
Relating Two Dialects of Answer Set Programming

Amelia Harrison and Vladimir Lifschitz
University of Texas at Austin
{ameliaj,vl}@cs.utexas.edu

Abstract

The input language of the answer set solver CLINGO is based
on the definition of a stable model proposed by Paolo Ferraris.
The semantics of the ASP-Core language, developed by the
ASP Standardization Working Group, uses the approach to
stable models due to Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. The two languages are based on different versions
of the stable model semantics, and the ASP-Core document
requires, “for the sake of an uncontroversial semantics,” that
programs avoid the use of recursion through aggregates. In
this paper we prove that the absence of recursion through ag-
gregates does indeed guarantee the equivalence between the
two versions of the stable model semantics, and show how
that requirement can be relaxed without violating the equiva-
lence property.

Introduction
Early work on autoepistemic logic and default logic has led
to the development of the stable model semantics of logic
programs, which serves as the semantic basis of answer set
programming (ASP). The ASP-Core document1, produced
in 2012–2015 by the ASP Standardization Working Group,
was intended as a specification for the behavior of answer
set programming systems. The existence of such a specifica-
tion enables system comparisons and competitions to evalu-
ate such systems.

The semantics of ASP programs described in that docu-
ment differs from that of the input language of the widely
used answer set solver CLINGO.2 The two languages are
based on different versions of the stable model semantics:
the former on the FLP-semantics, proposed by Faber, Leone,
and Pfeifer (2004) and generalized to arbitrary propositional
formulas by Truszczynski (2010), and the latter on the ap-
proach of Ferraris (2005).

In view of this discrepancy, the ASP-Core document in-
cludes a warning: “For the sake of an uncontroversial seman-
tics, we require [the use of] aggregates to be non-recursive”
(Section 6.3 of Version 2.03c). Including this warning was

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.mat.unical.it/aspcomp2013
/ASPStandardization.

2http://potassco.org/clingo.

apparently motivated by the belief that in the absence of re-
cursion through aggregates the functionality of CLINGO con-
forms with the ASP-Core semantics.

In this paper, that belief is turned into a theorem: for a
programming language that is essentially a large subset of
ASP-Core,3 we prove that the absence of recursion through
aggregates guarantees the equivalence between ASP-Core
and CLINGO. Our theorem is actually stronger, in two ways.
First, it shows that the view of recursion through aggregates
adopted in the ASP-Core document is unnecessarily broad
when applied to disjunctive programs (see Footnote 9). Sec-
ond, it shows that aggregates that do not contain negation as
failure can be used recursively without violating that prop-
erty. For example, the rule

val(W,0) :- gate(G,and), output(W,G),
card{W: val(W,0), input(W,G)} > 0

which describes the propagation of binary signals through
an and-gate (Gelfond and Zhang, 2014, Example 9) has the
same meaning in both languages.

A few years ago it was difficult not only to prove such
a theorem, but even to state it properly, because a mathe-
matically precise semantics of the language of CLINGO be-
came available only with the publication by Gebser et al.
(2015). The concept of a stable model for CLINGO programs
is defined in that paper in two steps: first a transformation τ
is introduced,4 which turns a CLINGO program into a set
of infinitary propositional formulas, and then the definition
of a stable model due to Ferraris (2005), extended to the
infinitary case by Truszczynski (2012), is invoked. Infinite
conjunctions and disjunctions are needed when the program
uses local variables. We will refer to stable models in the
sense of this two-step definition as “FT-stable.”

The semantics of ASP-Core programs is precisely defined
in Section 2 of the ASP-Core document, but that definition is
not completely satisfactory: it is not applicable to programs

3This language does not include classical negation, weak con-
straints, optimize statements, and queries, and it does not allow
multiple aggregate elements within the same aggregate atom. On
the other hand, it includes the symbols inf and sup from the
CLINGO language.

4An oversight in the definiton of τ in that publi-
cation is corrected in the arXiv version of the paper,
http://arXiv.org/abs/1507.06576v2.

with local variables. The problem is that the definition of
a ground instance in Section 2.2 of the document includes
replacing the list e1; . . . ; en of aggregate elements in an ag-
gregate atom by its instantiation inst({e1; . . . ; en}); the in-
stantiation, as defined in the document, is an infinite object,
because the set of symbols that can be substituted for lo-
cal variables includes arbitrary integers and arbitrarily long
symbolic constants. So the result of the replacement is not
an ASP-Core program. Prior to addressing the main topic of
this note, we propose a way to correct this defect. We use
a two-step procedure, similar to the one employed by Geb-
ser et al. (2015): after applying a transformation τ1, almost
identical to τ ,5 it refers to a straightforward generalization
of the definition of a stable model due to Faber, Leone, and
Pfeifer (2004) to the infinitary case. In the absence of lo-
cal variables, this semantics is consistent with the ASP-Core
document (Harrison, 2017, Chapter 12). Stable models in the
sense of this two-step definition will be called “FLP-stable.”

We start by defining the syntax of programs, two versions
of the stable model semantics of infinitary formulas, and two
versions of the semantics of programs. The main theorem
asserts that if the aggregates used in a program recursively
do not contain negation then the FLP-stable models of the
program are the same as its FT-stable models. To prove the
theorem we investigate under what conditions the models of
a set of infinitary propositional formulas that are stable in
the sense of Faber et al. are identical to the models stable in
the sense of Ferraris and Truszczynski.

Syntax of Programs
The syntax of programs is described here in an abstract fash-
ion, in the spirit of Gebser et al. (2015), so as to avoid
inessential details related to the use of ASCII characters.

We assume that three pairwise disjoint sets of symbols are
selected: numerals, symbolic constants, and variables. Fur-
ther, we assume that these sets do not contain the symbols

+ − × / (1)

inf sup (2)

= 6= < > ≤ ≥ (3)

not ∧ ∨ ← (4)

, : () { } (5)

and are different from the aggregate names count, sum, max,
min. All these symbols together form the alphabet of pro-
grams, and rules will be defined as strings over this alphabet.

We assume that a 1–1 correspondence between the set of
numerals and the set Z of integers is chosen. For every inte-
ger n, the corresponding numeral will be denoted by n.

Terms are defined recursively, as follows:

• all numerals, symbolic constants, and variables, as well as
symbols (2) are terms;

• if f is a symbolic constant and t is a non-empty tuple of
terms (separated by commas) then f(t) is a term;

5The original translation τ could be used for this purpose as
well. However, the definition of τ1 seems more natural.

• if t1 and t2 are terms and ? is one of the symbols (1) then
(t1 ? t2) is a term.
A term, or a tuple of terms, is ground if it does not con-

tain variables. A term, or a tuple of terms, is precomputed
if it contains neither variables nor symbols (1). We assume
a total order on precomputed terms such that inf is its least
element, sup is its greatest element, and, for any integers m
and n, m ≤ n iff m ≤ n.

For each aggregate name we define a function that maps
every set of non-empty tuples of precomputed terms to a
precomputed term. Functions corresponding to each of the
aggregate names are defined below using the following ter-
minology. If the first member of a tuple t of precomputed
terms is a numeral n then we say that the integer n is the
weight of t; if t is empty or its first member is not an nu-
meral then the weight of t is 0. For any set T of tuples of
precomputed terms,
• ̂count(T) is the numeral corresponding to the cardinality

of T if T is finite, and sup otherwise;
• ŝum(T) is the numeral corresponding to the sum of the

weights of all tuples in T if T contains finitely many tu-
ples with non-zero weights, and 0 otherwise;

• m̂in(T) is sup if T is empty, the least element of the set
consisting of the first elements of the tuples in T if T is a
finite non-empty set, and inf if T is infinite;

• m̂ax(T) is inf if T is empty, the greatest element of the
set consisting of the first elements of the tuples in T if T
is a finite non-empty set, and sup if T is infinite.
An atom is a string of the form p(t) where p is a symbolic

constant and t is a tuple of terms. For any atomA, the strings

A not A (6)

are symbolic literals. An arithmetic literal is a string of the
form t1 ≺ t2 where t1, t2 are terms and ≺ is one of the
symbols (3). A literal is a symbolic or arithmetic literal.6

An aggregate atom is a string of the form

α{t : L} ≺ s, (7)

where
• α is an aggregate name,
• t is a tuple of terms,
• L is a tuple of literals called the “conditions” (if L is

empty then the preceding colon may be dropped),
• ≺ is one of the symbols (3),
• and s is a term.
For any aggregate atom A, the strings (6) are aggregate lit-
erals; the former is called positive, and the latter is called
negative.

A rule is a string of the form

H1 ∨ · · · ∨ Hk ← B1 ∧ · · · ∧ Bn (8)
6In the parlance of the ASP-Core document, atoms are “classi-

cal atoms,” arithmetic literals are “built-in atoms,” and literals are
“naf-literals.”

(k, n ≥ 0), where eachHi is an atom, and eachBj is a literal
or aggregate literal. The expressionB1∧· · ·∧Bn is the body
of the rule, and H1 ∨ · · · ∨ Hk is the head. A program is a
finite set of rules.

About a variable we say that it is global

• in a symbolic or arithmetic literal L, if it occurs in L;

• in an aggregate atom (7) or its negation, if it occurs in s;

• in a rule (8), if it is global in at least one of the expres-
sions Hi, Bj .

A variable that is not global is called local. A literal or a rule
is closed if it has no global variables.

Stable Models of Infinitary Formulas
Formulas
Let σ be a propositional signature, that is, a set of proposi-
tional atoms. The sets F0,F1, . . . are defined as follows:

• F0 = σ,

• Fi+1 is obtained from Fi by adding expressions H∧ and
H∨ for all subsets H of Fi, and expressions F → G for
all F,G ∈ Fi.

The elements of
⋃∞
i=0 Fi are called (infinitary propositional)

formulas over σ.
In an infinitary formula, F ∧ G and F ∨ G are abbrevi-

ations for {F,G}∧ and {F,G}∨ respectively; > and ⊥ are
abbreviations for ∅∧ and ∅∨; ¬F stands for F → ⊥, and
F ↔ G stands for (F → G) ∧ (G→ F). Literals over σ
are atoms from σ and their negations. If 〈Fι〉ι∈I is a fam-
ily of formulas from one of the sets Fi then the expression∧
ι Fι stands for the formula {Fι : ι ∈ I}∧, and

∨
ι Fι

stands for {Fι : ι ∈ I}∨.
Subsets of a propositional signature σ will be called its

interpretations. The satisfaction relation between an inter-
pretation and a formula is defined recursively as follows:

• For every atom p from σ, I |= p if p ∈ I .

• I |= H∧ if for every formula F inH, I |= F .

• I |= H∨ if there is a formula F inH such that I |= F .

• I |= F → G if I 6|= F or I |= G.

We say that an interpretation satisfies a set H of formulas,
or is a model ofH, if it satisfies every formula inH. We say
that H entails a formula F if every model of H satisfies F .
Two sets of formulas are equivalent if they have the same
models.

FLP-Stable Models
Let H be a set of infinitary formulas of the form G → H ,
where H is a disjunction of atoms from σ. The FLP-reduct
FLP(H, I) of H w.r.t. an interpretation I of σ is the set of
all formulas G→ H from σ such that I satisfies G. We say
that I is an FLP-stable model of H if it is minimal w.r.t. set
inclusion among the models of FLP(H, I).

It is clear that I satisfies FLP(H, I) iff I satisfiesH. Con-
sequently every FLP-stable model ofH is a model ofH.

FT-Stable Models
The FT-reduct FT(F, I) of an infinitary formula F w.r.t. an
interpretation I is defined as follows:
• For any atom p from σ, FT(p, I) = ⊥ if I 6|= p; otherwise

FT(p, I) = p.
• FT(H∧, I) = {FT(G, I) | G ∈ H}∧.
• FT(H∨, I) = {FT(G, I) | G ∈ H}∨.
• FT(G → H, I) = ⊥ if I 6|= G → H; otherwise

FT(G→ H, I) = FT(G, I)→ FT(H, I).
The FT-reduct FT(H, I) of a setH of formulas is defined as
the set of the reducts FT(F, I) of all formulas F fromH. An
interpretation I is an FT-stable model of H if it is minimal
w.r.t. set inclusion among the models of FT(H, I).

It is easy to show by induction that I satisfies FT(F, I)
iff I satisfies F . Consequently every FT-stable model of a
set of formulas is a model of that set.

It is easy to check also that if I does not satisfy F then
FT(F, I) is equivalent to ⊥.

Comparison
An FLP-stable model of a set of formulas is not necessarily
FT-stable, and an FT-stable model is not necessarily FLP-
stable. For example, consider (the singleton set containing)
the formula

p ∨ ¬p→ p. (9)
It has no FT-stable models, but the interpretation {p} is its
FLP-stable model. On the other hand, the formula

¬¬p→ p (10)

has two FT-stable models, ∅ and {p}, but latter is not FLP-
stable.

It is clear that replacing the antecedent of an implication
by an equivalent formula within any set of formulas does not
affect its FLP-stable models. For instance, from the perspec-
tive of the FLP semantics, formula (9) has the same meaning
as > → p, and (10) has the same meaning as p→ p. On the
other hand, the FLP-stable models may change if we break
an implication of the form F ∨ G → H into F → H and
G→ H . For instance, breaking (9) into p→ p and ¬p→ p
gives a set without FLP-stable models.

With the FT semantics, it is the other way around: it does
matter, generally, whether we write ¬¬p or p in the an-
tecedent of an implication, but breaking F ∨ G → H into
two implications cannot affect the set of stable models.

Transformations of infinitary formulas that do not af-
fect their FT-stable models were studied by Harrison et al.
(2017). These authors extended, in particular, the logic of
here-and-there introduced by Heyting (1930) to infinitary
propositional formulas and showed that any two sets of in-
finitary formulas that have the same models in the infinitary
logic of here-and-there have also the same FT-stable models.

Semantics of Programs
In this section, we define two very similar translations, τ1
and τ . Each of them transforms any program into a set of
infinitary formulas over the signature σ0 consisting of all

atoms of the form p(t), where p is a symbolic constant and t
is a tuple of precomputed terms. The definition of τ follows
Gebser et al. (2015), and examples of using τ can be found
in that paper.

Given these translations, the two versions of the semantics
of programs are defined as follows. The FLP-stable models
of a program Π are the FLP-stable models of τ1Π. The FT-
stable models of Π are the FT-stable models of τΠ.

Semantics of Terms
The semantics of terms tells us, for every ground term t,
whether it is well-formed, and if it is, which precomputed
term is considered its value:7

• If t is a numeral, symbolic constant, or one of the symbols
inf or sup then t is well-formed, and its value val(t) is t
itself.

• If t is f(t1, . . . , tn) and the terms t1, . . . , tn are well-
formed, then t is well-formed also, and val(t) is
f(val(t1), . . . , val(tn)).

• If t is (t1 + t2) and the values of t1 and t2 are numer-
als n1, n2 then t is well-formed, and val(t) is n1 + n2;
similarly when t is (t1 − t2) or (t1 × t2).

• If t is (t1/t2), the values of t1 and t2 are numerals n1, n2,
and n2 6= 0 then t is well-formed, and val(t) is bn1/n2c.
If t is a tuple t1, . . . , tn of well-formed ground terms then

we say that t is well-formed, and its value val(t) is the tuple
val(t1), . . . , val(tn).

A closed arithmetic literal t1 ≺ t2 is well-formed if t1
and t2 are well-formed. A closed symbolic literal p(t) or
not p(t) is well-formed if t is well-formed. A closed aggre-
gate literal E or not E, where E is (7), is well-formed if s is
well-formed.

Semantics of Arithmetic and Symbolic Literals
A well-formed arithmetic literal t1 ≺ t2 is true if val(t1) ≺
val(t2), and false otherwise.

The result of applying the transformation τ1 to a well-
formed symbolic literal is defined as follows:

τ1(p(t)) is p(val(t)); τ1(not p(t)) is ¬p(val(t)).

About a tuple of well-formed literals we say that it is non-
trivial if all arithmetic literals in it are true. If L is a non-
trivial tuple of well-formed arithmetic and symbolic literals
then τ1L stands for the conjunction of the formulas τ1L for
all symbolic literals L in L.

Semantics of Aggregate Literals
Let E be a well-formed aggregate atom (7), and let x be the
list of variables occurring in t : L. By A we denote the set
of all tuples r of precomputed terms of the same length as x
such that

(i) txr is well-formed, and

7In the input language of CLINGO, a term may contain “inter-
vals”, such as 1..3, and in that more general setting a ground term
may have several values.

(ii) Lx
r is well-formed and nontrivial.8

For any subset ∆ ofA, by val(∆) we denote the set of tuples
txr for all r ∈ ∆. We say that ∆ justifies E if the relation ≺
holds between α̂(val(∆)) and val(s). We define τ1E to be
the disjunction of formulas∧

r∈∆

τ1(Lx
r) ∧

∧
r∈A\∆

¬τ1(Lx
r) (11)

over the subsets ∆ of A that justify E.
Assume, for example, that E is

count{X : p(X)} = 0. (12)

Then

• t is X , L is p(X), x is X , and A is the set of all precom-
puted terms, val(∆) is ∆;

• α̂(val(∆)) is the cardinality of ∆ if ∆ is finite and sup
otherwise;

• ∆ justifies (12) iff ∆ = ∅;
• τ1E is the conjunction of the formulas ¬p(r) over all pre-

computed terms r.

The result of applying τ1 to a negative aggregate literal
not E is ¬τ1E.

The definition of τ1L given earlier can be extended now
to nontrivial tuples that may include well-formed literals of
all three kinds: for any such tuple L, τ1L stands for the con-
junction of the formulas τ1L for all symbolic literals and
aggregate literals L in L.

Applying τ1 to Rules and Programs
The result of applying τ1 to a rule (8) is defined as the set of
all formulas of the form

τ1((B1, . . . , Bn)xr)→ τ1(H1)
x
r ∨ · · · ∨ τ1(Hk)

x
r (13)

where x is the list of all global variables of the rule, and r is
any tuple of precomputed terms of the same length as x such
that all literals (Hi)

x
r , (Bj)

x
r are well-formed.

For any program Π, τ1Π stands for the union of the
sets τ1R for all rules R of Π.

Transformation τ
The definition of τ differs from the definition of τ1 in only
one place: in the treatment of aggregate atoms In the spirit
of Ferraris (2005), we define τE to be the conjunction of the
implications ∧

r∈∆

τ(Lx
r) →

∨
r∈A\∆

τ(Lx
r) (14)

over the subsets ∆ of A that do not justify E.
For example, if E is (12) then τE is

∧
∆⊆A, ∆ 6=∅

∧
r∈∆

p(r)→
∨

r∈A\∆

p(r)

 .

8Here txr stands for the result of substituting r for x in t. The
meaning of Lx

r is similar.

It is easy to show that τE is equivalent to τ1E. Consider
the disjunction D of formulas (11) over all subsets ∆ of A
that do not justify E. It is to see that every interpretation sat-
isfies either τ1E or D. On the other hand, no interpretation
satisfies both D and τ1E, because in every disjunctive term
of τ1E and every disjunctive term of D there is a pair of
conflicting conjunctive terms. It follows that D is equivalent
to ¬τ1E. It is clear that D is also equivalent to ¬τE.

Since all occurrences of translations τ1E in implica-
tion (13) belong to its antecedent, it follows that τ could be
used instead of τ1 in the definition of an FLP-stable model of
a program. For the definition of an FT-stable model of a pro-
gram, however, the difference between τ1 and τ is essential.
Although the translation τ1 will not be used in the statement
or proof of the main theorem, we introduce it here because it
is simpler than τ in the sense that it in application to aggre-
gate literals it does not produce implications. We anticipate
that for establishing other properties of FLP-stable models it
may be a useful tool.

Main Theorem
To see that the FLP and FT semantics of programs are gen-
erally not equivalent, consider the one-rule program

p← count{1 : not p} < 1. (15)

The result of applying τ to this program is ¬¬p → p. The
FT-stable models are ∅ and {p}; the first of them is an FLP-
stable model, and the second is not.

Our main theorem gives a condition ensuring that the
FLP-stable models and FT-stable models of a program are
the same. To state it, we need to describe the precise mean-
ing of “recursion through aggregates.”

The predicate symbol of an atom p(t1, . . . , tn) is the
pair p/n. The predicate dependency graph of a program Π
is the directed graph that

• has the predicate symbols of atoms occurring in Π as its
vertices, and

• has and edge from p/n to q/m if there is a rule R in Π
such that p/n is the predicate symbol of an atom occur-
ring in the head of R, and q/m is the predicate symbol of
an atom occurring in the body of R.9

We say that an occurrence of an aggregate literal L in a
ruleR is recursive with respect to a program Π containingR
if for some predicate symbol p/n occurring in L and some
predicate symbol q/m occurring in the head of R there ex-
ists a path from p/n to q/m in the predicate dependency
graph of Π.

For example, the predicate dependency graph of pro-
gram (15) has a single vertex p/0 and an edge from p/0
to itself. The aggregate literal in the body of this program is
recursive. Consider, on the other hand, the one-rule program

q ← not count{1 : p} < 1.

9The definition of the predicate dependency graph in the ASP-
Core document includes also edges between predicate symbols of
atoms occurring in the head of the same rule. Dropping these edges
from the graph makes the assertion of the main theorem stronger.

Its predicate dependency graph has the vertices p/0 and q/0,
and an edge from q/0 to p/0. Since there is no path from p/0
to q/0 in this graph, the aggregate literal in the body of this
rule is not recursive.

We say that an aggregate literal is positive if it is an aggre-
gate atom and all symbolic literals occurring in it are posi-
tive.

Main Theorem If every aggregate literal that is recursive
with respect to a program Π is positive then the FLP-stable
models of Π are the same as the FT-stable models of Π.

In particular, if all aggregate literals in Π are positive
then Π has the same FLP- and FT-stable models. For ex-
ample, consider the one-rule program

p← count{1 : p} > 0.

The only aggregate literal in this program is positive; ac-
cording to the main theorem, the program has the same FLP-
and FT-stable models. Indeed, it is easy to verify that ∅ is the
only FLP-stable model of this program and also its only FT-
stable model.

Main Lemma
In this section we talk about infinitary formulas over an ar-
bitrary propositional signature σ.

Formulas p, ¬p, ¬¬p, where p is an atom from σ, will be
called extended literals. A simple disjunction is a disjunc-
tion of extended literals. A simple implication is an implica-
tion A∧ → L∨ such that its antecedent A∧ is a conjunction
of atoms and its consequent L∨ is a simple disjunction. A
conjunction of simple implications will be called a simple
formula. Formulas of the form G → H , where G is a sim-
ple formula and H is a disjunction of atoms, will be called
simple rules.10

For example, (9), (10) can be rewritten as simple rules
(> → p ∨ ¬p)→ p, (16)
(> → ¬¬p)→ p. (17)

In the proof of Main Theorem we will show how any for-
mula obtained by applying transformation τ to a program
can be transformed into a simple rule with the same mean-
ing.

A simple program is a set of simple rules.
In the statement of Main Lemma below, we refer to simple

programs that are “FT-tight” and “FLP-tight.” The lemma
asserts that if a program is FT-tight then its FLP-stable mod-
els are FT-stable; if a program is FLP-tight then its FT-stable
models are FLP-stable. To describe these two classes of sim-
ple programs we need the following preliminary definitions.

An atom p occurs strictly positively in a simple formula F
if there is a conjunctive term A∧ → L∨ in F such that p
belongs to L. An atom p occurs positively in a simple for-
mula F if there is a conjunctive term A∧ → L∨ in F such
that p or ¬¬p belongs to L.

We define the (extended positive) dependency graph of a
simple programH to be the graph that has

10Note that a simple rule is not a rule in the sense of the pro-
gramming language described above; it is an infinitary proposi-
tional formula of a special syntactic form.

• all atoms occurring inH as its vertices, and

• an edge from p to q if for some formula G → H in H, p
is a disjunctive term in H and q occurs positively in G.

For example, the simple programs (16), (17) have the same
dependency graph: a self-loop at p.11

A simple implication A∧ → L∨ will be called positive
if L is a set of atoms, and non-positive otherwise. An edge
from p to q in the dependency graph of a simple programH
will be called FT-critical if for some formulaG→ H inH, p
is a disjunctive term in H and q occurs strictly positively
in some non-positive conjunctive term D of G. We call a
simple program FT-tight if its dependency graph has no path
containing infinitely many FT-critical edges.12

Consider, for example, the dependency graph of pro-
gram (16). Its only edge—the self-loop at p—is FT-critical,
because the implication > → p ∨ ¬p is non-positive, and p
occurs strictly positively in it. It follows that the program is
not FT-tight: consider the path consisting of infinitely many
repetitions of this self-loop. On the other hand, in the de-
pendency graph of program (17) the same edge is not FT-
critical, because p does not occur strictly positively in the
implication > → ¬¬p. Program (17) is FT-tight.

An edge from p to q in the dependency graph of a simple
program H will be called FLP-critical if for some simple
rule G → H in H, p is a disjunctive term in H and, for
some conjunctive term A∧ → L∨ of G, ¬¬q belongs to L.
We call a simple program FLP-tight if its dependency graph
has no path containing infinitely many FLP-critical edges.

It is clear that if there are no extended literals of the
form ¬¬p in a simple program then there are no FLP-critical
edges in its dependency graph, so that the program is FLP-
tight. For example, (16) is a simple program of this kind.
On the other hand, in the dependency graph of program (17)
the self-loop at p is FLP-critical, so that the program is not
FLP-tight.

Main Lemma For any simple programH,

(a) if H is FT-tight then all FLP-stable models of H are FT-
stable;

(b) ifH is FLP-tight then all FT-stable models ofH are FLP-
stable.

Some parts of the proof of the lemma below are inspired
by results from Ferraris, Lee, and Lifschitz (2006).

Proof of Main Lemma
If F is a simple disjunction and X is a set of atoms, by FX⊥
we denote the simple disjunction obtained fromF by remov-
ing all disjunctive terms that belong to X .13 If F is a simple
implication A∧ → L∨ then by FX⊥ we denote F itself if

11We call the graph extended positive to emphasize the fact that
the definition reqires q to occur positively in G, but not strictly
positively.

12In the case of a finite dependency graph, this condition is
equivalent to requiring that no cycle contains an FT-critical edge.

13This notation is motivated by the fact that FX
⊥ is the result of

substituting ⊥ for the disjunctive members of F that belong to X ,
rewritten as a simple disjunction.

A ∩ X is non-empty, and A∧ → (L∨)X⊥ otherwise.14 If F
is a simple formula then FX⊥ stands for the simple formula
obtained by applying this transformation to all conjunctive
terms of F . It is clear that FX⊥ entails F .

For any simple program H, by HX⊥ we denote the simple
program obtained from H by applying this transformation
to G and H for each simple rule G→ H inH.

Lemma 1 Let I be a model of a simple programH, X be a
set of atoms, and K be a subset of X such that the depen-
dency graph ofH has no edges from atoms in K to atoms in
X \K. If I satisfiesHX⊥ , then I satisfiesHK⊥ .

Proof. Assume on the contrary that I does not satisfyHK⊥ .
Then there is a simple ruleG→ H inH such that I satisfies
GK⊥ but does not satisfy HK

⊥ . Further, since I satisfies GK⊥
and GK⊥ entails G, I satisfies G as well. Then since I is a
model of H, I satisfies H . Since I satisfies H but does not
satisfy HK

⊥ , there is some atom p in H that is also in K.
Now, since I satisfiesGK⊥ it must also satisfyGX⊥ . Indeed, if
this were not the case, there would be some atom q occurring
positively in G and also occurring in X \ K. Then there
would be an edge from p ∈ K to q ∈ X \K, contradicting
the assumption of the lemma. On the other hand, I does not
satisfy HX

⊥ , since I does not satisfy HK
⊥ and K is a subset

of X . We may conclude that I does not satisfy GX⊥ → HX
⊥

and therefore does not satisfyHX⊥ .

Lemma 2 Let I be a model of a simple program H and let
K be a subset of I such that there are no FT-critical edges
in the subgraph of the dependency graph of H induced by
K. If I |= HK⊥ then I \K satisfies the FLP-reduct ofH with
respect to I .

Proof. Consider a simple rule G → H in H such that
I |= G, so that G → H is in the FLP-reduct of H. We will
show that I \ K satisfies G → H . Since I |= HK⊥ , either
I 6|= GK⊥ or I |= HK

⊥ .

Case 1: I |= HK
⊥ . Then H has a disjunctive term that be-

longs to I but not to K, so that I \ K |= H . We conclude
that I \K |= G→ H .

Case 2: I 6|= GK⊥ . Consider a conjunctive termA∧ → L∨ in
G such that I 6|= (A∧ → L∨)K⊥ . Since I |= G, I |= A∧ →
L∨. It follows that A ∩K is empty and that I satisfies both
A∧ and L∨ but does not satisfy (L∨)K⊥ .

Case 2.1: A∧ → L∨ is positive. Then L is a set of atoms.
Since I 6|= (L∨)K⊥ , all atoms from I that are in L are also in
K. So I\K 6|= L∨. SinceA∩K is empty and I satisfiesA∧,
I \K also satisfies A∧. We may conclude that I \K 6|= G
so that I \K |= G→ H .

Case 2.2:A∧ → L∨ is non-positive. Since I satisfiesL∨ but
not (L∨)K⊥ , there is an atomic disjunctive term p in L that
belongs to I ∩K. Then p occurs positively in G. It follows
that no disjunctive term in H occurs in K. (If there were

14This operation is a special case of the NES operation defined
by Ferraris, Lee, and Lifschitz (2006). Distinguishing between the
two cases in the definition is crucial for Lemmas 5 and 6.

such a disjunctive term q in H then, sinceA∧ → L∨ is non-
positive, there would be an FT-critical edge from q to p in
the subgraph of the dependency graph of H induced by K.
But the condition of the lemma stipulates that there are no
FT-critical edges in that graph.) Since I satisfies G and is a
model of the program, I satisfies H as well. Since no atoms
from K occur in H , it follows that I \K satisfies H , so that
I \K satisfies G→ H .
Lemma 3 If H is an FT-tight simple program and X is a
non-empty set of atoms, then there exists a non-empty subset
K of X such that in the subgraph of the dependency graph
ofH induced by X

(i) there are no edges from K to atoms in X \K, and
(ii) no atom in K has outgoing FT-critical edges.

Proof. Consider the subgraph of the dependency graph of
H induced by X . It contains some vertex b such that there
is no path starting at b that contains an FT-critical edge. (If
there were no such vertex b, then there would be a path con-
taining infinitely many FT-critical edges and H would not
be FT-tight.) Take K to be the set of all vertices reachable
from b. It is clear that condition (i) is satisfied. Furthermore,
since all atoms in K are reachable from b, and no path start-
ing at b contains an FT-critical edge, none of the atoms in
K have outgoing FT-critical edges in the subgraph of the
dependency graph of H induced by X . So condition (ii) is
satisfied as well.
Lemma 4 If H is an FT-tight simple program and I is an
FLP-stable model of H, then for every non-empty subset X
of I , I 6|= HX⊥ .
Proof. Assume on the contrary that there is some non-
empty subset X of I such that I |= HX⊥ . By Lemma 3, there
is a non-empty subset K of X meeting conditions (i) and
(ii). Since I |= HX⊥ and K satisfies (i), by Lemma 1 we may
conclude that I |= HK⊥ . Since K satisfies condition (ii) and
is a subset of X , it is clear that there are no FT-critical edges
in the subgraph of the dependency graph of H induced by
K. So by Lemma 2, I \ K satisfies the FLP-reduct of H,
contradicting the assumption that I is FLP-stable.
Lemma 5 Let G be a simple disjunction or a simple for-
mula, and let X be a set of atoms. An interpretation I satis-
fies GX⊥ iff it satisfies FT (G, I)X⊥ .
Proof. To prove the assertion for a simple disjunction, it is
sufficient to consider the case when G is a single extended
literal. If G is an atom p,

I |= pX⊥ iff p ∈ I and p 6∈ X iff I |= FT (p, I)X⊥ .

If G is either ¬p or ¬¬p, then GX⊥ is G and FT (G, I)X⊥
is FT (G, I). It is clear that I satisfies G iff it satisfies
FT (G, I).

To prove the assertion of the lemma for simple formu-
las, it is sufficient to consider the case when G is a sin-
gle simple implication A∧ → L∨. If I does not satisfy G
then it does not satisfy GX⊥ either; on the other hand, in
this case FT (G, I) is ⊥, and so is FT (G, I)X⊥ . Otherwise,
FT (G, I)X⊥ is

(FT (A∧, I)→ FT (L∨, I))
X
⊥ . (18)

We consider two cases corresponding to whether or not A∩
X ∩ I is empty. If A ∩ X ∩ I is empty, I does not satisfy
(18) iff

A ⊆ I and I 6|= FT (L∨, I)X⊥ ,

or equivalently,

I |= A∧ and I 6|= (L∨)X⊥ .

If on the other hand, A ∩ X ∩ I is non-empty, then (18) is
FT (G, I) and GX⊥ is G.

Lemma 6 For any simple disjunction G and any interpre-
tations I and J , J |= FT (G, I) iff I |= FT (G, I)

I\J
⊥ .

Proof. It is sufficient to prove the lemma for the case when
G is a single extended literal. If G is an atom p then

J |= FT (p, I) iff p ∈ I and p ∈ J iff I |= FT (p, I)
I\J
⊥ .

If G is ¬p then both

J |= FT (G, I)

and
I |= FT (G, I)

I\J
⊥

are equivalent to p 6∈ I . If G is ¬¬p then both

J |= FT (G, I)

and
I |= FT (G, I)

I\J
⊥

are equivalent to p ∈ I .

Lemma 7 For any simple formula G and any interpreta-
tions I and J , if I |= FT (G, I)

I\J
⊥ then J |= FT (G, I).

Proof. It is sufficient to consider the case when G is a sin-
gle simple implication A∧ → L∨. If I does not satisfy G
then both FT (G, I) and FT (G, I)

I\J
⊥ are ⊥. Assume I sat-

isfies G. Then FT (G, I) is

FT (A∧, I)→ FT (L∨, I).

We consider two cases corresponding to whether or not
A ∩ I \ J is empty. If A ∩ I \ J is non-empty, then
FT (G, I)

I\J
⊥ is FT (G, I). Furthermore, J does not satisfy

FT (A∧, I). Indeed, if it did, A would be a subset of both I
and J , contradicting the assumption that A ∩ I \ J is non-
empty. It follows that J |= FT (G, I). If, on the other hand,
A ∩ I \ J is empty, then FT (G, I)

I\J
⊥ is

FT (A∧, I)→ (FT (L∨, I))
I\J
⊥ .

Assume that J does not satisfy FT (G, I). Then

J |= FT (A∧, I) and J 6|= FT (L∨, I).

From the first condition we may conclude that I |=
FT (A∧, I). (Indeed, if J |= FT (A∧, I) then A must be
a subset both of I and of J .) From the last condition using
Lemma 6 it follows that I 6|= FT (L∨, I)

I\J
⊥ . We may con-

clude that I 6|= FT (G, I)
I\J
⊥ .

Proof of Part (a) of Main Lemma. Let I be an FLP-stable
model of an FT-tight simple program H. Then I |= H, so
that I |= FT (H, I). We need to show that no proper sub-
set J of I satisfies FT (H, I). Take a proper subset J of I ,
and let X be I \ J . By Lemma 4, I does not satisfy HX⊥ .
Then there is a simple ruleG→ H inH such that I satisfies
GX⊥ and does not satisfy HX

⊥ . By Lemma 5, it follows that I
satisfies FT (G, I)X⊥ and does not satisfy FT (H, I)X⊥ . Since
X = I \ J , it follows that J satisfies FT (G, I) (Lemma 7)
but does not satisfy FT (H, I) (Lemma 6). So J does not
satisfy FT (H, I). It follows that I is FT-stable.

We turn now to the proof of part (b) of Main Lemma. If F
is a simple disjunction then by F+ we denote the result of
replacing each extended literal ¬¬p in F by p, and similarly
for simple implications, formulas, rules, and programs.

Lemma 8 Let I be a model of a simple program H, and
let K be a set of atoms such that there are no FLP-critical
edges in the subgraph of the dependency graph ofH induced
by K. If I |= (H+)K⊥ then I \ K satisfies the FT-reduct of
H with respect to I .

Proof. We need to show that I \K satisfies the FT-reduct
of every simple rule G→ H inH. Since I is a model ofH,
that reduct is FT (G, I) → FT (H, I). If I 6|= G then the
antecedent of this implication is equivalent to ⊥, and the
assertion that the implication is satisified by I \K is trivial.

Assume then that I |= G. Since I is a model of H, it
follows that I |= H . Since I |= (H+)K⊥ , either I 6|= (G+)K⊥
or I |= HK

⊥ .

Case 1: I |= HK
⊥ . Then H has a disjunctive term p that

belongs to I but not to K. Then p is also a disjunctive term
in FT (H, I), so that I \K |= FT (H, I). We conclude that
I \K satisfies FT (G→ H, I).

Case 2: I 6|= (G+)K⊥ . Consider a conjunctive term

A∧ → L∨

in G such that I does not satisfy (A∧ → (L∨)+)K⊥ . Since
I |= G, I |= A∧ → L∨. It follows that A ∩ K is empty
and that I satisfies A∧, L∨ and (L∨)+ but does not satisfy
((L∨)+)K⊥ .

Case 2.1:L∨ does not contain any extended literal¬¬p such
that p ∈ K. Since I satisfies (L∨)+ but not ((L∨)+)K⊥ , each
atomic disjunctive term p in (L∨)+ that is in I must also be
in K. Furthermore, I cannot satisfy any literal ¬p in L. (If
it did, then that literal would also be in ((L∨)+)K⊥ , and this
disjunction would be satisfied by I .) Since L does not con-
tain any extended literal ¬¬p such that p is in K, I does not
satisfy any extended literal ¬¬p in L. (For each extended
literal ¬¬p in L, p is a disjunctive term in ((L∨)+)K⊥ . If I
satisfied some extended literal ¬¬p ∈ L, then I would sat-
isfy p and therefore also satisfy ((L∨)+)K⊥ .) We conclude
that every extended literal in L that is satisfied by I is an
atom from K. It follows that FT (L∨, I) is equivalent to a
disjunction of atoms fromK. So I \K 6|= FT (L∨, I). Since
I |= A∧, I |= FT (A∧, I). SinceA∩K is empty, I \K also
satisfies FT (A∧). We may conclude that I\K 6|= FT (G, I)
so that I \K |= FT (G→ H, I).

Case 2.2: L∨ contains an extended literal ¬¬p such that
p ∈ K. Then no disjunctive term in H occurs in K. (If
there were such a disjunctive term q in H then there would
be an FLP-critical edge from q to p in the subgraph of the
dependency graph of H induced by K. But the condition
of the lemma stipulates that there are no FLP-critical edges
in that graph.) Since I satisfies H , I satisfies FT (H, I) as
well. Since no atoms fromK occur inH , it follows that I\K
satisfies FT (H, I), so that I \K satisfies FT (G→ H, I).

Lemma 9 If H is an FLP-tight simple program and X is a
non-empty set of atoms, then there exists a non-empty subset
K of X such that in the subgraph of the dependency graph
ofH induced by X

(i) there are no edges from K to atoms in X \K, and
(ii) no atom in K has outgoing FLP-critical edges.

The proof is similar to the proof of Lemma 3.

Lemma 10 If H is an FLP-tight simple program and I is
an FT-stable model of H, then for every non-empty subset
X of I , I 6|= (H+)X⊥ .

Proof. Assume on the contrary that I |= (H+)X⊥ for some
non-empty subset X of I . Consider a non-empty subset K
of X meeting conditions (i) and (ii) from Lemma 9. Since
I |= (H+)X⊥ and K satisfies (i), by Lemma 1 we may con-
clude that I |= (H+)K⊥ . Since K satisfies (ii) and is a sub-
set of X , there are no FLP-critical edges in the subgraph of
the dependency graph of H induced by K. So by Lemma 8,
I \K satisfies the FT-reduct ofH, contradicting the assump-
tion that I is FT-stable.

Lemma 11 Let G be a simple disjunction or a simple for-
mula. For any interpretations I and J such that J ⊆ I , if
I |= (G+)

I\J
⊥ then J |= G.

Proof. To prove the assertion of the lemma for simple dis-
junctions, it is sufficient to consider the case when G is a
single extended literal. If G is p or ¬¬p then (G+)

I\J
⊥ is

p
I\J
⊥ . Since I satisfies this formula, p ∈ J , so that J |= G.

If G is ¬p then (G+)
I\J
⊥ is ¬p. Since I |= ¬p and J ⊆ I ,

J |= ¬p.
To prove the assertion of the lemma for simple formulas,

it is sufficient to consider the case when G is a single simple
implication A∧ → L∨. If A ∩ I \ J is non-empty then

J 6|= A∧,

so that J |= G. If, on the other hand, A ∩ I \ J is empty
then (G+)

I\J
⊥ is A∧ → ((L∨)+)

I\J
⊥ . Assume that J does

not satisfy G. Then

J |= A∧ and J 6|= L∨.

From the first condition and the fact that J ⊆ I we may con-
clude that I |= A∧. From the second condition it follows, by
the part of the lemma proved above, that I 6|= ((L∨)+)

I\J
⊥ .

Consequently I 6|= (G+)
I\J
⊥ .

Proof of Part (b) of Main Lemma. Let I be an FT-stable
model of an FLP-tight simple programH. Then I is a model

of H, and consequently a model of the reduct FLP(H, I).
We need to show that no proper subset J of I is a model of
this reduct. Consider a proper subset J of I , and let X be
I \ J . By Lemma 10, I does not satisfy (H+)X⊥ . Then there
is a simple rule G → H in H such that I satisfies (G+)X⊥
and does not satisfy HX

⊥ . Since (G+)X⊥ entails G+, and G+

is equivalent to G, we can conclude that I satisfies G, so
that G → H belongs to the reduct FLP(H, I). On the other
hand, by Lemma 11, J satisfies G. Since I does not satisfy
HX
⊥ and H is a disjunction of atoms, J does not satisfy H .

So J does not satisfy G → H , and consequently is not a
model FLP(H, I).

Proof of Main Theorem
Consider a program Π in the programming language de-
scribed at the beginning of this paper. Every formula in τΠ
corresponds to one of the rules (8) of Π and has the form

τ((B1, . . . , Bn)xr)→ τ(H1)
x
r ∨ · · · ∨ τ(Hk)

x
r (19)

where x is the list of all global variables of the rule, and r
is a tuple of precomputed terms such that all literals (Hi)

x
r ,

(Bj)
x
r are well-formed. The consequent of (19) is a disjunc-

tion of atoms over the signature σ0—the set of atoms of the
form p(t), where p is a symbolic constant and t is a tuple of
precomputed terms. The antecedent of (19) is a conjunction
of formulas of three types:

(i) literals over σ0—each of them is τ(Lx
r) for some sym-

bolic literal L from the body of the rule;

(ii) implications of form (14)—each of them is τ(Ex
r) for

some aggregate atom E from the body of the rule;

(iii) negations of such implications—each of them is ¬τ(Ex
r)

for some aggregate literal not E from the body of the rule.

Each of the formulas τ(Lx
r) in (14) is a conjunction of lit-

erals over σ0. It follows that (14) can be represented in the
form

(A1)∧ ∧
∧
p∈A2

¬p → C∨, (20)

where A1 and and A2 are sets of atoms from σ0, and C is a
set of conjunctions of literals over σ0.

Consider the simple program H obtained from τΠ by
transforming the conjunctive terms of the antecedents of its
formulas (19) as follows:

• Every literal L is replaced by the simple implication

> → L. (21)

• Every implication (20) is replaced by the simple formula

∧
φ

(A1)∧ →
∨
p∈A2

¬¬p ∨
∨

C∈C, C is non-empty

φ(C)

 ,

(22)
where the big conjunction extends over all functions φ
that map every non-empty conjunction from C to one of
its conjunctive terms.

• Every negated implication (20) is replaced by the simple
formula∧

p∈A1

(> → p) ∧
∧
p∈A2

(> → ¬p)∧∧
C∈C

∨
L is a conjunctive term of C

(> → ¬L). (23)

Each conjunctive term of the antecedent of (19) is equivalent
to the simple formula that replaces it inH. It follows that τΠ
andH have the same FLP-stable models. On the other hand,
τΠ and H have the same models in the infinitary logic of
here-and-there, and consequently the same FT-stable mod-
els. Consequently, the FLP-stable models of Π can be char-
acterized as the FLP-stable models of H, and the FT-stable
models of Π can be characterized as the FT-stable models
ofH.

To derive the main theorem from the main lemma, we will
establish two claims that relate the predicate dependency
graph of Π to the dependency graph ofH:

Claim 1. If there is an edge from an atom p(t1, . . . , tk) to
an atom q(s1, . . . , sl) in the dependency graph of H then
there is an edge from p/k to q/l in the predicate dependency
graph of Π.

Claim 2. If the edge from p(t1, . . . , tk) to q(s1, . . . , sl) in
the dependency graphH is FT-critical or FLP-critical then Π
contains a rule (8) such that

• p/k is the predicate symbol of one of the atoms Hi, and

• q/l is the predicate symbol of an atom occurring in one of
the non-positive aggregate literals Bj .

Using these claims, we will show that if the dependency
graph ofH has a path with infinitely many FT-critical edges
or infinitely many FLP-critical edges then we can find a non-
positive aggregate literal recursive with respect to Π. The
assertion of the theorem will immediately follow then by
Main Lemma.

Assume that p1(t1), p2(t2), . . . is a path in the depen-
dency graph of H that contains infinitely many FT-critical
edges (for FLP-critical edges, the reasoning is the same).
By Claim 1, the sequence p1/k1, p2/k2, . . . , where ki is
the length of ti, is a path in the predicate dependency graph
of Π. Since that graph is finite, there exists a positive in-
teger a such that all vertices pa/ka, pa+1/ka+1, . . . be-
long to the same strongly connected component. Since the
path p1(t1), p2(t2), . . . contains infinitely many FT-critical
edges, there exists a b ≥ a such that the edge from pb(t

b)
to pb+1(tb+1) is FT-critical. By Claim 2, it follows that Π
contains a rule (8) such that pb/kb is the predicate sym-
bol of one of the atoms Hi, and pb+1/kb+1 is the predicate
symbol of an atom occurring in one of the non-positive ag-
gregate literals Bj . Since pb/kb and pb+1/kb+1 belong to
the same strongly connected component, there exists a path
from pb+1/kb+1 to pb/kb. It follows thatBi is recursive with
respect to Π.

Proof of Claim 1. If there is an edge from p(t1, . . . , tk) to
q(s1, . . . , sl) in the dependency graph ofH then Π contains

a rule (8) such that p(t1, . . . , tk) occurs in the consequent of
one of the implications (19) corresponding to this rule, and
q(s1, . . . , sl) occurs in one of the formulas (21)–(23). Then
q(s1, . . . , sl) occurs also in the antecedent of (19). It follows
that p/k is the predicate symbol of one of the atoms occuring
in the head of the rule, and q/l is the predicate symbol of one
of the atoms occurring in its body.

Proof of Claim 2. If the edge from p(t1, . . . , tk) to
q(s1, . . . , sl) in the dependency graph of H is FT-critical
then Π contains a rule (8) such that p(t1, . . . , tk) occurs in
the consequent of one of the implications (19) corresponding
to this rule, and q(s1, . . . , sl) occurs strictly positively in one
of the non-positive conjunctive terms A∧ → L∨ of one of
the simple conjunctions (21)–(23). If a formula of form (21)
is non-positive then no atoms occur in it strictly positively.
Consequently A∧ → L∨ is a conjunctive term of one of the
formulas (22) or (23), and it corresponds to an aggregate lit-
eral from the body of the rule. That aggregate literal is not
positive, because for any positive literal E no conjunctive
term of the corresponding simple conjunction (22) is non-
positive. It follows that p/k is the predicate symbol of one
of the atoms in the head of the rule, and q/l is the predicate
symbol of an atom from a non-positive aggregate literal in
the body.

For FLP-critical edges the reasoning is similar, using the
fact that formulas of form (21) do not contain double nega-
tions, and neither do formulas of form (22) corresponding to
positive aggregate literals.

Related Work
The equivalence between the FLP and FT approaches to
defining stable models for programs without aggregates was
established by Faber, Leone, and Pfeifer (2004), Theorem 3.
The fact that this equivalence is not destroyed by the use
of positive aggregates was proved by Ferraris (2005), The-
orem 3. That result is further generalized by Bartholomew,
Lee, and Meng (2011), Theorem 7.

The program

q(1),
r ← count{X : not p(X), q(X)} = 1

has no recursive aggregates but is not covered by any of the
results quoted above because it contains a negative literal in
the conditions of an aggregate atom.

Conclusion
An oversight in the semantics proposed in the ASP-Core
document can be corrected using a translation into the lan-
guage of infinitary propositional formulas. The main theo-
rem of this paper describes conditions when stable mod-
els in the sense of the (corrected) ASP-Core definition are
identical to stable models in the sense of the input language
of CLINGO.

The main lemma asserts that if a set of infinitary propo-
sitional formulas is FT-tight then its FLP-stable models are
FT-stable, and if it is FLP-tight then its FT-stable models are
FLP-stable.

Acknowledgements
Martin Gebser made a valuable contribution to our work by
pointing out an oversight in an earlier version of the proof
and suggesting a way to correct it. We are grateful to Wolf-
gang Faber, Jorge Fandiño, Michael Gelfond, and Yuanlin
Zhang for useful discussions related to the topic of this pa-
per, and to the anonymous referees for their comments. This
research was partially supported by the National Science
Foundation under Grant IIS-1422455.

References
Bartholomew, M.; Lee, J.; and Meng, Y. 2011. First-order

extension of the FLP stable model semantics via modified
circumscription. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 724–730.

Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive aggre-
gates in disjunctive logic programs: Semantics and com-
plexity. In Proceedings of European Conference on Log-
ics in Artificial Intelligence (JELIA).

Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A generaliza-
tion of the Lin-Zhao theorem. Annals of Mathematics and
Artificial Intelligence 47:79–101.

Ferraris, P. 2005. Answer sets for propositional theories.
In Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), 119–
131.

Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015. Abstract Gringo. Theory and Practice
of Logic Programming 15:449–463.

Gelfond, M., and Zhang, Y. 2014. Vicious circle principle
and logic programs with aggregates. Theory and Practice
of Logic Programming 14(4-5):587–601.

Harrison, A.; Lifschitz, V.; Pearce, D.; and Valverde, A.
2017. Infinitary equilibrium logic and strongly equivalent
logic programs. Arificial Intelligence 246.

Harrison, A. 2017. Formal Methods for Answer Set Pro-
gramming15. Ph.D. Dissertation, University of Texas at
Austin.

Heyting, A. 1930. Die formalen Regeln der intuitionistis-
chen Logik. Sitzungsberichte der Preussischen Akademie
von Wissenschaften. Physikalisch-mathematische Klasse
42–56.

Truszczynski, M. 2010. Reducts of propositional theories,
satisfiability relations, and generalizations of semantics
of logic programs. Artificial Intelligence 174(16):1285
– 1306.

Truszczynski, M. 2012. Connecting first-order ASP and the
logic FO(ID) through reducts. In Erdem, E.; Lee, J.; Lier-
ler, Y.; and Pearce, D., eds., Correct Reasoning: Essays on
Logic-Based AI in Honor of Vladimir Lifschitz. Springer.
543–559.

15http://www.cs.utexas.edu/users/ameliaj/pubs
/ajh thesis.pdf

