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Abstract

A generalization of Reiter's default logic is

proposed that provides an improved treat-

ment of default reasoning with disjunctive in-

formation. The new system| the disjunctive

default logic | is used in the paper to reex-

amine the \broken-hand" example of Poole.

We also compare the expressive power of this

approach with two other approaches which

interpret disjunctive information within the

standard default logic. Finally, we show that

our semantics of disjunctive default logic is a

generalization of the semantics of disjunctive

and extended disjunctive databases.

1 INTRODUCTION

In this paper we generalize the theory of default rea-

soning developed by Reiter [Rei80]. The generalization

is motivated by a di�culty encountered in attempts to

use defaults in the presence of disjunctive information

[Poo89]. The di�culty has to do with the di�erence

between a default theory with two extensions | one

containing a sentence �, the other a sentence � | and

the theory with a single extension, containing the dis-

junction � _ �. This di�culty was also observed by

Lin and Shoham in [LS90]. They present there an ex-

ample (Example 3.1 [LS90]) of a (modal) theory T ,

containing disjunctive information, and comment that

no default theory exists that corresponds to T .

This di�erence may seem inessential, because the set

of theorems (sentences that belong to all extensions)

may be the same in both cases. But a default theory

is more than just a set of theorems. The usual expla-

nation of the intuitive meaning of a default mentions

consistency | consistency with a set of beliefs. De-

faults are assertions not only about a domain described

by the underlying �rst-order language, but also about

a set of beliefs concerning that domain. A default the-

ory with several extensions is a theory of several sets

of beliefs. To formalize a body of knowledge in default

logic, one has to decide what these sets of beliefs are.

In particular, one needs to know whether the theory is

about two sets of beliefs, or about one set containing

disjunctive information. Poole's example, reproduced

in Section 3 below, illustrates the crucial role of this

distinction.

In the paper, we introduce an extension of Reiter's

default logic by adding capabilities of handling dis-

junctive information. This new system | disjunctive

default logic| is formally introduced in Section 5. We

also show there how to use this new system to formal-

ize Poole's example. Next, in Section 6, we study the

expressive power of our formalization by comparing

it with two systems obtained by interpreting a dis-

junctive default theory in the standard default logic.

Finally, we show that our semantics of disjunctive de-

fault logic is a generalization of the semantics of dis-

junctive databases and extended disjunctive databases

proposed in [GL90a]. Disjunctive default logic can be

extended even further to the language of modal logic.

This approach makes proofs of some of our results sim-

pler and more elegant. We introduce this modal ex-

tension of disjunctive default logic in Section 8. Proofs

of our results are gathered there, too.

2 DEFAULT THEORIES

We begin with a brief review of Reiter's default logic

restricted, for simplicity, to the case of quanti�er-free

defaults. This restriction allows us to disregard the



process of Skolemization, involved in de�ning exten-

sions in the general case; see [Rei80], Section 7.1. A

default is an expression of the form

� : �

1

; : : : ; �

m




; (1)

where �; �

1

; : : : ; �

m

; 
 (m � 0) are quanti�er-free for-

mulas. Formula � is the prerequisite of the default,

�

1

; : : : ; �

m

are its justi�cations, and 
 is its conse-

quent. Informally, (1) is interpreted as follows:

If � holds, and

each of �

1

,: : :,�

m

can consistently be assumed,

then infer 
.

(2)

If the prerequisite � in (1) is the formula true, it will

be dropped; if, in addition, m = 0, then we identify

the default (1) with its consequent 
. Thus formulas

can be viewed as defaults of a special form. A default

theory is a set of defaults. Let us comment here that

our de�nition di�ers from the standard de�nition of

a default theory as a pair (D;W ), where D is a set

of defaults and W is a collection of (quanti�er-free)

formulas. As stated above, formulas can be viewed as

defaults of a special form, and both approaches can

easily be shown to be equivalent.

Reiter's de�nition of an extension shows how to make

(2) precise. It can be stated as follows.

De�nition 2.1 Let D be a default theory, and let E

be a set of sentences. E is an extension for D if it

coincides with the smallest deductively closed set of

sentences E

0

satisfying the condition: for any ground

instance (1) of any default from D, if � 2 E

0

and

:�

1

; : : : ;:�

m

62 E then 
 2 E

0

. A theorem of a de-

fault theory is a sentence that belongs to each of its

extensions.

Notice that the de�nition of an extension treats a de-

fault with variables as shorthand for the set of its

ground instances

1

.

It is often convenient to think about this de�nition of

extensions in terms of the following two-step proce-

dure. Let D be a default theory. The �rst step, which

turns out to be responsible for nonmonotonicity, is to

assume a hypothetical belief set E and to preprocess

the set of defaults in D with respect to E.

De�nition 2.2 Let D be a default theory and let E

be a set of sentences. The reduct of D with respect to

E, denoted D

E

, is the set of inference rules de�ned as

follows: An inference rule

�




1

A di�erent approach to default logic, treating variables

in defaults as \real" variables and not only as symbols for

objects explicitly appearing in the theory was proposed in

[Lif90]

is in D

E

if for some �

1

; : : : ; �

m

such that for every i,

1 � i � m, :�

i

=2 E, the default

� : �

1

; : : : ; �

m




is in D.

The second step is to de�ne the set of theorems of the

formal system obtained by expanding the system of

propositional logic by the rules in D

E

. This set of the-

orems can be de�ned as the set of all formulas having

proofs in this system or, equivalently, as the smallest

theory E

0

closed under provability in propositional cal-

culus and under the rules fromD

E

, where E

0

is closed

under the rule

�




if whenever � 2 E

0

, 
 2 E

0

, as well. If this set of the-

orems coincides with E, E is an extension, and con-

versely. Formally, we have the following theorem

Theorem 2.3 A set of sentences E is an extension

for a default theory D if and only if E is the minimal

set E

0

closed under provability in propositional calculus

and under the rules from D

E

.

3 POOLE'S EXAMPLE

The following example from [Poo89] illustrates a dif-

�culty that arises in some attempts to use Reiter's

formalism in the presence of disjunctive information.

By default, people's left arms are usable, but a person

with a broken left arm is an exception, and similarly

for the right arms. One way to express this in Reiter's

notation is to use \semi-normal" defaults, in the spirit

of [RC81]. Below, lh and rh stand for left hand and

right hand, respectively.

: lh-usable ^ :lh-broken

lh-usable

;

: rh-usable ^ :rh-broken

rh-usable

:

(3)

If you have no additional information about my arms,

you will conclude that they are usable. Indeed, the

default theory (3) has a single extension, containing

lh-usable and rh-usable. If you know that my left arm

is broken,

lh-broken (4)

then this conclusion is blocked | the extension for

the default theory (3), (4) contains rh-usable, but not

lh-usable. So far Reiter's logic works �ne.

But suppose you remember seeing me with a broken

arm, you are not sure which one:

lh-broken _ rh-broken: (5)

The default theory (3), (5) has a single extension also.

In addition to (5), this extension contains, unfortu-

nately, both lh-usable and rh-usable, contrary to what

we would expect.



There are other natural formalizations of Poole's ex-

ample in standard default logic. One such formaliza-

tion, using new variables ab

1

and ab

2

to denote abnor-

mality, consists of the formula (5), two formulas (6)

and two defaults (7).

lh-broken) ab

1

; rh-broken) ab

2

(6)

: :ab

1

lh-usable

;

: :ab

2

rh-usable

: (7)

Also this default theory has a unique extension con-

taining both lh-usable and rh-usable, which does not

agree with the intuition.

4 DISCUSSION

Let us apply the informal interpretation (2) to Poole's

example. The �rst of the defaults (3) says: If it is

consistent to assume lh-usable^:lh-broken; then infer

lh-usable. This mode of reasoning is acceptable when

all available information about lh-broken is \vivid" |

expressed by one of the literals lh-broken, :lh-broken

(see [Lev86]). The disjunction (5) suggests lh-broken

only as a possibility. This does not make the opposite

assumption inconsistent, although we do not want the

default to be applicable when this disjunction is pos-

tulated. Consistency in the defaults (2) is meant to be

consistency with a set of beliefs which is not expected

to contain disjunctive information. This explains why

the defaults (3) lead, in the presence of (5), to unin-

tended conclusions.

The way out is to express the incompleteness of infor-

mation by the multiplicity of extensions, rather than

by a single extension containing a disjunction. What

we want in this example is two extensions: one con-

taining lh-broken, the other rh-broken. Such a formal-

ization would be similar to the default theory (3), (5),

in that the disjunction (5) would be among its theo-

rems. The di�erence is that each extension would be

the deductive closure of a set of literals.

In the new formalism, the postulate (5) will be re-

placed by the expression

lh-brokenjrh-broken: (8)

Semantically, the di�erence between (5) and (8) is

that the latter requires an extension to contain one of

the two disjunctive terms, rather than the disjunction.

This is similar to the di�erence between the assertions:

\� _ � is known" and \� is known or � is known."

5 DISJUNCTIVE DEFAULT

THEORIES

In this section we introduce the main concepts of the

paper | a disjunctive default, a disjunctive default

theory. Most importantly, we extend Reiter's de�ni-

tion of extension to the case of disjunctive defaults.

Next, we use our approach to analyze Poole's exam-

ple.

A disjunctive default is an expression of the form

� : �

1

; : : : ; �

m




1

j : : : j


n

; (9)

where �; �

1

; : : : ; �

m

; 


1

; : : : ; 


n

(m;n � 0) are

quanti�er-free formulas. Formula � is the prerequi-

site of the default, �

1

; : : : ; �

m

are its justi�cations, and




1

; : : : ; 


n

are its consequents. If the prerequisite � in

(1) is the formula true, it will be dropped; if, in addi-

tion,m = 0, then we write the default (1) as 


1

j : : : j


n

.

A disjunctive default theory (a ddt, for short) is a set

of disjunctive defaults.

De�nition 5.1 Let D be a disjunctive default theory,

and let E be a set of sentences. E is an extension for

D if it is one of the minimal deductively closed sets of

sentences E

0

satisfying the condition: For any ground

instance (9) of any default from D, if � 2 E

0

and

:�

1

; : : : ;:�

m

62 E then, for some i (1�i�n), 


i

2 E

0

.

A theorem is a sentence that belongs to all extensions.

Observe that in the de�nition of an extension, disjunc-

tive defaults are treated as shorthand for the sets of

their ground instances.

It is clear that for standard (nondisjunctive) default

theories this de�nition gives extensions in the usual

sense, as de�ned in Section 2.

The de�nition of an extension for a ddt can also be

described by means of the concept of reduct. To this

end, we need more terminology. A disjunctive rule is

an expression of the form

�




1

j : : : j


n

: (10)

We say that a theory E is closed under a disjunctive

rule (10) if, whenever � 2 E, then there exist i, 1 �

i � n, 


i

2 E.

Remark Note that given a set S of disjunctive rules

there may be several minimal sets of sentences closed

under S, unlike in the case of sets of standard infer-

ence rules where there always exists the least set of

sentences closed under them.

De�nition 5.2 Let D be a ddt and let E be a set of

sentences. The reduct of D with respect to E, denoted

D

E

, is the set of inference rules de�ned as follows: An

inference rule

�




1

j : : : j


n

is in D

E

if for some �

1

; : : : ; �

m

such that :�

i

=2 E,

1 � i � m, the default

� : �

1

; : : : ; �

m




1

j : : : j


n

is in D.



We have the following straightforward theorem.

Theorem 5.3 A set of sentences E is an extension

for a ddt D if and only if E is a minimal set closed

under propositional consequence and under the rules

from D

E

.

The di�erence between disjunctive defaults and stan-

dard default with disjunctive consequents can be il-

lustrated by the following example from [Rei80]. The

default theory

f

a : b

b

;

c : d

d

; a _ cg;

where a, b, c, d are propositional symbols, has a sin-

gle extension, consisting of the disjunction a _ c and

its logical consequences; the �rst two defaults \don't

work." On the contrary, the disjunctive default theory

f

a : b

b

;

c : d

d

; ajcg (11)

(where ajb is to be understood as a disjunctive de-

fault according to the convention introduced at the

beginning of the section) has two extensions: the de-

ductive closure of fa; bg and the deductive closure of

fc; dg. The formula b _ d belongs to both extensions,

and consequently is a theorem.

The new formalization of Poole's example is the dis-

junctive default theory (3), (8). It has two exten-

sions. Each of the extensions contains one of the atoms

lh-usable, rh-usable and does not contain the other.

Thus neither atom is a theorem, and Poole's paradox

is eliminated.

It is also easy to see that disjunctive default logic is

exactly what is needed to properly represent the theory

of Example 3.1 of [LS90].

6 EXPRESSING DISJUNCTIVE

INFORMATION BY STANDARD

DEFAULTS

As we mentioned earlier, defaults are assertions not

only about a domain described by the underlying �rst-

order language, but also about possible sets of beliefs

concerning that domain. In other words, we are in-

terested not only in the theorems of a ddt D, but

also in what sets of beliefs can be associated with D.

The class of extensions for a ddt D, as de�ned in the

previous section, can be viewed as the sets of beliefs

\grounded" in the default theory D.

An important question is: Can the behavior of disjunc-

tive defaults be simulated in standard default logic?

More precisely, is there a general transformation that

assigns to a ddt D a standard default theory D

0

(or

a family D of standard default theories) so that ex-

tensions for D are exactly extensions for D

0

(or for

theories in D).

We will consider two naturally arising transformations.

The �rst of them \breaks" a disjunctive default

� : �

1

; : : : ; �

n




1

j : : : j


n

into n standard defaults

�: �

1

;:::;�

m

;:


2

;:::;:


n




1

;

: : :

�: �

1

;:::;�

m

;:


1

;:::;:


n�1




n

:

Given a ddt D, by D

0

we denote the default theory

obtained by applying this transformation to every de-

fault in D. For example, for

D = f

: b

ajb

;

: a

ajb

g

we have

D

0

= f

: b;:b

a

;

: b;:a

b

;

: a;:b

a

;

: a;:a

b

g:

It is easy to see that D and D

0

have the same exten-

sions. If by Cn(�) we denote the operator of proposi-

tional consequence, then these extensions are Cn(fag)

and Cn(fbg).

But in general, this is not the case. Consider the fol-

lowing theory:

D = fa, b; a j bg:

Then,

D

0

= fa, b;

: :a

b

;

: :b

a

g:

The theory Cn(fa; bg) is the unique extension for D

but D

0

has no extensions. Thus, the classes of ex-

tensions for D and D

0

are not, in general, identical.

However, the following weaker property holds.

Theorem 6.1 If E is an extension for D

0

then E is

an extension for D.

Remark: This theorem implies that an interpreta-

tion of a ddt D which associates with it the class of

extensions for D

0

has \more" theorems than the logic

of disjunctive defaults with extensions as de�ned in

Section 5.

There is yet another natural way of looking at a dis-

junctive default theory in the standard default logic.

A ddt D can be viewed as a \disjunction" of a collec-

tion of standard default theories. Namely, the family

D of all standard default theories that can be obtained

fromD by dropping, in each of its defaults, all but one

of the consequents. Every such standard default the-

ory is called a cover of D. Take now all extensions for

all covers of D. Will we get the set of all extensions

for D?



In many cases, yes. For instance, this procedure will

replace the ddt given by (11) by two standard default

theories:

f

a : b

b

;

c : d

d

; ag

and

f

a : b

b

;

c : d

d

; cg:

Theory Cn(fa; bg) is the unique extension for the �rst

theory and Cn(fc; dg) is the unique extension for the

second one. This collection coincides with the collec-

tion of extensions for the theory given by (11).

But in general, this equality does not hold. Consider

the disjunctive default theory

fa j b;

a :

b

;

: :a

c

g: (12)

The theory Cn(fb; cg) is an extension for one of the

corresponding covers:

fb;

a :

b

;

: :a

c

g:

In addition, no smaller set of sentences closed under

propositional consequence is an extension for any cover

of the theory (12). Yet, theory Cn(fb; cg) is not an

extension for (12). Nevertheless, we have the following

weaker result.

Theorem 6.2 If E is an extension for D, then E is

a minimal (with respect to inclusion) element in the

class of all extensions for the covers of D.

Remark Thus, if we associate with a ddt D the collec-

tion of all minimal (with respect to inclusion) elements

in the class of all extensions for the covers of D, the

resulting system is \more secure" (has less theorems)

than the system based on the class of extensions for

D, as de�ned in Section 5.

There is however an important class of disjunctive de-

fault theories for which both systems are equivalent.

Theorem 6.3 If a ddt D consists only of justi�cation-

free defaults, then the classes of extensions for D and

of minimal (with respect to inclusion) extensions for

covers of D coincide.

7 RELATION TO DISJUNCTIVE

DATABASES

Disjunctive default logic with extensions as de�ned in

Section 5 can be viewed as a generalization of the se-

mantics for disjunctive databases proposed in [GL90a].

An extended disjunctive database is a set of rules of

the form

c

1

j : : : j c

n

�a

1

; : : : ; a

k

; not b

1

; : : : ; not b

m

; (13)

where n;m; k � 0, and a

i

, b

i

and c

i

are literals. (The

word \extended" points to the fact that the literals

can be negative.) The semantics of such databases is

a generalization of the \answer set" semantics for logic

programs with classical negation de�ned in [GL90b].

De�nition 7.1 Let P be an extended disjunctive

database, and let M be a set of literals Set M is an

answer set for P if it is one of the minimal sets of

literals M

0

satisfying the conditions:

1. for any rule (13) in P , if a

i

2M

0

, 1 � i � k, and

b

i

=2 M , 1 � i � m, then, for some i, 1 � i � n,

c

i

2M

0

;

2. if for some atom a,

a;:a 2M

0

;

then M

0

contains all literals.

An extended disjunctive database P can be associ-

ated with a ddt emb(P ) obtained from P by replacing

each rule r with its disjunctive default interpretation

emb(r), where for a rule r given by (13) we have

emb(r) =

a

1

^ : : :^ a

k

: :b

1

; : : : ;:b

m

c

1

j : : : j c

n

:

We have the following theorem. It generalizes similar

theorems on embedding logic programs and logic pro-

grams with classical negation in default logic [BF88,

GL90b].

Theorem 7.2 Let P be an extended disjunctive

database. A set of literals M is an answer set of P

if and only if M is the set of all literals from an ex-

tension for emb(P ).

8 PROOFS

Our de�nition of an extension for a ddt, as well as

Reiter's de�nition of an extension for a (standard) de-

fault theory, treat defaults as shorthand for the set of

their ground instances. Ground instances of defaults

are variable-free and, thus, without loss of generality

we will restrict in the proofs to the case when defaults

are built of formulas of �xed propositional language L.

Proofs of Theorems 2.3 and 5.3 are straightforward

and are omitted.

Theorem 6.1 If E is an extension for D

0

then E is

an extension for D.

Proof: Clearly, E is an extension for D

0E

. In par-

ticular, E is closed under propositional consequence

operator. In addition, E is closed under all rules in

D

0E

. Consider now a rule

�




1

j : : : j


n

(14)



from D

E

. If E contains at least one 


i

, then E is

closed under the rule (14). If E does not contain any




i

, then rules

�




1

; : : : ;

�




n

are all in D

0E

. Since E is closed under the rules from

D

0E

, it follows that � =2 E. Thus, E is closed under

all rules in D

E

.

Consider an arbitrary theory E

0

� E closed under

propositional consequence and the rules in D

E

. Con-

sider a rule

�




from D

0E

. Then, there is a default

� : �

1

; : : : ; �

m


j


2

j : : : j


n

in D, such that :�

i

=2 E, 1 � i � m and 


i

=2 E, for

all i, 1 � i � n. Thus, the rule

�


j


2

j : : : j


n

is in D

E

. Since E

0

is closed under defaults in D

E

, and




i

=2 E, for all i, 1 � i � n, it follows that if � 2 E

0

then 
 2 E

0

. Thus, E

0

is closed under the rule

�




and, more generally, under all rules from D

0E

. Since

E is an extension for D

0

, it follows that E = E

0

. Thus,

E is minimal closed under propositional consequence

and rules in D

E

. Consequently, E is an extension for

D. 2

Before we prove Theorems 6.2 and 6.3 we will consider

one more equivalent way of de�ning extensions for a

ddt. Let us consider a modal language L

L

obtained

by extending the language L with a single modal op-

erator L. Operator L can loosely be interpreted as \is

known" or \is believed". Consider a formula of the

form

L� ^ :L�

1

^ : : :^ :L�

m

) L


1

_ : : :_ L


n

; (15)

where �, �

i

and 


i

are formulas from L. Such formulas

will be called modal rules, and collections of modal

rules will be called modal programs. The modal rule

(15) can be interpreted as:

If � is known and it is not known that �

i

(:�

i

is consistent), 1 � i � m, then for some

i, 1 � i � n, 


i

is known.

Under such interpretation, modal rules are similar to

disjunctive defaults. Below we show how to make this

similarity precise.

The key notion is the concept of a stable theory ([Sta80,

Moo85, MT91]. A theory T � L

L

is stable if it satis�es

the following three conditions:

ST1 T = Cn(T ),

ST2 If ' 2 T then L' 2 T ,

ST3 If ' 62 T then :L' 2 T .

Stable theories capture the intuition of belief sets of

an agent with full introspection capabilities, and are of

fundamental importance in nonmonotonic modal for-

malisms.

It is well-known ([Moo85, Mar89]) that for every the-

ory S � L there is a unique stable theory T such that

T \ L = Cn(S). We denote this unique stable theory

by St(S).

Stable sets have the following property, which we will

refer to as the disjunctive property: if T is stable and

formulas ' and  are propositional combinations of

formulas of the form L�, where � 2 L, then '_ 2 T

if and only if ' 2 T of  2 T ([HM84, MT91]).

Stable sets can be ordered by the inclusion relation

applied to their modal-free parts. Precisely, if T

1

and

T

2

are stable, then T

1

v T

2

if T

1

\ L � T

2

\ L. The

purpose of this relation is to formalize the concept of

minimal knowledge about the domain of interest.

Let I be a modal program and let T � L

L

be a sta-

ble theory. In the next de�nition, we specify how to

apply negation by failure to remove negation from the

antecedents of the rules in I.

De�nition 8.1 The reduct of I with respect to T , I

T

,

is the modal program obtained from I by removing all

rules with :L� in the antecedent, if � 2 T , and by

removing the conjuncts :L� from all other clauses.

The next de�nition applies the minimal-knowledge

paradigm to the reduct I

T

.

De�nition 8.2 A stable theory T is called a modal

extension for I if and only if T is a v-minimal stable

theory containing I

T

.

It follows from our informal comments earlier that a

disjunctive default

d =

� : �

1

; : : : ; �

m




1

j : : : j


n

can be interpreted by a modal rule

emb

L

(d) = L�^:L:�

1

: : ::L:�

m

) L


1

_ : : :_L


n

:

For a ddt D, by emb

L

(D) we denote the modal pro-

gram obtained by replacing each default d 2 D with

the rule emb

L

(d). We have the following theorem.

Theorem 8.3 Let D be a ddt and let S � L be closed

under propositional consequence. Theory S is an ex-

tension for D if and only if St(S) is a modal extension

for emb

L

(D).



Proof: First notice that a rule

L�) L


1

_ : : :_ L


n

is in the reduct emb

L

(D)

St(S)

if and only if the rule

�




1

j : : : j


n

is in the reduct D

S

.

Next, observe that for any theory S

0

� L that is closed

under propositional consequence,

emb

L

(D)

St(S)

� St(S

0

)

if and only if S

0

is closed under the rules inD

S

. Indeed,

by the disjunctive property,

(L�) L


1

_ : : :_ L


n

) 2 St(S

0

)

if and only if � =2 S

0

, or at least one 


i

is in S

0

. Thus,

the assertion follows by Theorem 5.3 and by the de�-

nition of a modal extension. 2

Now we are ready to prove Theorems 6.2 and 6.3.

Theorem 6.2. If E is an extension for D, then E

is a minimal (with respect to inclusion) element in the

class of all extensions for the covers of D.

Proof: In the same way in which we de�ned a cover

for a ddt D, we can de�ne a cover of a modal program.

By Theorem 8.3, it follows that to prove Theorem 6.2,

it su�ces to show that if a stable theory is a modal

extension for a modal program I, then T is a modal

extension for a cover of I.

First, assume that C

i

, 1 � i � p, are all the covers of

I. It is easy to see that I is propositionally equivalent

to the disjunction

�

I

= �

1

_ : : :_ �

p

;

where each �

I

is a conjunction of formulas of the cover

C

i

. Each formula �

i

is a propositional combination of

formulas of the form L�, where � 2 L. Thus, the

disjunctive property applies and if T is stable then

�

I

2 T if and only if �

i

2 T , for some i, 1 � i � p.

Let us also observe that the reducts C

T

i

, 1 � i � p, are

exactly the covers of the reduct I

T

. It follows from the

previous discussion that if U is stable, then I

T

� U if

and only if C

T

i

� U , for some i, 1 � i � p.

Consider a modal extension T for the program I. The-

ory T is a v-minimal stable theory containing I

T

.

Consequently, for some i, C

T

i

� T . Let U v T be

stable and such that C

T

i

� U . Then I

T

� U . Since

T is v-minimal with this property, U = T and T is a

v-minimal stable theory such that C

T

i

� T . Hence, T

is a modal extension for C

i

. 2

Theorem 6.3. If a ddt D consists only of

justi�cation-free defaults, then the classes of exten-

sions for D and of minimal (with respect to inclusion)

extensions for covers of D coincide.

Proof: By Theorem 8.3 it follows that in order to prove

Theorem 6.3, it su�ces to show the following:

If a modal program I consists entirely of

the rules without conjuncts :L� in the an-

tecedent, then the classes of modal extensions

for I and of v-minimal extensions for covers

of I coincide.

To this end, assume that C

1

; : : : ; C

p

are all the covers

if I. Observe that for any stable theory T , I

T

= I and

C

T

i

= C

i

, 1 � i � p. By Theorem 6.2, it su�ces to

prove only that a v-minimal extension T for a cover

of I is an extension for I. Clearly, I

T

= I � T . Con-

sider a stable theory U v T such that I

T

= I � U .

Then, as in the previous proof, we have that for some i,

C

T

i

= C

i

� U . Since T is v-minimal among all modal

extensions for covers of I, it follows that T = U . Con-

sequently, T is a modal extension for I. 2

Theorem 7.2. Let P be an extended disjunctive

database. A set of literals M is an answer set of P

if and only if M is the set of literals of an extension

for emb(P ).

Proof: Assume that a set of literals M is an answer

set for P . Put E = Cn(M ). Consider an arbitrary

default

a

1

^ : : :^ a

k

: :b

1

; : : : ;:b

m

c

1

j : : : j c

n

from emb(P ). Suppose that a

1

^ : : : ^ a

k

2 E, and

::�

i

=2 E, 1 � i � m. Then, it follows that a

i

2 M ,

1 � i � k, and b

i

=2 M . Since M is an answer set for

P , for some i, 1 � i � n, c

i

2M . Hence, c

i

2 E.

Let E

0

� E be a theory closed under propositional

consequence and such that for every default

a

1

^ : : :^ a

k

: :b

1

; : : : ;:b

m

c

1

j : : : j c

n

in emb(P ), if a

i

2 E

0

, 1 � i � k, and ::b

i

=2 E,

1 � i � m, then for some i, 1 � i � n, c

i

2 E

0

. Let

M

0

be the set of literals in E

0

. Since E

0

is closed under

propositional calculus, the condition 2 of De�nition 7.1

holds. Consider now a rule

c

1

j : : : j c

n

 a

1

; : : : ; a

k

; not b

1

; : : : ; not b

m

from P . Assume that a

i

2M

0

, 1 � i � k, and b

i

=2M ,

1 � i � m. Then, a

i

2 E

0

, 1 � i � k, and ::b

i

=2 E,

1 � i � m. Thus, for some i, 1 � i � n, c

i

2 E

0

.

Consequently, c

i

2 M

0

and M

0

satis�es condition 1

of De�nition 7.1. Since M is a minimal set satisfying

this condition and M

0

� M , M = M

0

follows. Thus,

E = E

0

follows, which implies that E is an extension

for emb(P ).

The converse implication can be proved in the same

manner. 2
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