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Abstract

Nonmonotonic causal logic is a knowledge representation language de-
signed for describing domains that involve actions and change. The process
of literal completion, similar to program completion familiar from the theory
of logic programming, can be used to translate some nonmonotonic causal
theories into classical logic. Its applicability is restricted, however, to theo-
ries that deal with truth-valued fluents, represented by predicate symbols. In
this note we introduce functional completion—a more generalprocess that
can be applied to causal theories in which fluents are treatedas functions.

1 Introduction

Nonmonotonic causal logic is a knowledge representation language designed for
describing domains that involve actions and change. It was used for defining the
semantics of action description languagesC [Giunchiglia and Lifschitz, 1998], C+
[Giunchigliaet al., 2004], and MAD[Lifschitz and Ren, 2006]. Its implementation,
called the Causal Calculator[McCain, 1997, Lee, 2005, Casolary and Lee, 2011],
has been used to solve several challenging commonsense reasoning problems, in-
cluding problems of nontrivial size[Akman et al., 2004], to provide a group of
robots with high-level reasoning[Caldiranet al., 2009], to give executable spec-
ifications of norm-governed computational societies[Artikis et al., 2009], and to
automate the analysis of business processes under authorization constraints [Ar-
mandoet al., 2009].

The propositional version of nonmonotonic causal logic[McCain and Turner,
1997] is based on a fixpoint construction involving reducts, similar to the one em-
ployed in the original definition of a stable model[Gelfond and Lifschitz, 1988].
The first result on the relationship between the two formalisms[McCain, 1997,
Proposition 6.7] is generalized in[Ferraris, 2006]. The first-order version of non-
monotonic causal logic[Lifschitz, 1997] provides additional expressive power that
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is essential for describing the semantics of action descriptions with variables[Lif-
schitz and Ren, 2007]. Its semantics is based on a syntactic transformation that
turns causal theories into second-order sentences. A somewhat similar syntactic
transformation is used in the first-order theory of stable models proposed in[Fer-
rariset al., 2011]. A first-order counterpart of the result of[Ferraris, 2006] is proved
in [Ferrariset al., 2012].

In nonmonotonic causal logic, we distinguish between being true and havinga
cause. Syntactically, a first-order causal theory consists of “causalrules” F ⇐ G,
whereF (the head) andG (the body) are first-order formulas. The rule reads “F

is caused ifG is true.” Some function constants and/or predicate constants of the
underlying signature are declared to be “(causally) explainable.” For instance, the
rule

at(x, y, t + 1) ⇐ move(x, y, t), (1)

where the predicate constantat is explainable, expresses that there is a cause for
the objectx to be at placey at timet + 1 if x is moved toy at timet. (Executing
the move action is the cause.) The rule

at(x, y, t + 1) ⇐ at(x, y, t) ∧ at(x, y, t + 1) (2)

expresses the commonsense law of inertia for the fluentat: if at time t + 1 objectx
is at the same place as at timet then there is a cause for this. (Inertia is the cause;
this is how nonmonotonic causal logic solves the frame problem.)

The process of “literal completion,” defined in[McCain and Turner, 1997] and
extended to the first-order case in[Lifschitz, 1997], allows us, under some con-
ditions, to turn a given causal theory into a formula without second-orderquanti-
fiers. This process is similar to Clark’s completion familiar from logic program-
ming [Clark, 1978, Lloyd and Topor, 1984], except that it applies to rules that may
have both positive and negative literals in their heads, and it generates twoequiva-
lences for each explainable predicate constant, “positive” and “negative.”

Literal completion is applicable to a theory only if each of its explainable sym-
bols is a predicate constant; function constants are allowed in the signature,but
they cannot be explainable. Expainable function symbols are often useful, how-
ever. For example, the binary function symbolloc can be used to describe locations
of objects instead of the ternary predicate symbolat. Then rules (1), (2) will turn
into

loc(x, t + 1) = y ⇐ move(x, y, t)
loc(x, t + 1) = y ⇐ loc(x, t) = y ∧ loc(x, t + 1) = y.

(3)

The advantages of using functional notation in such cases are the same asthe ad-
vantages of writingx+y = z in formal arithmetic in comparison withsum(x, y, z):
there is no need to postulate the existence and uniqueness of the value of thefunc-
tion, and many ideas can be expressed more concisely. For instance, we can write

loc(x1, t) = loc(x2, t)
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instead of
∃y(at(x1, y, t) ∧ at(x2, y, t)).

Our goal here is to extend the definition of literal completion and the theo-
rem on literal completion from[Lifschitz, 1997, Section 5] to causal theories with
explainable function symbols.

We are very pleased to contribute this note to a collection honoring Professor
David Pearce, a dear friend and respected colleague who has made outstanding
contributions to the field of nonmonotonic logic.

2 Review of Causal Logic

2.1 Syntax and Semantics

According to[Lifschitz, 1997], a first-order causal theoryT is defined by

• a listc of distinct function and/or predicate constants,1 called theexplainable
symbolsof T , and

• a finite set ofcausal rulesof the formF ⇐ G, whereF andG are first-order
formulas.

The semantics of causal theories is defined by a syntactic transformation that
is somewhat similar to circumscription[McCarthy, 1986]; its result is usually a
second-order formula. For each memberc of c, choose a new variableυc similar
to c,2 and letυc stand for the list of all these variables. ByT †(υc) we denote the
conjunction of the formulas

∀x(G → F c
υc) (4)

for all rulesF ⇐ G of T , wherex is the list of all free variables ofF , G. (The
expressionF c

υc denotes the result of substituting the variablesυc for the corre-
sponding constantsc in F .) We viewT as shorthand for the sentence

∀υc(T †(υc) ↔ (υc = c)). (5)

(By υc = c we denote the conjunction of the formulasυc = c for all membersc
of the tuplec.) Accordingly, by a model of the causal theoryT we understand a
model of (5) in the sense of classical logic. The models ofT are characterized,
informally speaking, by the fact that the interpretation of the explainable symbols c
in the model is the only interpretation of these symbols that is “causally explained”
by the rules ofT .

1We view object constants as function constants of arity 0, so that they are allowed inc. Similarly,
propositional symbols are viewed as predicate constants of arity 0. Equality, on the other hand, may
not be included inc.

2That is to say, ifc is a function constant thenυc should be a function variable of the same arity;
if c is a predicate constant thenυc should be a predicate variable of the same arity.
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2.2 Examples

Causal theoryT0 has two rules:

p(x) ⇐ q(x),
¬p(x) ⇐ ¬p(x),

(6)

and the predicate constantp is explainable. The second rule, “ifp(x) is false then
there is a cause for this,” expresses, in the language of causal logic, the closed world
assumption forp. According to the semantics of causal logic,T0 is shorthand for
the sentence

∀υp(∀x(q(x) → υp(x)) ∧ ∀x(¬p(x) → ¬υp(x)) ↔ υp = p),

whereυp is a predicate variable. This formula is logically equivalent to

∀x(p(x) ↔ q(x)). (7)

Causal theoryT1 has the rules

⊥ ⇐ a = b,

c = a ⇐ c = a,

c = b ⇐ q,

and the object constantc is explainable.3 The first rule ofT1 says thata is different
from b. The second rule (“ifc = a then there is a cause for this”) expresses, in the
language of causal logic, that by defaultc = a. The last rule says that there is a
cause forc to be equal tob if q is true. TheoryT1 is shorthand for the sentence

∀υc((a = b → ⊥) ∧ (c = a → υc = a) ∧ (q → υc = b) ↔ υc = c)

whereυc is an object variable. This formula is equivalent to

a 6= b ∧ (q → c = b) ∧ (¬q → c = a). (8)

The second conjunctive term shows that ifq holds then the value ofc is different
from its default valuea.

In the next example, we describe the commonsense domain mentioned in the
introduction: the effect of moving objects on their locations. For simplicity, we
only consider the time instants 0, 1 and the execution of the move action at time 0.
On the other hand, we would like to take into account the fact (glossed overin the
introduction) that the domain involves things of several kinds: movable objects,
places, and time instants. To this end, we include the auxiliary symbolnone, which
is used as the value ofloc(x, t) when the arguments are “not of the right kind” (that

3By ⊥ and⊤ we denote the 0-place connectivesfalseandtrue.
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is, whenx is not a movable object or whent is not a time instant). The rules of the
causal theoryT2 are

⊥ ⇐ 0 = 1,

⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

obj(x) ∧ place(y) ⇐ move(x, y),
loc(x, 0) = y ⇐ loc(x, 0) = y ∧ obj(x) ∧ place(y),
loc(x, 1) = y ⇐ move(x, y),
loc(x, 1) = y ⇐ loc(x, 0) = y ∧ loc(x, 1) = y ∧ obj(x) ∧ place(y),

loc(x, t) = none⇐ ¬obj(x),
loc(x, t) = none⇐ t 6= 0 ∧ t 6= 1,

and the function constantloc is explainable. The rule withloc(x, 0) in the head al-
lows an objectx to be initially anywhere: whichever place is the value ofloc(x, 0),
there is a cause for that. The next two rules describe the effect of movingobjects
and the inertia property of locations. According to the semantics of causal logic,T2

is shorthand for the formula

∀υloc(T †
2
(υloc) ↔ (υloc = loc)),

whereυloc is a binary function variable. In Section 4 we will see how functional
completion allows us to rewrite this formula without second-order quantifiers.

2.3 Literal Completion

The definition of the literal completion of a causal theory in[Lifschitz, 1997] as-
sumes that each rule of the theory is definite, which means that the head of therule
is a literal or doesn’t contain explainable symbols. In this review, we impose amore
restrictive condition, similar to the definition of Clark normal form in[Ferrariset
al., 2011, Section 6.1]. This is not a significant limitation, because any definite
causal theory can be converted to the normal form defined below by equivalent
transformations.

Let T be a causal theory such that all its explainable symbols are predicate
constants. We say thatT is in Clark normal formif it consists of

• rules of the form
p(x) ⇐ G(x), (9)

one for each explanable predicate symbolp, wherex is a tuple of distinct
variables, andG(x) is a formula without any free variables other than the
members ofx,

• rules of the form
¬p(x) ⇐ G(x), (10)
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one for each explanable predicate symbolp, wherex andG(x) are as above,
and

• rules without explainable symbols in the head.

For example,T0 is in Clark normal form.
The literal completionof a causal theoryT in Clark normal form is the con-

junction of the sentences
∀x(p(x) ↔ G(x)) (11)

for all rules ofT of the form (9), the sentences

∀x(¬p(x) ↔ G(x)) (12)

for all rules ofT of the form (10), and the sentences

∀̃(G → F ) (13)

(the symbol̃∀ denotes the universal closure) for all rulesF ⇐ G of T without
explainable symbols in the head. For example, the literal completion ofT0 consists
of two formulas: (7) and the logically valid formula

∀x(¬p(x) ↔ ¬p(x)).

Completion Theorem from[Lifschitz, 1997, Section 5] shows that any causal
theory in Clark normal form is equivalent to its literal completion.

3 Clark Normal Form Extended to Explainable Functions

The definition of Clark normal form is extended to causal theories with explainable
functions by adding an extra clause. About a causal theoryT we say that it is in
Clark normal formif it consists of

• rules of the form (9), one for each explanable predicate symbolp,

• rules of the form (10), one for each explanable predicate symbolp,

• rules of the form
f(x) = y ⇐ G(x, y), (14)

one for each explanable function symbolf , wherex, y is a tuple of distinct
variables, andG(x, y) is a formula without any free variables other than the
members ofx, y,

• rules without explainable symbols in the head.
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In many cases, a causal theory can be transformed into an equivalent causal
theory in Clark normal form. For instance,T1 (see Section 2.2) can be converted to
Clark normal form by rewriting its last two rules as

c = x ⇐ x = a ∧ c = a,

c = x ⇐ x = b ∧ q

and then merging them into one rule:

c = x ⇐ (x = a ∧ c = a) ∨ (x = b ∧ q). (15)

It is clear that the part ofT †
1
(υc) contributed by the last two rules ofT1 is logically

equivalent to the part contributed by (15). Similarly, the Clark normal formof T2

is

⊥ ⇐ 0 = 1,

⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

obj(x) ∧ place(y) ⇐ move(x, y),
loc(x, t) = y ⇐ (t = 0 ∧ loc(x, 0) = y ∧ obj(x) ∧ place(y))

∨(t = 1 ∧ move(x, y))
∨(t = 1 ∧ loc(x, 0) = y ∧ loc(x, 1) = y ∧ obj(x) ∧ place(y))
∨(y = none∧ ¬obj(x))
∨(y = none∧ t 6= 0 ∧ t 6= 1).

(16)

4 Literal Completion Extended to Explainable Functions

Functional completion is a generalization of literal completion to causal theoriesin
Clark normal form that may include explainable functions. Thefunctional comple-
tion of a causal theoryT in Clark normal form is the conjunction of

• sentences (11) for all rules ofT of the form (9),

• sentences (12) for all rules ofT of the form (10),

• sentences
∀̃(f(x) = y ↔ G(x, y)) (17)

for all rules ofT of the form (14), and

• sentences (13) for all rulesF ⇐ G of T without explainable symbols in the
heads.
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We will denote the functional completion ofT by FC[T ].

Theorem For any causal theoryT in Clark normal form,

∃x1x2(x1 6= x2) (18)

entailsT ↔ FC[T ].

Corollary If a causal theory in Clark normal form contains a rule of the form
⊥ ⇐ t1 = t2 then it is equivalent to its functional completion.

Consider, for instance, theoryT1. As discussed above, its Clark normal form
consists of rules (15) and

⊥ ⇐ a = b.

Its functional completion is the conjunction of the formulas

∀x(c = x ↔ (x = a ∧ c = a) ∨ (x = b ∧ q))

anda = b → ⊥ (that is,a 6= b). By the corollary, this conjunction is equivalent
to T1.

The Clark normal form ofT2 is (16). The functional completion of this theory
is the conjunction of the formulas

0 6= 1, 0 6= none, 1 6= none,
∀xy(move(x, y) → obj(x) ∧ place(y)),

∀xty(loc(x, t) = y ↔ (t = 0 ∧ loc(x, 0) = y ∧ obj(x) ∧ place(y))
∨(t = 1 ∧ move(x, y))
∨(t = 1 ∧ loc(x, 0) = y ∧ loc(x, 1) = y ∧ obj(x) ∧ place(y))
∨(y = none∧ ¬obj(x))
∨(y = none∧ t 6= 0 ∧ t 6= 1)).

By the corollary, this conjunction is equivalent toT2. Using equivalent transforma-
tions in first-order-logic, we can rewrite it as the conjunction of the formulas

0 6= 1, 0 6= none, 1 6= none,
∀xy(move(x, y) → obj(x) ∧ place(y)),

∀x(obj(x) → place(loc(x, 0))),
∀xt((¬obj(x) ∨ (t 6= 0 ∧ t 6= 1)) → loc(x, t) = none),

∀xy(obj(x) →
loc(x, 1) = y ↔ (move(x, y) ∨ (loc(x, 0) = y ∧ ¬∃w move(x, w)))).

The last of these formulas characterizes the location of an object at time 1 in terms
of its location at time 0 and the actions that have been executed. In this sense,it is
similar to successor state axioms as defined in[Reiter, 1991].
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Without the assumption that the theory contains a rule of the form⊥ ⇐ t1 = t2
the assertion of the corollary would be incorrect. For instance, considerthe causal
theory consisting of one rule

c = x ⇐ ⊥,

wherec is an explainable object constant. This theory is equivalent to∀υc(υc = c);
its completion is equivalent to⊥.

5 Proof of the Theorem

5.1 A Special Case

We will first prove the theorem from Section 4 for the special case whenT consists
of a single rule (14), wheref is explainable. We need to show that (18) entails the
equivalence between

∀υf(∀xy(G(x, y) → υf(x) = y) ↔ υf = f) (19)

and
∀xy(f(x) = y ↔ G(x, y)). (20)

Right-to-left: under assumption (20), formula (19) is equivalent to the logically
valid formula

∀υf(∀xy(f(x) = y → υf(x) = y) ↔ υf = f).

Left-to-right: assume (19), that is,

∀υf(∀xy(G(x, y) → υf(x) = y) → υf = f) (21)

and
∀xy(G(x, y) → f(x) = y). (22)

The last formula is one half of equivalence (20). It remains to derive theother
half, that is,G(x, f(x)). Assume that for somex0, ¬G(x0, f(x0)). By (18), there
exists ay0 different fromf(x0). We will prove that the functionυf defined by the
condition

υf(x0) = y0 ∧ ∀x(x 6= x0 → υf(x) = f(x))

satisfies the antecedent of (21). AssumeG(x, y). Since¬G(x0, y), x 6= x0. Then
υf(x) = f(x). On the other hand, by (22),f(x) = y. Consequentlyυf(x) = y; the
antecedent of (21) is proved. It follows that the consequentυf = f holds, so that
y0 = υf(x0) = f(x0). This is impossible by the choice ofy0.
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5.2 Review: Disjoint Causal Theories

The proof of Completion Theorem in full generality uses the following definition
from [Lifschitz, 1997, Section 6]. About causal theoriesT1, T2 with setsc1, c2 of
explainable symbols we say that they aredisjoint if

• c1 is disjoint fromc2, and

• the symbols inc1 do not occur in the heads of the rules ofT2, and the symbols
in c2 do not occur in the heads of the rules ofT1.

For any pairwise disjoint causal theoriesT1, . . . , Tm, define theirunion to be
the causal theory obtained by combining their rules and their explainable symbols.

Lemma ([Lifschitz, 1997, Lemma 1]) The union of pairwise disjoint causal the-
oriesT1, . . . , Tm is equivalent to the conjunctionT1 ∧ . . . ∧ Tm.

5.3 The General Case

Let T be a causal theory in Clark normal form, and letf1, . . . , fm be its explainable
function symbols. For eachi = 1, . . . , m, let Ti be the causal theory whose only
rule is the rule ofT that containsfi in the head, withfi as its only explainable
symbol. LetTm+1 be the causal theory whose rules are the rules ofT that do not
contain explainable function symbols in their heads, and whose set of explainable
symbols is the set of all explainable predicate symbols ofT . It is clear that theories
T1, . . . , Tm, Tm+1 are pairwise disjoint, and that their union isT . By the lemma
from Section 5.2, it follows thatT is equivalent toT1 ∧ . . . Tm ∧ Tm+1. According
to the special case proved in Section 5.1, (18) entails

Ti ↔ FC[Ti] (i = 1, . . . , m).

By the theorem from[Lifschitz, 1997, Section 5] quoted at the end of Section 2.3,
Tm+1 is equivalent to FC[Tm+1]. Consequently (18) entails

T ↔ FC[T1] ∧ · · · ∧ FC[Tm] ∧ FC[Tm+1].

It remains to observe that the right-hand side of this equivalence is FC[T ].

6 Conclusion

The process of completion, extended in this paper to fluents represented by func-
tion symbols, allows us in some cases to turn a causal theory into an equivalent
first-order formula. This possibility is important because, semantically, first-order
languages are simpler and better understood than many nonmonotonic languages.
The completion process is useful also because it clarifies the relationship between
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causal logic and monotonic solutions to the frame problem, such as those based on
the approach of[Reiter, 1991].

A process similar to functional completion can be applied to logic programs
with intensional functions[Bartholomew and Lee, 2012, Theorem 12].
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