelfond and

Lifschitz, 1991

]

in terms of \answer sets." An answer

set of a program is a set of literals. The semantics

of MBNF is de�ned in terms of Kripke-style sets of

\possible worlds." The relationship between the two

systems is described in

[

Lifschitz, 1992

]

by establishing

a simple correspondence ! between sets of literals and

sets of possible worlds. If the axioms of a theory have

the form (5), then the sets of worlds that appear in its

models have the form !(�), where � is an answer set

of the corresponding program.

We show that ! serves as a correspondence between

the answer sets and the models not only for disjunctive

programs, but for all PL-theories. This theorem

suggests that theories of this type, in spite of the

relatively general syntactic form of their axioms, can

be viewed as logic programs.

Next we want to compare the expressive power of



arbitrary PL-theories with the expressive power of

disjunctive programs. Two theories are said to be

equivalent if they have the same models; in the case

of PL-theories, we can alternatively say, \the same

answer sets." Given a PL-theory, can we always �nd

an equivalent disjunctive program?

The answer to this question is no, because of an

interesting syntactic feature that one can �nd in a PL-

theory: The operator not may occur in the axioms

positively. (It is clear that all occurrences of not in a

disjunctive rule (5) are negative.) We give examples

of PL-theories that are not equivalent to disjunctive

programs.

2 Propositional MBNF

The review of the propositional fragment of MBNF

below follows

[

Lifschitz, 1992

]

, except that, in this

presentation, the language is assumed to include the

propositional constant T (\true"). We start with a

set of propositional symbols, atoms, which includes T.

Formulas are built from atoms using the propositional

connectives : and ^ and the modal operators B and

not . The other connectives are de�ned in terms of

: and ^ in the usual way; F (\false") stands for the

literal :T. A theory is a set of formulas (axioms).

If a formula or a theory does not contain the operator

not , we call it positive. This terminology is suggested

by the use of the word \positive" in logic program-

ming, and it is not related to the distinction between

positive and negative occurrences, familiar from clas-

sical logic. In MBNF, the sign of an occurrence of

a symbol in a formula can be de�ned as follows: An

occurrence is positive if it is in the range of an even

number of :'s and not 's, and negative otherwise.

An interpretation is a set I of atoms such that T 2 I. A

structure is a pair (I; S), where I is an interpretation,

and S a set of interpretations.

The relation< between structures is de�ned as follows:

(I; S) < (I

0

; S

0

) if S is a proper subset of S

0

. The

maximality of a structure relative to this relation

expresses the idea of \minimal belief": The larger the

set of \possible worlds" is, the fewer propositions are

believed.

We de�ne when a positive formula F is true in a

structure (I; S), as follows.

� If F is an atom, F is true in (I; S) i� F 2 I.

� :F is true in (I; S) i� F is not true in (I; S).

� F ^ G is true in (I; S) i� F and G are both true

in (I; S).

� BF is true in (I; S) i�, for every J 2 S, F is true

in (J; S).

A model of a positive theory T is any structure

maximal among those in which the axioms of T are

true. For instance, the models of fBpg, where p is an

atom, are the structures of the form (I ; fJ : p 2 Jg),

where I is any interpretation. The models of fB:pg

have the form (I ; fJ : p 62 Jg). The models of

fBp _ Bqg have the forms (I ; fJ : p 2 Jg) and

(I ; fJ : q 2 Jg). The models of fB(p _ q)g have

the form (I ; fJ : p 2 J or q 2 Jg).

A positive formula F is a theorem of a positive theory

T if F is true in every model of T . This relation

is nonmonotonic. For instance, :Bq is a theorem of

fBpg, but not a theorem of fBp;Bqg.

In order to extend the de�nition of a model to

nonpositive theories, we �rst need to extend the

de�nition of truth to nonpositive formulas. In the

presence of both B and not , truth will be de�ned

relative to a triple (I; S

b

; S

n

), where S

b

and S

n

are

sets of interpretations; S

b

serves as the set of \possible

worlds" for the purpose of de�ning the meaning of B,

and S

n

plays the same role for the operator not .

For an interpretation I and two sets of interpretations

S

b

, S

n

, we de�ne when a formula F is true in

(I; S

b

; S

n

), as follows.

� If F is an atom, F is true in (I; S

b

; S

n

) i� F 2 I.

� :F is true in (I; S

b

; S

n

) i� F is not true in

(I; S

b

; S

n

).

� F ^ G is true in (I; S

b

; S

n

) i� F and G are both

true in (I; S

b

; S

n

).

� BF is true in (I; S

b

; S

n

) i�, for every J 2 S

b

, F

is true in (J; S

b

; S

n

).

� not F is true in (I; S

b

; S

n

) i�, for some J 2 S

n

,

F is not true in (J; S

b

; S

n

).

This de�nition is a generalization of the de�nition of

truth for positive formulas, in the sense that a positive

formula is true in (I; S

b

; S

n

) i� it is true in (I; S

b

).

For any theory T and any set of interpretations S, by

�(T; S) we denote the set of all maximal structures

(I; S

0

) such that the axioms of T are true in (I; S

0

; S).

Intuitively, �(T; S) consists of the structures that can

be considered the models of T provided that the

negation as failure operator is interpreted relative to

the set of possible worlds S.

A structure (I; S) is a model of T if (I; S) 2 �(T; S).

It is easy to check, for instance, that the models

of fnot p � Bqg are the structures of the form

(I ; fJ : q 2 Jg). For positive theories, this de�nition

is equivalent to the one given before. The reader is

referred to

[

Lifschitz, 1992

]

for further examples.

3 Answer Sets

Let � be a set of literals. By �

p

we denote the set of

atoms that belong to �, and by �

n

the set of atoms



whose negations belong to �, so that

� = �

p

[ f:A : A 2 �

n

g:

Furthermore, !(�) stands for the set of interpretations

I such that �

p

� I and �

n

\ I = ;. For example,

!(fp;:qg) = !(fT; p;:qg) = fI : p 2 I; q 62 Ig;

!(fp;:pg) = !(fFg) = ;:

We want to de�ne, for theories T of a possibly more

general form, when a set of literals � is an \answer

set" of T , in such a way that the models of T will be

the structures of the form (I; !(�)). For example, this

can be done for the theory fBpg by declaring fpg (or

fT; pg) to be its only answer set. It can be also done

for fB:pg, fBp _ Bqg and fnot p � Bqg, but not for

fB(p _ q)g.

What is di�erent about the last axiom is that a

connective is applied in it to two atoms directly,

without �rst \protecting" them by a modal operator.

This observation suggests the following de�nitions.

Protected literals are formulas of the forms BL and

not L, where L is a literal, and the atom T. (Including

T in this de�nition is convenient, but not essential.) A

formula F is a formula with protected literals, or a PL-

formula, if each occurrence of an atom in F is a part of

a protected literal. Alternatively, PL-formulas can be

characterized as the formulas that can be built from

protected literals using :, B, not and ^. For instance,

every formula of the form (5)|and, more generally,

every propositional combination of protected literals|

is a PL-formula. Clearly, not B:p is a PL-formula also;

p and B(p _ q) are not PL-formulas.

A theory with protected literals, or a PL-theory, is

a theory whose axioms are PL-formulas. We will

de�ne the concept of an answer set for arbitrary PL-

theories. This will be done in three steps. First, we will

consider the theories whose axioms are propositional

combinations of positive protected literals (that is,

of protected literals that do not contain not). This

class covers the translations of positive disjunctive

programs. Then the de�nition will be extended to the

combinations of arbitrary protected literals. This class

covers the translations of all disjunctive programs.

Finally, the de�nition will be extended to arbitrary

PL-theories.

By Lit we denote the set of all literals. A set � � Lit

is closed if it satis�es two conditions:

� T 2 �.

� If � contains a pair of complimentary literals, then

� = Lit .

Note that, for any closed set of literals �, F 2 � if and

only if � = Lit .

The satisfaction relation between a set � of literals and

a propositional combination F of positive protected

literals is de�ned inductively, as follows:

� � j= T.

� � j= BL i� L 2 �.

� � j= :F i� � 6j= F .

� � j= F ^G i� � j= F and � j= G.

The De�nition of Answer Sets, Step 1. Let T be

a theory whose axioms are propositional combinations

of positive protected literals. A set � of literals is

an answer set of T if it is a minimal (relative to set

inclusion) closed set such that, for every axiom F of

T , � j= F .

For instance, the only answer set of fBpg is fT; pg; the

only answer set of fBp � Bqg is fTg; the answer sets

of fBp _ Bqg are fT; pg and fT; qg. The only answer

set of fBFg is Lit ; fFg has no answer sets.

For any propositional combination F of protected

literals and any set � of literals, the reduct of F relative

to � is the formula F

�

obtained by replacing each

subformula of the form not L in F by F if L 2 �,

and by T otherwise. For instance, if F is not p � Bq,

then F

;

is T � Bq, and F

fpg

is F � Bq. This is a

generalization of the procedure used in the de�nition

of \stable models"

[

Gelfond and Lifschitz, 1988

]

.

If the axioms of T are propositional combinations of

protected literals, then T

�

stands for fF

�

: F 2 Tg.

For theories of the form T

�

, the notion of an answer

set was de�ned in Step 1.

The De�nition of Answer Sets, Step 2. Let T be

a theory whose axioms are propositional combinations

of protected literals. A set � of literals is an answer

set of T if it is an answer set of T

�

.

It is easy to check, for instance, that the only answer

set of fnot p � Bqg is fT; qg. The theories fnot p �

Bpg, f:not pg and fnot Tg have no answer sets; the

only answer set of fnot Fg is fTg.

For a theory corresponding to a set of disjunctive

rules (3), this de�nition is essentially equivalent to the

one given in

[

Gelfond and Lifschitz, 1991

]

; the only

di�erence is that an answer set as de�ned here includes

T, and, if it is inconsistent, also F.

For any PL-formula F , let F

�

be the propositional

combination of protected literals de�ned inductively,

as follows:

� F

�

is F , if F is a protected literal.



� (:F )

�

is :F

�

.

� (F ^G)

�

is F

�

^G

�

.

� (BF )

�

is F

�

_ BF, if F is not a literal.

� (not F )

�

is :F

�

^ not F, if F is not a literal.

For any PL-theory T , T

�

stands for fF

�

: F 2 Tg.

For theories of the form T

�

, the notion of an answer

set was de�ned in Step 2.

The De�nition of Answer Sets, Step 3. Let T be

a PL-theory. A set � of literals is an answer set of T

if it is an answer set of T

�

.

Take, for instance, T = fB(Bp^:Bp)g. The de�nition

tells us that T has the same answer sets as

f(Bp ^ :Bp) _ BFg: (6)

Consequently, the only answer set of T is Lit. We see

that T is not equivalent to the theory fBp^:Bpg|the

latter has no answer sets.

The following theorem shows that we have achieved

the goal stated at the beginning of this section.

Theorem 1. A structure (I; S) is a model of a PL-

theory T if and only if S = !(�) for some answer set

� of T .

The proofs of theorems are given in the appendix.

4 Disjunctive Rules

A disjunctive rule is a formula of the form (5) in which

none of the literals L

i

is T or F. We would like

to compare the expressiveness of the theories whose

axioms are disjunctive rules with the expressiveness of

arbitrary PL-theories.

The de�nition of answer sets for arbitrary PL-theories

(Step 3) reduces the axioms to propositional combina-

tions of protected literals by a simple transformation,

which does not change signi�cantly the syntactic struc-

ture or the size of the formula. Consequently, without

loss of generality, we can restrict our attention to the

theories whose axioms are propositional combinations

of protected literals.

Furthermore, a propositional combination of protected

literals can be replaced by its \conjunctive normal

form"|a set of disjunctions of protected literals and

their negations. For instance,

((Bp _ not q) ^ not r) � Bs

will turn into the pair of disjunctions which can be

written as

(Bp ^ not r) � Bs;

(not q ^ not r) � Bs:

This is similar to the transformation of logic programs

proposed in

[

Lloyd and Topor, 1984

]

. Note, however,

that this reduction may lead to the exponential growth

of the axiom set.

A disjunction of protected literals and their negations

can be written as a disjunctive rule (5) if

� it contains no positive occurrences of not , and

� it contains no occurrences of BT, BF, not T, not F.

The following theorems show that the second restric-

tion is inessential.

Theorem 2. Let T be a theory whose axioms are

propositional combinations of protected literals, and

let T

0

be obtained from it by substituting T for all

occurrences of BT, and F for all occurrences of not T,

in every axiom. Then T and T

0

have the same answer

sets.

Theorem 3. Let T be a theory whose axioms are

propositional combinations of protected literals, and

let T

0

be obtained from it by substituting F for all

occurrences of BF, and T for all occurrences of not F,

in every axiom. For any set of literals � other than

Lit, � is an answer set of T if and only if it is an answer

set of T

0

.

The answer set Lit may be lost as the result of the

last transformation, as can be seen from the examples

fBFg and (6).

On the other hand, the �rst restriction|the absence of

positive occurrences of not|turns out to be essential.

Axiom sets without positive occurrences of not have

the following property.

Theorem 4. If the axioms of a PL-theory contain

no positive occurrences of not , then it cannot have

two answer sets of which one is a proper subset of the

other.

This is a generalization of Lemma 1 from

[

Gelfond

and Lifschitz, 1991

]

. It is similar to the minimality

of extensions property in default logic (

[

Reiter, 1980

]

,

Theorem 2.4).

Corollary. If the axioms of a PL-theory T contain no

positive occurrences of not , and Lit is an answer set

of T , then T has no other answer sets.

This is a generalization of Proposition 1 from

[

Gelfond

and Lifschitz, 1991

]

. It is similar to Corollary 2.3 from

[

Reiter, 1980

]

.



Using Theorem 4, we can show that a PL-theory

may have a combination of answer sets that would be

impossible without positive occurrences of not in the

axioms. For instance, the theory

fBp _ not pg (7)

has two answer sets, fTg and fT; pg. By Theorem

4, it is not equivalent to any set of disjunctive rules.

Moreover, a PL-theory can have Lit as one of several

answer sets. For instance, the answer sets of the theory

fBp _ not p; B:p _ not:pg

are fTg, fT; pg, fT;:pg and Lit .

5 Discussion

1. Where is the line separating the languages of

\declarative logic programming" from other modal

nonmonotonic formalisms? Our view on what is

essential about logic programming is that its semantics

can be described in terms of sets of literals|objects

that are much simpler than Kripke models.

Another possible view is that a logic programming lan-

guage, unlike nonmonotonic formalisms of other kinds,

always comes equipped with a standard query evalu-

ation method; it has a procedural semantics, in ad-

dition to the declarative one. From this perspective,

sets of rules of the form (1) can be counted as logic

programs because one can execute them using a Pro-

log interpreter. But if we intend to use the language

for the purpose of representing knowledge, and not for

programming, then there is no reason to ascribe any

special role to the Prolog search strategy. Much work

has been done on alternative query evaluation meth-

ods, such as the \magic set" method of

[

Bancilhon et

al., 1986

]

, which may produce an answer when Pro-

log would not terminate. The development of better

query evaluation procedures in logic programming is

similar to the development of more powerful theorem

provers for other kinds of nonmonotonic formalisms.

The existence of incomplete, but useful query evalua-

tion procedures is not a distinguishing feature of logic

programming.

2. The use of (some syntactic variant of) nested combi-

nations of protected literals may give representational

advantages over a \
at" syntax, similar to the advan-

tages of the extension of Prolog described by Lloyd and

Topor [1984]. There are several di�erences between

our proposal and theirs. First, the answer set seman-

tics has grown from the use of minimal models by van

Emden and Kowalski [1976] and from the generaliza-

tions of this idea in

[

Apt et al., 1988

]

,

[

Przymusinski,

1988

]

,

[

Gelfond and Lifschitz, 1988

]

, rather than from

the completion semantics of

[

Clark, 1978

]

. Second, we

include rules with disjunctive heads. Third, we distin-

guish between negation as failure and classical nega-

tion.

3. A disjunction of protected literals and their

negations can be written in the form

BL

l+1

^ : : :^ BL

m

^ not L

m+1

^ : : :^ not L

n

� BL

1

_ : : :_ BL

k

_ not L

k+1

_ : : :_ not L

l

;

or, in \logic programming notation," as

L

1

j : : : j L

k

j not L

k+1

j : : : j not L

l

 L

l+1

; : : : ; L

m

; not L

m+1

; : : : ; not L

n

.

(8)

For example, (7) is, in this notation,

p j not p :

This rule has two answer sets; one of them includes p

(\p is true"), and the other includes neither p nor :p

(\the truth value of p is unknown"). It remains to be

seen whether rules like this may have applications to

knowledge representation.

4. There is a possibility that including a rule of

the form (8) in a program may be computationally

advantageous, when this rule is redundant from the

point of view of the declarative semantics. Let � be

a set of rules (1) which includes, among others, the

positive rule

p q; r:

If we know that q succeeds, but p fails, then we can

conclude that r fails. This reasoning can be formally

represented as using the \contrapositive" rule

not r q; not p:

We have shown that such rules can be given a declar-

ative semantics. It is easy to prove that adding this

rule to � does not change its answer sets.

This idea was suggested to us by the informal discus-

sion of \contrapositive rules" in

[

Kowalski and Kim,

1991

]

. About the rule

demo(T;Q) demo(T; or(P;Q)); demo(not(P ))

Kowalski and Kim observe that it would be useful also

\in its contrapositive form"



not demo(not(P ))

 demo(T; or(P;Q)); not demo(T;Q).

\Such use of contrapositives, however, is not possi-

ble within currently available logic programming sys-

tems." The generalization of answer sets proposed in

this paper may provide a theoretical foundation for the

use of contrapositives.
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Appendix. Proofs of Theorems

A1. Preliminary Lemmas

The following facts are used in the proofs of Theorems

1{4.

Lemma 1

[

Lifschitz, 1992

]

. Let �;�

0

be closed sets

of literals.

(a) !(�) = ; i� � = Lit .

(b)

T

I2!(�)

I = �

p

.

(c)

S

I2!(�)

I = �

n

where �

n

denotes the comple-

ment of �

n

.

(d) � � �

0

i� !(�

0

) � !(�).

(e) � = �

0

i� !(�) = !(�

0

).

2

As de�ned in

[

Lifschitz, 1992

]

, two sets of interpreta-

tions S

1

; S

2

are equivalent if

\

I2S

1

I =

\

I2S

2

I and

[

I2S

1

I =

[

I2S

2

I:

Lemma 2. Let I; J be interpretations, and S; S

1

; S

2

sets of interpretations. If S

1

and S

2

are equivalent,

then, for any PL-formula F ,

F is true in (I; S

1

; S) i� F is true in (J; S

2

; S):

2

This is a generalization of an observation made in

[

Lifschitz, 1992

]

. The assumption that F is a PL-

formula is essential; a simple counterexample is B(p _

q), with S

1

= ffpg; fqgg and S

2

= ffg; fp; qgg.

Proof. By structural induction.

(1) Base case. Protected literals.

� T. Straightforward.

� BA, where A is an atom.

BA is true in (I; S

1

; S)

i� 8K 2 S

1

: A is true in (K;S

1

; S)

i� 8K 2 S

1

: A 2 K

i� fset theoryg

A 2

T

K2S

1

K

i� fS

1

equivales S

2

g

A 2

T

K2S

2

K

i� fset theoryg

8K 2 S

2

: A 2 K

i� 8K 2 S

2

: A is true in (K;S

2

; S)

i� BA is true in (J; S

2

; S)

� B:A, where A is an atom.

B:A is true in (I; S

1

; S)

i� 8K 2 S

1

: :A is true in (K;S

1

; S)

i� 8K 2 S

1

: A is not true in (K;S

1

; S)

i� 8K 2 S

1

: A 62 K

i� fset theoryg

A 62

S

K2S

1

K

i� fS

1

equivales S

2

g

A 62

S

K2S

2

K

i� fset theoryg

8K 2 S

2

: A 62 K

i� 8K 2 S

2

: A is not true in (K;S

2

; S)

i� 8K 2 S

2

: :A is true in (K;S

2

; S)

i� B:A is true in (J; S

2

; S)

� not L, where L is a literal.



not L is true in (I; S

1

; S)

i� 9K 2 S : L is not true in (K;S

1

; S)

i� 9K 2 S : L 62 K

i� 9K 2 S : L is not true in (K;S

2

; S)

i� not L is true in (J; S

2

; S)

(2) Induction step. The formula has one of the forms

:F , BF , not F or F ^ G, where F and G are PL-

formulas. Straightforward. 2

Using Lemma 2, it is easy to observe that (I; S) is a

model of a PL-theory T if and only if (J; S) is a model

of T .

Lemma 3

[

Lifschitz, 1992

]

. For any set of interpreta-

tions S, there exists a closed set of literals � such that

!(�) contains S and is equivalent to it.

A2. Proof of Theorem 1

A PL-formula is basic if it is a propositional combina-

tion of protected literals. For example, not p � Bp is

a basic PL-formula, while B not p ^ Bp is not. A basic

PL-theory is a PL-theory whose axioms are basic. We

prove Theorem 1 via two steps. In step 1 (Part A),

we establish the theorem for basic PL-theories. Then

in step 2 (Part B), we extend the theorem to all PL-

theories using Part A as a lemma.

Lemma 4. Let I be an interpretation, S a set of

interpretations, � a closed set of literals, and L a

literal. Then

not L is true in (I; S; !(�)) i� L 62 �:

Proof.

Case 1. L is A, where A is an atom.

not A is true in (I; S; !(�))

i� 9 J 2 !(�) : A is not true in (J; S; !(�))

i� 9 J 2 !(�) : A 62 J

i� fset theoryg

A 62

T

J2!(�)

J

i� fLemma 1(b)g

A 62 �

p

i� A 62 �

Case 2. L is :A, where A is an atom.

not :A is true in (I; S; !(�))

i� 9 J 2 !(�) : :A is not true in (J; S; !(�))

i� 9 J 2 !(�) : A is true in (J; S; !(�))

i� 9 J 2 !(�) : A 2 J

i� fset theoryg

A 2

S

J2!(�)

J

i� fLemma l(c)g

A 2 �

n

i� :A 62 �

2

Lemma 5. Let I be an interpretation, S; S

0

sets of

interpretations, � a closed set of literals, and F a basic

PL-formula. Then

F

�

is true in (I; S; S

0

) i� F is true in (I; S; !(�)):

Proof. By structural induction.

(1) Base case.

� T and BL.

These are positive PL-formulas, hence F

�

is

identical to F . It remains to notice that the truth

of positive formulas relative to a triple (I; S; S

0

)

does not depend on S

0

.

� not L, where L is a literal.

Recall that

(not L)

�

is

�

T; if L 62 �;

F; if L 2 �:

Thus

(not L)

�

is true in (I; S; S

0

) i� L 62 �:

By Lemma 4, we obtain

(not L)

�

is true in (I; S; S

0

) i� not L is true in

(I; S; !(�)).

(2) Induction step. The formula has the form :F or

F ^ G, where F and G are PL-formulas. Straightfor-

ward. 2

Lemma 6. Let I be an interpretation, S a set of

interpretations, � a set of literals, and F a positive

basic PL-formula. Then

� j= F i� F is true in (I; !(�); S):

Proof. By structural induction.

(1) Base case. Protected literals.

� T. Straightforward.



� BA, where A is an atom.

BA is true in (I; !(�); S)

i� 8 J 2 !(�) : A is true in (J; !(�); S)

i� 8 J 2 !(�) : A 2 J

i� fset theoryg

A 2

T

J2!(�)

J

i� fLemma 1(b)g

A 2 �

p

i� A 2 �

i� � j= BA

� B:A, where A is an atom.

B:A is true in (I; !(�); S)

i� 8 J 2 !(�) : :A is true in (J; !(�); S)

i� 8 J 2 !(�) : A is not true in (J; !(�); S)

i� 8 J 2 !(�) : A 62 J

i� fset theoryg

A 62

S

J2!(�)

J

i� fLemma 1(c)g

A 2 �

n

i� :A 2 �

i� � j= B:A

(2) Induction step. The formula has the form :F or

F ^ G, where F and G are PL-formulas. Straightfor-

ward. 2

Let T be a PL-theory, and � a set of literals. We de�ne

an operator similar to � as below:

�

0

(T;�) =

8

>

>

>

>

<

>

>

>

>

:

�

0

� Lit

�

0

is a minimal

closed set such that

8 F 2 T : F

is true in

(I; !(�

0

); !(�))

9

>

>

>

>

=

>

>

>

>

;

:

Note that I is an arbitrary interpretation; recall that,

by Lemma 2, the choice of I has no e�ect on whether

or not F is true relative to a triple (I; S; S

0

).

Lemma 7. Let I be an interpretation, and S a set of

interpretations. Then (I; S) is a model of a PL-theory

T if and only if S has the form !(�) for a closed set

of literals � such that � 2 �

0

(T;�).

Proof. We �rst de�ne a predicate � as follows:

�(X) � 8 F 2 T : F is true in (I;X; S):

Clearly, if S

1

and S

2

are equivalent then �(S

1

) �

�(S

2

).

Left to right: Let (I; S) be a model of T . Thus,

(I; S) 2 �(T; S), which means that (I; S) is a maximal

structure such that S satis�es �. That is:

(i) �(S) holds, and

(ii) if S ( S

0

, then �(S

0

) does not hold.

By Lemma 3, there is a closed set � of literals such

that S � !(�) and S, !(�) are equivalent.

We want to show:

(1) S = !(�).

Suppose the contrary, that is, S ( !(�). From

the fact that S and !(�) are equivalent and (i),

we conclude that �(!(�)) holds as well, which

contradicts (ii).

(2) � 2 �

0

(T;�).

To prove this, we need to show that � is a minimal

closed set such that �(!(�)) holds. From (1) and

(i), !(�) satis�es �. It remains to show that �

is minimal. Assume that �

0

( �. By (1) and

Lemma 1(d), S = !(�) ( !(�

0

); by (ii), it follows

that �(!(�

0

)) does not hold.

Right to left: Let � be a set of literals such that

� 2 �

0

(T;�). This means that � is a minimal closed

set such that !(�) satis�es �. That is:

(i) �(!(�)) holds and,

(ii) if �

0

( �, then �(!(�

0

)) does not hold.

To prove that (I; !(�)) is a model of T , we need

to show that (I; !(�)) 2 �(T; !(�)), which means

that (I; !(�)) is a maximal structure such that !(�)

satis�es �. We know from (i) that !(�) satis�es �.

Assume that !(�) ( S

0

. By Lemma 3, there exists a

closed set of literals �

0

such that S

0

� !(�

0

) and S

0

is equivalent to !(�

0

). Then !(�) ( S

0

� !(�

0

), and

it follows by Lemma 1(d) that �

0

( �. Then, by (ii),

!(�

0

) does not satisfy �. Since this set is equivalent

to S

0

, we conclude that S

0

does not satisfy � either.

2

Lemma 8. Let T be a positive basic PL-theory, and

� a set of literals. Then �

0

(T;�) is the set of all answer

sets of T .

Proof. Using Lemma 6, we can restate the de�nition

of �

0

as

�

0

(T;�) =

8

>

<

>

:

�

0

� Lit

�

0

is a minimal

closed set such that

8 F 2 T :�

0

j= F

9

>

=

>

;

:

Clearly, the condition for being an element of �

0

(T;�)

is exactly the same as that for an answer set of T . 2

Lemma 9. Let T be a basic PL-theory, and � a closed

set of literals. Then

�

0

(T

�

;�) = �

0

(T;�):



Proof. By de�nition

�

0

(T

�

;�) =

8

>

>

>

>

<

>

>

>

>

:

�

0

� Lit

�

0

is a minimal

closed set such that

8 F 2 T

�

:F

is true in

(I; !(�

0

); !(�))

9

>

>

>

>

=

>

>

>

>

;

:

Since T

�

stands for fF

�

: F 2 Tg, this can be

rewritten as

�

0

(T

�

;�) =

8

>

>

>

>

<

>

>

>

>

:

�

0

� Lit

�

0

is a minimal

closed set such that

8 F 2 T :F

�

is true in

(I; !(�

0

); !(�))

9

>

>

>

>

=

>

>

>

>

;

:

Lemma 5 shows that the right-hand side is equal to

�

0

(T;�). 2

Theorem 1 (Part A). A structure (I; S) is a model

of a basic PL-theory T if and only if S = !(�) for

some answer set � of T .

Proof. By Lemma 7, it is su�cient to show that,

for any set of literals �, � is an answer set of T i�

� 2 �

0

(T;�). By the de�nition of answer sets for

basic PL-theories, � is an answer set of T i� � is an

answer set of T

�

. By Lemma 8, this can be expressed

as � 2 �

0

(T

�

;�). By Lemma 9, this is equivalent to

� 2 �

0

(T;�). 2

Lemma 10. Let I be an interpretation, S; S

0

sets of

interpretations, and F a PL-formula. Then

F

?

is true in (I; S; S

0

) i� F is true in (I; S; S

0

):

Proof. By structural induction.

(1) Base case. Protected literals. F

?

coincides with F .

(2) Induction step.

� :F . Straightforward.

� BF . Using Lemma 2, we can conclude that

F is true in (I; S; S

0

) i� BF is true in (J; S; S

0

)

(9)

for any PL-formula F , any nonempty S, and any

S

0

.

(BF )

?

is true in (I; S; S

0

)

i� F

?

_ BF is true in (I; S; S

0

)

i� F

?

is true in (I; S; S

0

) or

BF is true in (I; S; S

0

)

i� find. hyp.g

F is true in (I; S; S

0

) or

BF is true in (I; S; S

0

)

i� F is true in (I; S; S

0

) or S = ;

i� f(9)g

BF is true in (I; S; S

0

) or S = ;

i� BF is true in (I; S; S

0

)

� not F . Using Lemma 2, we can conclude that

:F is true in (I; S; S

0

) i� not F is true in (J; S; S

0

)

(10)

for any PL-formula F , any S, and any nonempty

S

0

.

(not F )

?

is true in (I; S; S

0

)

i� :F

?

^ not F is true in (I; S; S

0

)

i� :F

?

; not F are true in (I; S; S

0

)

i� find. hyp.g

:F; not F are true in (I; S; S

0

)

i� :F is true in (I; S; S

0

) and S

0

6= ;

i� f(10)g

not F is true in (I; S; S

0

) and S

0

6= ;

i� not F is true in (I; S; S

0

)

� F ^ G. Straightforward.

2

Lemma 11. Let I be an interpretation, S a set of

interpretations, and T a PL-theory. Then (I; S) is a

model of T if and only if (I; S) is a model of T

?

.

Proof. Immediate from Lemma 10. 2

Theorem 1 (Part B). A structure (I; S) is a model

of a PL-theory T if and only if S = !(�) for some

answer set � of T .

Proof. By Lemma 11, T

?

and T have the same

models; by the de�nition of an answer set, they have

the same answer sets. Consequently, the statement of

the theorem follows from Theorem 1 (Part A). 2

A3. Proofs of Theorem 2 and Theorem 3

Lemma 12. Let F be a basic PL-formula, and X, �

closed sets of literals. Let F

0

be the formula obtained

from F by substituting T for all occurrences of BT,

and F for all occurrences of not T. Then

X j= F

�

i� X j= (F

0

)

�

:



Proof. It is clear that (F

0

)

�

can be obtained from F

�

by substituting T for all occurrences of BT. 2

Theorem 2. Let T be a basic PL-theory, and let

T

0

be obtained from it by substituting T for all

occurrences of BT, and F for all occurrences of not T,

in every axiom. Then T and T

0

have the same answer

sets.

Proof. Clearly, T

0

= fF

0

j F 2 Tg. Let � be a closed

set of literals.

� is an answer set of T

0

i� � is an answer set of (T

0

)

�

i�

�

8 F 2 (T

0

)

�

: � j= F , and

for each X ( �, 9F 2 (T

0

)

�

: X 6j= F

i�

�

8 F 2 T : � j= (F

0

)

�

, and

for each X ( �, 9F 2 T : X 6j= (F

0

)

�

i� fLemma 12g

�

8 F 2 T : � j= F

�

, and

for each X ( �, 9F 2 T : X 6j= F

�

i� � is an answer set of T

�

i� � is an answer set of T

2

Lemma 13. Let F be a basic PL-formula, and X, �

closed sets of literals. Let F

0

be the formula obtained

from F by substituting F for all occurrences of BF, and

T for all occurrences of not F. Suppose � 6= Lit. Then

X j= F

�

i� X j= (F

0

)

�

:

Proof. If � 6= Lit, then F 62 �, and consequently

(F

0

)

�

can be obtained from F

�

by substituting F for

all occurrences of BF. 2

Theorem 3. Let T be a basic PL-theory, and let

T

0

be obtained from it by substituting F for all

occurrences of BF, and T for all occurrences of not F,

in every axiom. For any set of literals � other than

Lit, � is an answer set of T if and only if it is an answer

set of T

0

.

Proof. Similar to the proof of Theorem 2, except that

only answer sets di�erent from Lit are considered. 2

A4. Proof of Theorem 4

Lemma 14. Let F be a basic PL-formula that con-

tains no positive occurrences of not , and let �, �

0

be

two closed sets of literals such that � ( �

0

. Then, for

any closed set of literals X, if X j= F

�

then X j= F

�

0

.

Proof. Since F is a basic PL-formula, we can rewrite

it in conjunctive normal form as

G

1

^ : : : ^ G

n

;

where all occurrences of not in each G

i

are preceded by

a negation. Thus it follows easily that, for any closed

set of literals X, if X j= G

�

i

then X j= G

�

0

i

. Hence if

X j= F

�

then X j= F

�

0

. 2

Theorem 4. If the axioms of a PL-theory contain

no positive occurrences of not , then it cannot have

two answer sets of which one is a proper subset of the

other.

Proof. It is su�cient to prove the theorem for basic

PL-theories, because not occurs positively in a general

PL-theory if and only if it occurs positively in the

basic PL-theory T

?

. Let T be a basic PL-theory whose

axioms contain no positive occurrences of not . Let �,

�

0

be two answer sets of T such that � ( �

0

. As �

is an answer set of T , we have, for all axioms F 2 T ,

� j= F

�

. By Lemma 14, this implies for all axioms

F 2 T , � j= F

�

0

. This contradicts the minimality of

�

0

among all closed sets satisfying the axioms of T

�

0

.

2


