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Abstract

Nonmonotonic causal logic is a knowledge representatinguage de-
signed for describing domains that involve actions and ghafhe process
of literal completion, similar to program completion farail from the theory
of logic programming, can be used to translate some nonrooimtausal
theories into classical logic. Its applicability is rested, however, to theo-
ries that deal with truth-valued fluents, represented bglipate symbols. In
this note we introduce functional completion—a more genpratess that
can be applied to causal theories in which fluents are trestéagnctions.

1 Introduction

Nonmonotonic causal logic is a knowledge representation language eédign
describing domains that involve actions and change. It was used foirdethe
semantics of action description languagdsiunchiglia and Lifschitz, 1998C+
[Giunchigliaet al., 2004, and MAD|[Lifschitz and Ren, 2006 Its implementation,
called the Causal Calculatf¥icCain, 1997, Lee, 2005, Casolary and Lee, 4011
has been used to solve several challenging commonsense reasottlegngrdan-
cluding problems of nontrivial sizBAkman et al, 2004, to provide a group of
robots with high-level reasoniniCaldiranet al, 2009, to give executable spec-
ifications of norm-governed computational sociefiagtikis et al, 2009, and to
automate the analysis of business processes under authorization iotsbtma
mandoet al, 2009.

The propositional version of nonmonotonic causal Id@icCain and Turner,
1997 is based on a fixpoint construction involving reducts, similar to the one em-
ployed in the original definition of a stable mod@&elfond and Lifschitz, 1998
The first result on the relationship between the two formali§kisCain, 1997,
Proposition 6.Yis generalized idFerraris, 2006 The first-order version of non-
monotonic causal logif_ifschitz, 1997 provides additional expressive power that



is essential for describing the semantics of action descriptions with varidliles
schitz and Ren, 2007 Its semantics is based on a syntactic transformation that
turns causal theories into second-order sentences. A somewhat siynilacti
transformation is used in the first-order theory of stable models propod&ain
rarisetal,, 2011. A first-order counterpart of the resultldferraris, 200bis proved

in [Ferrariset al.,, 2019.

In nonmonotonic causal logic, we distinguish between being true and having
cause. Syntactically, a first-order causal theory consists of “caules!’ I’ < G,
whereF' (the head) and- (the body) are first-order formulas. The rule reads “
is caused ifG is true.” Some function constants and/or predicate constants of the
underlying signature are declared to be “(causally) explainable.” Btarce, the
rule

at(x,y,t+ 1) < movéz,y,t), Q)

where the predicate constaattis explainable, expresses that there is a cause for
the objectr to be at places at timet + 1 if x is moved toy at timet. (Executing
the move action is the cause.) The rule

at(x,y,t+ 1) < at(x,y, t) AN at(x,y, t + 1) 2

expresses the commonsense law of inertia for the flaenftat time ¢ 4 1 objectx
is at the same place as at tim#hen there is a cause for this. (Inertia is the cause;
this is how nonmonotonic causal logic solves the frame problem.)

The process of “literal completion,” defined [iMcCain and Turner, 1997and
extended to the first-order caselinfschitz, 1991, allows us, under some con-
ditions, to turn a given causal theory into a formula without second-aydanti-
fiers. This process is similar to Clark’s completion familiar from logic program-
ming [Clark, 1978, Lloyd and Topor, 1984except that it applies to rules that may
have both positive and negative literals in their heads, and it generates|jtwa-
lences for each explainable predicate constant, “positive” and “vegati

Literal completion is applicable to a theory only if each of its explainable sym-
bols is a predicate constant; function constants are allowed in the signiixire,
they cannot be explainable. Expainable function symbols are oftenlubeiu
ever. For example, the binary function symhos can be used to describe locations
of objects instead of the ternary predicate syrddolThen rules (1), (2) will turn
into

loc(xz,t+ 1) =y < movézx,y,t) 3)
loc(z,t +1) =y < loc(x,t) =y Aloc(z,t+ 1) = y.
The advantages of using functional notation in such cases are the sahneecaals
vantages of writing:+y = z in formal arithmetic in comparison wittun{zx, y, z):
there is no need to postulate the existence and uniqueness of the valuéunicthe
tion, and many ideas can be expressed more concisely. For instanca weite

loc(x1,t) = loc(xe,t)
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instead of
Jy(at(z1,y,t) A at(ze,y,t)).

Our goal here is to extend the definition of literal completion and the theo-
rem on literal completion fronbLifschitz, 1997, Section5to causal theories with
explainable function symboils.

We are very pleased to contribute this note to a collection honoring Professo
David Pearce, a dear friend and respected colleague who has matinadiuis
contributions to the field of nonmonotonic logic.

2 Review of Causal Logic

2.1 Syntax and Semantics
According to[Lifschitz, 1997, a first-order causal theof is defined by

e alistc of distinct function and/or predicate constahtslled theexplainable
symbolsof T', and

o afinite set ofcausal rulesf the formF < G, whereF andG are first-order
formulas.

The semantics of causal theories is defined by a syntactic transformatton tha
is somewhat similar to circumscriptidcCarthy, 198%; its result is usually a
second-order formula. For each membeaf c, choose a new variabkec similar
to ¢,2 and letuc stand for the list of all these variables. By (vc) we denote the
conjunction of the formulas
¥X(G — FE) (4)

for all rules FF <= G of T, wherex is the list of all free variables of', G. (The
expressionF. denotes the result of substituting the variablesfor the corre-
sponding constantsin F.) We viewT as shorthand for the sentence

Voc(TT (ve) « (ve = c)). (5)

(By vc = ¢ we denote the conjunction of the formulas = ¢ for all members:

of the tuplec.) Accordingly, by a model of the causal thedfywe understand a
model of (5) in the sense of classical logic. The model§ aire characterized,
informally speaking, by the fact that the interpretation of the explainable sigrabo

in the model is the only interpretation of these symbols that is “causally expfained
by the rules off".

1We view object constants as function constants of arity 0, so that thell@sed inc. Similarly,
propositional symbols are viewed as predicate constants of arity Olifggaa the other hand, may
not be included irz.

That is to say, iz is a function constant themc should be a function variable of the same arity;
if cis a predicate constant thew should be a predicate variable of the same arity.



2.2 Examples

Causal theoryf) has two rules:

p(z) < ql2),
—~p(z) < —p(a), ©)

and the predicate constanis explainable. The second rule, %fx) is false then
there is a cause for this,” expresses, in the language of causal lagatoted world
assumption fop. According to the semantics of causal lodig,is shorthand for
the sentence

Vup(Vz(q(z) — vp(x)) AVa(-p(z) — —vp(z)) < vp=p),
whereuvp is a predicate variable. This formula is logically equivalent to

Vr(p(z) < q(x)). (7)

Causal theoryl has the rules

1 <a=0,
c=a <c=a,
c=0b «q,

and the object constanis explainable’ The first rule ofI} says that is different
from b. The second rule (“it = a then there is a cause for this”) expresses, in the
language of causal logic, that by default= a. The last rule says that there is a
cause for to be equal t@ if ¢ is true. Theoryl; is shorthand for the sentence

Voe(la=b— L)A(c=a—vec=a)A(q—vc=0>b) < vc=c)
whereuvc is an object variable. This formula is equivalent to
a#bAN(g—c=b)A(~qg—c=a). (8)

The second conjunctive term shows thag ifiolds then the value af is different
from its default valuex.

In the next example, we describe the commonsense domain mentioned in the
introduction: the effect of moving objects on their locations. For simplicity, we
only consider the time instants 0, 1 and the execution of the move action at time 0.
On the other hand, we would like to take into account the fact (glossedroties
introduction) that the domain involves things of several kinds: movable thjec
places, and time instants. To this end, we include the auxiliary syndra which
is used as the value tfc(z, t) when the arguments are “not of the right kind” (that

3By L and T we denote the O-place connectiiaseandtrue
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is, whenx is not a movable object or wheris not a time instant). The rules of the
causal theory{; are

L <0=1,
1 < 0=none
1 < 1=none
obj(z) A placgy) < movéz,y),
loc(z,0) =y < loc(z,0) = y A obj(z) A placgy),
loc(z,1) =y < movéz,y),
loc(z,1) =y < loc(x,0) =y Aloc(z,1) = y A obj(x) A placey),
loc(z,t) = none < —obj(z),
loc(xz,t) =none<=t £0At #1,

and the function constatuc is explainable. The rule witloc(z, 0) in the head al-
lows an object: to be initially anywhere: whichever place is the valudaui(x, 0),
there is a cause for that. The next two rules describe the effect of mobjegts
and the inertia property of locations. According to the semantics of cauge) 1o
is shorthand for the formula

Yulog(T] (vloc) « (vloc = loc)),

wherevloc is a binary function variable. In Section 4 we will see how functional
completion allows us to rewrite this formula without second-order quantifiers.

2.3 Literal Completion

The definition of the literal completion of a causal theonyliifschitz, 1997 as-
sumes that each rule of the theory is definite, which means that the headoliethe
is a literal or doesn't contain explainable symbols. In this review, we imposera
restrictive condition, similar to the definition of Clark normal form[Ferrariset
al., 2011, Section 6]1 This is not a significant limitation, because any definite
causal theory can be converted to the normal form defined below hyaéeput
transformations.

Let 7' be a causal theory such that all its explainable symbols are predicate
constants. We say thdtis in Clark normal formif it consists of

e rules of the form
p(x) <= G(x), 9)
one for each explanable predicate symppoivherex is a tuple of distinct

variables, and~(x) is a formula without any free variables other than the
members ok,

e rules of the form
—p(x) < G(X), (10)
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one for each explanable predicate symiaiherex andG(x) are as above,
and

e rules without explainable symbols in the head.

For examplely is in Clark normal form.
The literal completionof a causal theor{" in Clark normal form is the con-
junction of the sentences
YX(p(x) < G(x)) (11)

for all rules of T" of the form (9), the sentences
VX(=p(X) < G(X)) (12)

for all rules ofT" of the form (10), and the sentences

V(G = F) (13)

(the symbol@ denotes the universal closure) for all rulEs< G of T without
explainable symbols in the head. For example, the literal completi@h cbnsists
of two formulas: (7) and the logically valid formula

Va(-p(z) < —p(x)).

Completion Theorem frorflLifschitz, 1997, Section]5shows that any causal
theory in Clark normal form is equivalent to its literal completion.

3 Clark Normal Form Extended to Explainable Functions

The definition of Clark normal form is extended to causal theories with exqidte
functions by adding an extra clause. About a causal théome say that it is in
Clark normal fornif it consists of

e rules of the form (9), one for each explanable predicate symbol
e rules of the form (10), one for each explanable predicate symbol

e rules of the form
fX) =y <= G(Xvy), (14)

one for each explanable function symlyglwherex, y is a tuple of distinct
variables, andz(x, y) is a formula without any free variables other than the
members ok, y,

e rules without explainable symbols in the head.



In many cases, a causal theory can be transformed into an equivales#l c
theory in Clark normal form. For instancg, (see Section 2.2) can be converted to
Clark normal form by rewriting its last two rules as

c=T <=xr=alc=a,
c=x<x=bAgq

and then merging them into one rule:
c=rx<=(x=aNc=a)V(r=>bAg). (15)

Itis clear that the part oﬂ“f(vc) contributed by the last two rules @i is logically
equivalent to the part contributed by (15). Similarly, the Clark normal fofii,
is

1L «<=0=1,
1 < 0=nong
1 < 1=none
obj(z) A placgy) < movéz,y),
loc(z,t) =y < (t =0 Aloc(x,0) = y A obj(x) A placgy))
V(t =1 A movézx,y))
V(t =1Aloc(x,0) =y Aloc(z, 1) =y A obj(z) A placgy))
V(y = noneA —obj(x))
V(y =noneAt #0At#1).
(16)

4 Literal Completion Extended to Explainable Functions

Functional completion is a generalization of literal completion to causal thaories
Clark normal form that may include explainable functions. Tilrectional comple-
tion of a causal theor{ in Clark normal form is the conjunction of

e sentences (11) for all rules @f of the form (9),
e sentences (12) for all rules @f of the form (10),

e sentences N
V(f(X) =y < G(Xy)) 17)
for all rules ofT" of the form (14), and

e sentences (13) for all rules < G of T without explainable symbols in the
heads.



We will denote the functional completion @f by FCT'].

Theorem For any causal theor{" in Clark normal form,
E|.’E1£E2($1 75 .%‘2) (18)
entailsT « FCI[T.

Corollary If a causal theory in Clark normal form contains a rule of the form
1 < t1 = to then it is equivalent to its functional completion.

Consider, for instance, theofd;. As discussed above, its Clark normal form
consists of rules (15) and
L <=a=0b.

Its functional completion is the conjunction of the formulas
Ve(c=z < (z=aNc=a)V(x=>bAg))

anda = b — L (thatis,a # b). By the corollary, this conjunction is equivalent
toT3.

The Clark normal form of; is (16). The functional completion of this theory
is the conjunction of the formulas

0#1, 0z#none 1znone
Vary(movez, y) — obj(x) A place(y)),
Vaty(loc(z,t) =y < (t = 0 Aloc(x,0) = y A obj(z) A placqy))
V(t =1Amovéz,y))
V(t =1 Aloc(z,0) =y Aloc(x,1) = y A obj(x) A placey))
V(y = noneA —obj(x))
V(y =noneAt #0At#1)).

By the corollary, this conjunction is equivalentd®. Using equivalent transforma-
tions in first-order-logic, we can rewrite it as the conjunction of the formulas

0#1, 0z#none 1+#none
Vxy(movézx,y) — obj(x) A placey)),
Vz(obj(x) — placgloc(z,0))),
Vat((—obj(z) V (t #0 At # 1)) — loc(z,t) = none,
Vay(obj(z) —
loc(z,1) =y < (movéz,y) V (loc(z,0) = y A =Fw movéz, w)))).

The last of these formulas characterizes the location of an object at timerinis te
of its location at time 0 and the actions that have been executed. In this gésse,
similar to successor state axioms as definddRieiter, 1991



Without the assumption that the theory contains a rule of the form ¢, =t
the assertion of the corollary would be incorrect. For instance, congidarausal
theory consisting of one rule

c=xz<= 1,

wherec is an explainable object constant. This theory is equivalevivtduc = c);
its completion is equivalent ta.

5 Proof of the Theorem

51 A Special Case

We will first prove the theorem from Section 4 for the special case Wheonsists
of a single rule (14), wherg is explainable. We need to show that (18) entails the
equivalence between

Vof (Yxy(G (X, y) — vf (X) = y) < of = f) (19)

and
Yxy(f(x) =y < G(X,y)). (20)

Right-to-left: under assumption (20), formula (19) is equivalent to the &digic
valid formula

Vof (Yxy(f(X) =y — uf (X) = y) < of = f).

Left-to-right: assume (19), that is,

Vouf (Vxy(G(X,y) — vf (X) = y) — of = f) (21)

and
Vxy(G(X,y) — f(X) =y). (22)

The last formula is one half of equivalence (20). It remains to deriveother
half, that is,G (x, f(x)). Assume that for some’, -G (x°, f(x")). By (18), there
exists ayg different from f(x%). We will prove that the functiomf defined by the
condition

of () = yo AVX(x £ X0 = vf(X) = F())

satisfies the antecedent of (21). Assufg,y). Since—~G(x°,y), X # Xo. Then

uf (X) = f(x). On the other hand, by (22J(x) = y. Consequentlyf(x) = y; the

antecedent of (21) is proved. It follows that the consequgnt f holds, so that
yo = vf (X°) = £(x°). This is impossible by the choice g§.



5.2 Review: Digoint Causal Theories

The proof of Completion Theorem in full generality uses the following definitio
from [Lifschitz, 1997, Section]6 About causal theories;, T, with setsc;, ¢y of
explainable symbols we say that they dfgjointif

e ¢ is disjoint fromcs, and

e the symbolsire; do not occur in the heads of the rulesiéf and the symbols
in co do not occur in the heads of the rulesIgt

For any pairwise disjoint causal theori&s, . . ., T;,, define theirunionto be
the causal theory obtained by combining their rules and their explainableotsymb

Lemma ([Lifschitz, 1997, Lemmal) The union of pairwise disjoint causal the-
oriesTy, ..., T,, is equivalent to the conjunctiohy A ... A\ T,,.

5.3 TheGeneral Case

LetT be a causal theory in Clark normal form, andfet. . ., f,, be its explainable
function symbols. For each= 1,...,m, let T; be the causal theory whose only
rule is the rule ofl" that containsf; in the head, withf; as its only explainable
symbol. Let7},,; be the causal theory whose rules are the rul€s tfat do not
contain explainable function symbols in their heads, and whose set ofreipia
symbols is the set of all explainable predicate symbolE.dt is clear that theories
T1,..., Ty, Tyl are pairwise disjoint, and that their unionds By the lemma
from Section 5.2, it follows thdl" is equivalent tdl; A ... Ty, A T,,11. According
to the special case proved in Section 5.1, (18) entails

T, < FC[T;] (1=1,...,m).

By the theorem fronfLifschitz, 1997, Section5quoted at the end of Section 2.3,
Tn+1 is equivalent to F(@},, 1]. Consequently (18) entails

T — FC[Th| A --- NFC[T]) A FC[Th41]-

It remains to observe that the right-hand side of this equivalence[iB]FC

6 Conclusion

The process of completion, extended in this paper to fluents represgnfedds

tion symbols, allows us in some cases to turn a causal theory into an eqtiivalen
first-order formula. This possibility is important because, semantically,dincs
languages are simpler and better understood than many nonmonotonicgesgua
The completion process is useful also because it clarifies the relatioretfapdn
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causal logic and monotonic solutions to the frame problem, such as thoskdrase
the approach dfReiter, 1991

A process similar to functional completion can be applied to logic programs
with intensional function§Bartholomew and Lee, 2012, Theorem 12
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