
1
Eliminating Function Symbols
from a Nonmonotonic Causal Theory
VLADIMIR LIFSCHITZ AND FANGKAI YANG

ABSTRACT. Nonmonotonic causal logic is a knowledge representation language de-
signed for describing domains that involve actions and change. Problems related to
action domains described in this language can be often solved using computational
methods of answer set programming. This idea has led researchers at the University of
Potsdam to the development of COALA, a compiler from action languages to answer set
programming. Our goal is to address a significant limitation of the theory that COALA

is based on: it is not directly applicable to fluents with non-Boolean values, represented
by function symbols, such as the location of an object. We show that a function symbol
in a causal theory can be often eliminated in favor of a new predicate symbol in such a
way that the resulting theory can be translated into an executable logic program.

1 Introduction
Nonmonotonic causal logic is a knowledge representation language designed for describ-
ing domains that involve actions and change. Its original version [McCain and Turner
1997] was propositional. The first-order formulation defined in [Lifschitz 1997] provides
additional expressive power that is essential for describing the semantics of action descrip-
tions with variables [Lifschitz and Ren 2007]. Nonmonotonic causal logic was used for
defining the semantics of action description languages C [Giunchiglia and Lifschitz 1998],
C+ [Giunchiglia, Lee, Lifschitz, McCain, and Turner 2004], and MAD [Lifschitz and Ren
2006].

A causal theory consists of causal rules F ⇐ G, where F andG are first-order formulas.
The rule reads “F is caused if G is true.” For instance, the causal rule

loc(x, t+ 1) = y ⇐ move(x, y, t)

expresses that there is a cause for the object x to be located at y at time t+ 1 if x is moved
to y at time t. (Executing the move action is the cause.) The distinction between being true
and having a cause is used in [McCain and Turner 1997] as a basis for an elegant solution
to the frame problem. For instance, the commonsense law of inertia for locations can be
expressed by the causal law

loc(x, t+ 1) = y ⇐ loc(x, t) = y ∧ loc(x, t+ 1) = y

(if the location of x at time t+1 is the same as at time t then there is a cause for this; inertia
is the cause).

Results of [McCain 1997; Lifschitz and Yang 2010; Ferraris, Lee, Lierler, Lifschitz,
and Yang 2011] show that causal logic is closely related to logic programming under the



Vladimir Lifschitz and Fangkai Yang

stable model semantics [Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991; Ferraris,
Lee, and Lifschitz 2007; Ferraris, Lee, and Lifschitz 2011]. For this reason, computational
methods of answer set programming (ASP) [Marek and Truszczyński 1999; Niemelä 1999;
Lifschitz 2002; Lifschitz 2008] can be used for answering questions about action domains
described in causal logic and in related action languages[Doğandağ, Alpaslan, and Akman
2001; Doğandağ, Ferraris, and Lifschitz 2004]. This idea has led to the development of
COALA, a compiler from action languages to ASP [Gebser, Grote, and Schaub 2010].

Our goal here is to address a significant limitation of the theory that COALA is based on:
it is restricted to Boolean-valued fluents, represented in causal logic by predicate symbols.
It is not directly applicable to fluents with non-Boolean values, represented by function
symbols, such as the location of an object in the example above. There is a good reason for
this limitation. Describing non-Boolean fluents by logic programs involves an additional
difficulty in view of the fact that rules in a logic program containing function symbols
cannot be used to characterize values of functions; they can only characterize extents of
predicates.1

Our approach is to show how a function symbol in a causal theory can be eliminated in
favor of a new predicate symbol. In classical logic, this process is well understood. For
instance, addition in first-order arithmetic can be described using a ternary predicate sym-
bol, instead of a binary function symbol: we can write sum(x, y, z) instead of x+ y = z.
(This alternative leads to the use of cumbersome formulas, of course, when complex alge-
braic expressions are involved.) Extending this process to nonmonotonic causal logic is not
straightforward, especially if we want to arrive eventually at an executable ASP program.

This paper touches on several topics within logic-based artificial intelligence: repre-
senting properties of actions, nonmonotonic reasoning, and declarative programming. We
are very pleased to have it published in a collection honoring Hector Levesque, who has
contributed so much to all these areas.

The paper is organized as follows. After reviewing the syntax and semantics of first-
order causal logic, we will describe two procedures for eliminating function constants from
a causal theory in favor of predicate constants, “general” and “definite.” Then we will show
how definite elimination can help us turn a causal theory into executable ASP code, and
how it can be extended to rules that express the synonymity of function symbols.

2 Review of Causal Logic
According to [Lifschitz 1997], a first-order causal theory T is defined by

• a list c of distinct function and/or predicate constants,2 called the explainable sym-
bols of T , and

• a finite set of causal rules of the form F ⇐ G, where F and G are first-order formu-
las.

The semantics of causal theories is defined by a syntactic transformation that is some-
what similar to circumscription [McCarthy 1986]; its result is usually a second-order for-

1The language of [Lin and Wang 2008] is not an exception: it does not permit formulas like loc(x, t+1) = y
in heads of rules.

2We view object constants as function constants of arity 0, so that they are allowed in c. Similarly, propositional
symbols are viewed as predicate constants of arity 0. Equality, on the other hand, may not be included in c.



Eliminating Function Symbols from a Nonmonotonic Causal Theory

mula. For each member c of c, choose a new variable υc similar to c,3 and let υc stand for
the list of all these variables. By T †(υc) we denote the conjunction of the formulas

∀x(G→ F c
υc) (1)

for all rules F ⇐ G of T , where x is the list of all free variables of F , G. (The expression
F c
υc denotes the result of substituting the variables υc for the corresponding constants c

in F .) We view T as shorthand for the sentence

∀υc(T †(υc)↔ (υc = c)). (2)

(By υc = c we denote the conjunction of the formulas υc = c for all members c of the
tuple c.) Accordingly, by a model of the causal theory T we understand a model of (2)
in the sense of classical logic. The models of T are characterized, informally speaking,
by the fact that the interpretation of the explainable symbols c in the model is the only
interpretation of these symbols that is “causally explained” by the rules of T .

EXAMPLE 1. Let T1 be the causal theory

⊥ ⇐ a = b,
c = a ⇐ c = a,
c = b ⇐ q,

where the object constant c is the only explainable symbol (so that the object constants a
and b and the propositional symbol q are not explainable).4 The first rule of T1 says that a
and b are different from each other. The second rule (“if c = a then there is a cause for
this”) expresses, in the language of causal logic, that by default c = a. The last rule says
that there is a cause for c to be equal to b if q is true. According to the semantics of causal
logic, T1 is shorthand for the sentence

∀υc(((a = b→ ⊥) ∧ (c = a→ υc = a) ∧ (q → υc = b))↔ υc = c)

where υc is an object variable. (There are no second-order variables in this formula. More
generally, (1) does not involve second-order variables whenever all explainable symbols
are object constants.) This sentence is equivalent to the quantifier-free formula

a 6= b ∧ (q → c = b) ∧ (¬q → c = a). (3)

The second conjunctive term shows that if q holds then the value of c is different from its
default value a.

Causal rules with the head ⊥, such as the first rule of T1, are called constraints. The
causal theory obtained from a causal theory T by adding a constraint ⊥ ⇐ F is equivalent
to T ∧∀̃¬F . The effect of adding the rule ¬F ⇐ > to T is usually different, unless F does
not contain explainable symbols. Since the first rule of T1 does not contain explainable
symbols, it can be equivalently replaced by the rule a 6= b⇐ >.

EXAMPLE 2. We would like to describe the effect of moving an object. For simplicity,
we only consider the time instants 0, 1 and the execution of the move action at time 0.

3That is to say, if c is a function constant then υc should be a function variable of the same arity; if c is a
predicate constant then υc should be a predicate variable of the same arity.

4By ⊥ and > we denote the 0-place connectives false and true.



Vladimir Lifschitz and Fangkai Yang

The formulation below includes the auxiliary symbol none, which is used as the value of
loc(x, t) when the arguments are “not of the right kind” (that is, when x is not a physical
object or when t is not a time instant). The rules of the causal theory T2 are

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

loc(x, 0) = y ⇐ loc(x, 0) = y ∧ obj(x) ∧ place(y),
loc(x, 1) = y ⇐ move(x, y) ∧ obj(x) ∧ place(y),
loc(x, 1) = y ⇐ loc(x, 0) = y ∧ loc(x, 1) = y ∧ obj(x) ∧ place(y),

loc(x, t) = none ⇐ ¬obj(x),
loc(x, t) = none ⇐ t 6= 0 ∧ t 6= 1

where the function constant loc is the only explainable symbol. The rule with loc(x, 0) in
the head says that initially an object x can be anywhere: whatever value loc(x, 0) has, there
is a cause for that. The next two rules describe the effect of moving objects and the inertia
property of locations. Causal theory T2 is shorthand for the formula

∀υloc(T †2 (υloc)↔ (υloc = loc)),

where υloc is a binary function variable.

3 Plain Causal Theories
Let f be a function constant. An atomic formula is f -plain if

• it does not contain f , or

• has the form f(t) = u, where t is a tuple of terms not containing f , and u is a term
not containing f .

A first-order formula, a causal rule, or a causal theory is f -plain if all its atomic subformu-
las are f -plain. For instance, the causal theory from Example 1 is c-plain, and the causal
theory from Example 2 is loc-plain.

It is easy to transform any first-order formula into an equivalent f -plain formula. For
instance, p(f(f(x)) is equivalent to the f -plain formula

∃yz(f(x) = y ∧ f(y) = z ∧ p(z)).

Any causal theory can be transformed into an equivalent f -plain causal theory by applying
this transformation to the heads and bodies of all rules. In Sections 4–7 we will assume
that the given causal theory is f -plain.

4 General Elimination
Let T be an f -plain causal theory, where f is an explainable function constant. The causal
theory T ′ is obtained from T as follows:

(1) in the signature of T , replace f with a new explainable predicate constant p of ar-
ity n+ 1, where n is the arity of f ;

(2) in the rules of T , replace each subformula f(t) = u with p(t, u);



Eliminating Function Symbols from a Nonmonotonic Causal Theory

(3) add the rules
(∃y)p(x, y)⇐ > (4)

and
¬p(x, y) ∨ ¬p(x, z)⇐ y 6= z, (5)

where x is a tuple of variables, and the variables x, y, z are pairwise distinct.

Rule (5) expresses, in the language of causal logic, the uniqueness of y such that p(x, y).
THEOREM 1. The sentence

∀xy(p(x, y)↔ f(x) = y) (6)

entails T ↔ T ′.

EXAMPLE 1, CONTINUED. The result T ′1 of applying this transformation to T1 and to
the object constant c as f is the causal theory

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,

(∃y)p(y) ⇐ >,
¬p(y) ∨ ¬p(z) ⇐ y 6= z

with the explainable symbol p. According to Theorem 1, the equivalence between T1

and T ′1 is entailed by the sentence

∀y(p(y)↔ c = y). (7)

EXAMPLE 2, CONTINUED. The result T ′2 of applying this transformation to T2 and to
the function constant loc as f is the causal theory

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

at(x, 0, y) ⇐ at(x, 0, y) ∧ obj(x) ∧ place(y),
at(x, 1, y) ⇐ move(x, y) ∧ obj(x) ∧ place(y),
at(x, 1, y) ⇐ at(x, 0, y) ∧ at(x, 1, y) ∧ obj(x) ∧ place(y),

at(x, t, none) ⇐ ¬obj(x),
at(x, t, none) ⇐ t 6= 0 ∧ t 6= 1,

(∃y)at(x, t, y) ⇐ >,
¬at(x, t, y) ∨ ¬at(x, t, z) ⇐ y 6= z

with the explainable symbol at. According to Theorem 1, the equivalence between T2

and T ′2 is entailed by the sentence

∀xty(at(x, t, y)↔ loc(x, t) = y) (8)

By repeated applications of this process we can eliminate all explainable function sym-
bols, provided that T is f -plain for each explainable symbol f .



Vladimir Lifschitz and Fangkai Yang

The following corollary shows that there is a simple 1–1 correspondence between mod-
els of T and models of T ′. Recall that the signature of T ′ is obtained from the signature
of T by replacing f with p. For any interpretation I of the signature of T , by Ifp we denote
the interpretation of the signature of T ′ obtained from I by replacing the function f I with
the set pI that consists of the tuples

〈ξ1, . . . , ξn, f I(ξ1, . . . , ξn)〉

for all ξ1, . . . , ξn from the universe of I .

COROLLARY 2. (a) An interpretation I of the signature of T is a model of T iff Ifp is a
model of T ′. (b) An interpretation J of the signature of T ′ is a model of T ′ iff J = Ifp for
some model I of T .

Part (a) follows from the fact that the “union” of I and Ifp satisfies (6). To show that
any model of T ′ can be represented in the form Ifp for some interpretation I , note that T ′

contains rules (4), (5) and consequently entails

∀x(∃!y)p(x, y). (9)

5 Definite Elimination
Unfortunately, the elimination process described in the previous section does not help us
turn a causal theory with explainable function symbols into a logic program. The prob-
lem is that the translation from causal logic into logic programming described in [Ferraris,
Lee, Lierler, Lifschitz, and Yang 2011, Section 5] does not apply to causal rules with an
existential quantifier in the head, such as (4). We will now describe an alternative elimi-
nation process, which is limited to causal theories of a special form but does not add rules
containing quantifiers.

Consider an f -plain causal theory T , where f is an explainable function constant f
satisfying the following condition: the head of any rule of T either does not contain f or
has the form f(t) = u, where t is a tuple of terms not containing explainable symbols, and
u is a term not containing explainable symbols. The causal theory T ′′ is obtained from T
as follows:

(1) in the signature of T , replace f with a new explainable predicate constant p of ar-
ity n+ 1, where n is the arity of f ;

(2) in the rules of T , replace each subformula f(t) = u with p(t, u);

(3′) add the rule
¬p(x, y)⇐ ¬p(x, y), (10)

where x is a tuple of variables, and the variables x, y are pairwise distinct.

Rule (10) expresses the “closed world assumption” for p: by default, p(x, y) is false.5

We call this process “definite elimination” because all new causal rules that it introduces
are definite in the sense of [Lifschitz 1997, Section 5]. Definite elimination is applicable
to the causal theories from Examples 1 and 2, but it cannot be applied, for instance, to a
theory containing a rule with the head of the form f(x) = y ∨ f(x) = z or ¬(f(x) = y).

5It is somewhat similar to the second rule of Example 1 (Section 2).



Eliminating Function Symbols from a Nonmonotonic Causal Theory

THEOREM 3. The sentences (6) and

∃xy(x 6= y) (11)

entail T ↔ T ′′.

Formula (11) expresses that the universe contains at least two elements. Without this
assumption, the statement of Theorem 3 would be incorrect. Indeed, consider the causal
theory T3 with an explainable function symbol f that consists of the single rule > ⇐ >. It
is easy to check that T3 is equivalent to ∀xy(x = y). On the other hand, T ′′3 consists of the
rules

> ⇐ >,
¬p(x, y) ⇐ ¬p(x, y),

and is equivalent to ∀xy¬p(x, y). The interpretation with a singleton universe that makes p
identically true satisfies (6) and is a model of T3, but it is not a model of T ′′3 .

COROLLARY 4. If T contains a constraint of the form ⊥ ⇐ t1 = t2, where t1, t2 don’t
contain explainable function symbols, then (6) entails T ↔ T ′′.

Indeed, if T contains the constraint ⊥ ⇐ a = b then T ′′ contains it also, so that (11) is
entailed both by T and by T ′′.

EXAMPLE 1, CONTINUED. The result T ′′1 of applying definite elimination to T1 and to
the object symbol c is the theory

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,
¬p(y) ⇐ ¬p(y)

(12)

with the explainable symbol p. By Corollary 4, the equivalence between T1 and T ′′1 is
entailed by sentence (7). Using the completion theorem from [Lifschitz 1997, Section 5],
it is easy to check that causal theory (12) is equivalent to the first-order sentence

a 6= b ∧ (q ↔ p(b)) ∧ ∀y(p(y)↔ (y = a ∨ y = b)).

Under assumption (9), which can be written in this case as

(∃!y)p(y), (13)

this sentence can be equivalently transformed into a formula conveying the same informa-
tion as (3):

a 6= b ∧ (q → p(b)) ∧ (¬q → p(a)). (14)

EXAMPLE 2, CONTINUED. The result T ′′2 of applying definite elimination to theory T2

and to function symbol loc is the theory

⊥ ⇐ 0 = 1,
⊥ ⇐ 0 = none,
⊥ ⇐ 1 = none,

at(x, 0, y) ⇐ at(x, 0, y) ∧ obj(x) ∧ place(y),
at(x, 1, y) ⇐ move(x, y) ∧ obj(x) ∧ place(y),
at(x, 1, y) ⇐ at(x, 0, y) ∧ at(x, 1, y) ∧ obj(x) ∧ place(y),

at(x, t, none) ⇐ ¬obj(x),
at(x, t, none) ⇐ t 6= 0 ∧ t 6= 1,
¬at(x, t, y) ⇐ ¬at(x, t, y)

(15)



Vladimir Lifschitz and Fangkai Yang

with the explainable symbol at. By Corollary 4, the equivalence between T2 and T ′′2 is
entailed by sentence (8). Using the completion theorem from [Lifschitz 1997] we can
show that under assumption (9), which can be written in this case as

∀xt(∃!y)at(x, t, y), (16)

theory (15) can be equivalently transformed into the conjunction of the universal closures
of the formulas

¬(0 = 1), ¬(0 = none), ¬(1 = none),
∀xy(at(x, 0, y) ∧ ¬obj(x)→ y = none),
∀xy(at(x, 0, y) ∧ obj(x)→ place(y)),
∀xy(at(x, 1, y)↔ ((move(x, y) ∧ obj(x) ∧ place(y))

∨ (at(x, 0, y) ∧ obj(x) ∧ place(y) ∧ ¬∃w(move(x,w) ∧ place(w)))
∨ (y = none ∧ ¬obj(x)))),

∀xyt((t 6= 0 ∧ t 6= 1)→ (at(x, t, y)↔ y = none)).

The equivalence with the left-hand side at(x, 1, y) is similar to successor state axioms in
the sense of [Reiter 1991].

By repeated applications of this process we can eliminate all explainable function sym-
bols provided that

• T is f -plain for each explainable function symbol f , and

• the head of each rule of T containing an explainable function symbol f has the form
f(t) = u, where t is a tuple of terms not containing explainable symbols, and u is a
term not containing explainable symbols.

We saw in Section 4 that the mapping I 7→ Ifp is a 1–1 correspondence between the
class of models of T and the class of models of T ′. For definite elimination, this mapping
establishes a 1–1 correspondence between the models of T with the universe of cardinal-
ity > 1 and the models of T ′′ with the universe of cardinality > 1 that satisfy additional
condition (9); that condition, generally, is not entailed by T ′′. By T ∃! we denote the causal
theory obtained from T ′′ by adding the constraint

⊥ ⇐ (∃!y)p(x, y). (17)

It is clear that T ∃! is equivalent to the conjunction of T ′′ with (9).

COROLLARY 5. (a) An interpretation I of the signature of T with the universe of cardi-
nality > 1 is a model of T iff Ifp is a model of T ∃!. (b) An interpretation J of the signature
of T ∃! with the universe of cardinality > 1 is a model of T ∃! iff J = Ifp for some model I
of T .

For instance, the mapping I 7→ Icp establishes a 1–1 correspondence between the models
of T1 and the models of T ∃!1 . Similarly, the mapping I 7→ I locat establishes a 1–1 correspon-
dence between the models of T2 and the models of T ∃!2 .

As discussed at the beginning of this section, the definite elimination process is limited
to causal rules satisfying an additional syntactic restriction: if the head of a rule of T



Eliminating Function Symbols from a Nonmonotonic Causal Theory

contains f then it should be an atomic formula. Without this restriction, the assertion of
Theorem 3 would be incorrect. Consider, for instance, the causal theory T4 with the rules

⊥ ⇐ a = b,
c = a ∨ c = b ⇐ >

and explainable c. It is easy to check that T4 is inconsistent. On the other hand, T ′′4 is

⊥ ⇐ a = b,
p(a) ∨ p(b) ⇐ >,

¬p(x) ⇐ ¬p(x).

This causal theory is equivalent to

a 6= b ∧ (∀x(p(x)↔ x = a) ∨ ∀x(p(x)↔ x = b)).

The interpretation with the universe {a, b} that interprets c as a and p as {a} satisfies (6), (11),
and T ′′4 , but does not satisfy T4.

Another restriction imposed at the beginning of this section is that in formulas f(t) = u
in the heads of rules, t and u don’t contain explainable symbols. Without this restriction, the
assertion of Theorem 3 would be incorrect. Let T5 be the causal theory obtained from T4

by adding the rule
d = c⇐ >,

with both c and d explainable. It is easy to check that T5 is inconsistent. Consider the
result T ′′5 of applying definite elimination to T5 and d:

⊥ ⇐ a = b,
c = a ∨ c = b ⇐ >,

p(c) ⇐ >,
¬p(x) ⇐ ¬p(x),

with p and c explainable. This causal theory is equivalent to

(a 6= b) ∧ (∀x(p(x)↔ x = a) ∨ ∀x(p(x)↔ x = b)) ∧ p(c).

The interpretation with the universe {a, b} that interprets c as a, d as a, and p as {a}
satisfies (6), (11), and T ′′5 , but does not satisfy T5.

6 Modified Definite Elimination
As discussed in Section 5, rule (10) expresses the closed world assumption for p. In
“modified definite elimination,” (10) is replaced by a definite counterpart of the unique-
ness rule (5):

¬p(x, y)⇐ p(x, z) ∧ y 6= z

(x is a tuple of variables, and the variables x, y, z are pairwise distinct). We will denote the
result of applying the modified definite elimination process to T by T ′′′. For instance, T ′′′1

is
⊥ ⇐ a = b,

p(a) ⇐ p(a),
p(b) ⇐ q,
¬p(y) ⇐ p(z) ∧ y 6= z.



Vladimir Lifschitz and Fangkai Yang

Causal theories T ′′ and T ′′′ are essentially equivalent to each other. To be precise,
formula (6) entails T ′′ ↔ T ′′′. Indeed, (T ′′′)† can be obtained from (T ′′)† by replacing

∀xy(¬p(x, y)→ ¬υp(x, y)) (18)

with

∀xyz(p(x, z) ∧ y 6= z → ¬υp(x, y)). (19)

Formula (19) can be rewritten as

∀xy(∃z(p(x, z) ∧ y 6= z)→ ¬υp(x, y)).

In the presence of (6), the antecedent of this formula is equivalent to the antecedent of (18).
Consequently (T ′′)† ↔ (T ′′′)†, so that T ′′ ↔ T ′′′.

This fact implies that the assertions of Theorem 3 and Corollary 4 will remain valid if
we replace T ′′ in their statements with T ′′′.

7 From Causal Logic to ASP
7.1 Turning Causal Theories into Logic Programs

The version of the stable model semantics that we will refer to in this section is defined
in [Ferraris, Lee, and Lifschitz 2011]. That paper defines, for any first-order sentence F
and any tuple p of predicate constants, which models of F are p-stable. The predicate
symbols from p are called intensional, and the other predicate symbols are extensional.
(Intensional predicates are somewhat similar to minimized predicates in circumscription
and to explainable symbols in causal logic.)

The translation defined in [Ferraris, Lee, Lierler, Lifschitz, and Yang 2011, Section 5]
transforms a causal theory T satisfying some syntactic conditions into a first-order sen-
tence F that has “the same meaning under the stable model semantics” as the theory T .
(One of the conditions on T is that its explainable symbols are predicate constants, not
function constants.) To be more precise, if the explainable symbols of T , along with the
auxiliary predicate symbols introduced by the translation, are taken to be intensional then
the stable models of F are identical to the models of T , provided that the interpretations
of the auxiliary predicate symbols are “forgotten.” In many cases, this translation can be
applied to theories obtained by the definite elimination process described above.

EXAMPLE 1, CONTINUED. Consider the causal theory T ∃!1 , which, as we have seen, is
“isomorphic” to T1. It consists of the rules

⊥ ⇐ a = b,
p(a) ⇐ p(a),
p(b) ⇐ q,
¬p(y) ⇐ ¬p(y),
⊥ ⇐ ¬(∃!y)p(y).

The result of applying the translation from [Ferraris, Lee, Lierler, Lifschitz, and Yang 2011,



Eliminating Function Symbols from a Nonmonotonic Causal Theory

Section 5.2] to this theory is the conjunction of the universal closures of the formulas

a 6= b,
¬¬p(a) → p(a),
¬¬q → p(b),

¬¬¬p(x) → p̂(x),
¬¬(∃!y)p(y),
¬(p(x) ∧ p̂(x)),
¬(¬p(x) ∧ ¬p̂(x)),

(20)

where p̂ is an auxiliary predicate.6 Theorem 5 from [Ferraris, Lee, and Lifschitz 2011]
shows that these formulas can be rewritten as

a 6= b,
¬p̂(a) → p(a),

q → p(b),
¬p(x) → p̂(x),
¬¬(∃!y)p(y),
¬(p(x) ∧ p̂(x)),
¬(¬p(x) ∧ ¬p̂(x)),

(21)

without changing the class of stable models. Thus the stable models of (the conjunction of
the universal closures of) formulas (21) turn into the models of T ∃!1 as soon as the interpre-
tation of p̂ is dropped. It follows that the class of stable models of (21) is “isomorphic” to
the class of models of T1.

EXAMPLE 2, CONTINUED. The result of applying the translation from [Lifschitz and
Yang 2010] to T ∃!2 becomes, and simplifications,

0 6= 1, 0 6= none, 1 6= none,
¬ât(x, 0, y) ∧ obj(x) ∧ place(y) → at(x, 0, y),
move(x, y) ∧ obj(x) ∧ place(y) → at(x, 1, y),

¬ât(x, 0, y) ∧ ¬ât(x, 1, y) ∧ obj(x) ∧ place(y) → at(x, 1, y),
¬at(x, t, y) → ât(x, t, y),
¬obj(x) → at(x, t, none),

t 6= 0 ∧ t 6= 1 → at(x, t, none),
¬¬(∀xt∃!y)at(x, t, y),

¬(at(x, t, y) ∧ ât(x, t, y)),
¬(¬at(x, t, y) ∧ ¬ât(x, t, y)).

(22)

The class of stable models of (22) is “isomorphic” to the class of models of T2.

7.2 Turning Causal Theories into Executable Code
In many cases, answer set solvers such as CLINGO7 allow us to generate the Herbrand stable
models of a given sentence. Consequently they can be sometimes used to generate models
of causal theories.

6This predicate is analogous to the classical negation of p in the sense of [Gelfond and Lifschitz 1991]. The
last of formulas (20) is a consistency and completeness condition.

7http://potassco/sourceforge.net/



Vladimir Lifschitz and Fangkai Yang

EXAMPLE 1, CONTINUED. We would like to find all models of T1 with the universe
{a, b} in which the constants a, b represent themselves. These models correspond to the
Herbrand stable models of (21). We can find them by running CLINGO on the following
input:

u(a;b). #domain u(X).
{q}.
p(a) :- not -p(a).
p(b) :- q.
-p(X) :- not p(X).
:- not 1{p(Z):u(Z)}1.
:- not p(X), not -p(X).

The first line expresses that the universe u consists of a and b, and that X is a variable for
arbitrary elements of u. The choice rule in the second line says that q can be assigned an
arbitrary value. The other lines correspond to five of the formulas (21), with the classical
negation -p representing p̂. There is no need to include a constraint corresponding to
a 6= b, because the unique name assumption is true in all Herbrand models and thus is
taken by CLINGO for granted. A constraint corresponding to ¬(p(x) ∧ p̂(x)) would be
redundant as well, since p̂ is represented by classical negation.

Given this input, CLINGO generates two stable models: one containing q and p(b), the
other containing p(a). Consequently T1 has two models of the kind that we are interested
in: in one of them q is true and the value of c is b; in the other, q is false and the value of c
is a.

EXAMPLE 2, CONTINUED. Consider the dynamic domain consisting of two objects o1,
o2 that can be located in any of two places l1, l2. What are the possible locations of the
objects after moving o1 to l2, for each possible initial state? To answer this question, we
will find the models of T2 with the universe

{o1, o2, l1, l2, 0, 1, none}

such that

• each of the constants 0, 1, none represents itself,

• the extent of obj is {o1, o2},

• the extent of place is {l1, l2}, and

• the extent of move is {〈o1, l2〉}.

To this end, we will find the stable models of (22) that satisfy all these conditions.
This computational task is equivalent to finding the Herbrand models of the sentence

obtained by conjoining the universal closures of formulas (22) with the formulas

obj(o1), obj(o2), place(l1), place(l2), move(o1, l2)

(o1, o2, l1, l2 are new object constants), with obj, place and move included in the list of
intensional predicates along with at and ât.8 To find these models, we run CLINGO on the
following input:

8This claim can be justified using the splitting theorem. See [Ferraris, Lee, Lifschitz, and Palla 2009, Sec-
tions 6, 7].



Eliminating Function Symbols from a Nonmonotonic Causal Theory

u(o1;o2;l1;l2;0;1;none).
#domain u(X). #domain u(T). #domain u(Y).
at(X,0,Y) :- not -at(X,0,Y), obj(X), place(Y).
at(X,1,Y) :- move(X,Y), obj(X), place(Y).
at(X,1,Y) :- not -at(X,0,Y), not -at(X,1,Y), obj(X), place(Y).
-at(X,T,Y) :- not at(X,T,Y).
at(X,T,none) :- not obj(X).
at(X,T,none) :- T!=0, T!=1.
:- not 1{at(X,T,Z):u(Z)}1.
:- not at(X,T,Y), not -at(X,T,Y).
obj(o1;o2). place(l1;l2). move(o1,l2).

CLINGO generates 4 stable models, one for each possible combination of the locations
of o1 and o2 at time 0. In every stable model, at time 1 object o1 is at l2, and object o2
is at the same place where it was at time 0.

8 Synonymity Rules
In this section we extend the definite elimination process (Section 5) to the case when
several explainable function constants are eliminated in favor of predicate constants simul-
taneously, and the causal theory may contain rules of the form

f1(t1) = f2(t2)⇐ G,

where f1 and f2 are two of the symbols that are eliminated. This rule expresses that there
is a cause for f1(t1) to be “synonymous” to f2(t2) under condition G. Such “synonymity
rules” play an important role in reasoning about actions [Erdoğan and Lifschitz 2006; Lif-
schitz and Ren 2006; Lee, Lierler, Lifschitz, and Yang 2010].

Consider a causal theory T and a tuple f of explainable function constants such that the
bodies of the rules of T are f -plain for all members f of f, and the head of any rule of T

• does not contain members of f, or

• has the form f(t) = u, where f is a member of f, t is a tuple of terms not containing
explainable symbols, and u is a term not containing explainable symbols, or

• has the form f1(t1) = f2(t2), where f1, f2 are members of f, and t1, t2 are tuples of
terms not containing explainable symbols.

The causal theory T ′′ is obtained from T as follows:

(1) in the signature of T , replace each member f of f with a new explainable predicate
constant p of arity n+ 1, where n is the arity of f ;

(2a) in the rules of T , replace each subformula f(t) = u such that f is a member of f
and u doesn’t contain members of f, with p(t, u);

(2b) in the heads of rules of T , replace each formula f1(t1) = f2(t2) such that f1, f2 are
members of f, with p1(t1, y)↔ p2(t2, y), where y is a new variable;

(3′) add, for every new predicate p, the rule

¬p(x, y)⇐ ¬p(x, y),

where x is a tuple of variables, and the variables x, y are pairwise distinct.



Vladimir Lifschitz and Fangkai Yang

THEOREM 6. Sentences (6) for all f from f and sentence (11) entail T ↔ T ′′.

EXAMPLE 3. Consider the causal theory T6

f(x) = y ⇐ a(x, y),
g(x) = y ⇐ b(x, y),

f(x) = g(x) ⇐ c(x)

with the explainable symbols f , g. Its translation T ′′6 is

p(x, y) ⇐ a(x, y),
q(x, y) ⇐ b(x, y),

p(x, y)↔ q(x, y) ⇐ c(x),
¬p(x, y) ⇐ ¬p(x, y),
¬q(x, y) ⇐ ¬q(x, y)

(23)

with the explainable symbols p, q.
Theorem 6 turns into Theorem 3 in the special case when f is a single function symbol

and T does not contain synonymity rules.
For the class of causal theories studied in Section 5, the mapping I 7→ Ifp establishes a

1–1 correspondence between the non-singleton models of T and the non-singleton models
of T ∃! (Corollary 5). This assertion can be generalized to theories with synonymity rules
as follows.

Recall that the signature of T ′′ is obtained from the signature of T by replacing the
members of the tuple f of function constants with new predicate constants; we will denote
the list of these predicate constants by p. For any interpretation I of the signature of T ,
by I f

p we denote the interpretation of the signature of T ′′ obtained from I by replacing, for
each f ∈ f, the function f I with the set pI that consists of the tuples

〈ξ1, . . . , ξn, f I(ξ1, . . . , ξn)〉

for all ξ1, . . . , ξn from the universe of I .
By T ∃! we denote the causal theory obtained from T ′′ by adding constraints (17) for all

members p of p. It is clear that T ∃! is equivalent to the conjunction of T ′′ with formulas (9)
for all p ∈ p.

COROLLARY 7. (a) An interpretation I of the signature of T with the universe of cardi-
nality > 1 is a model of T iff I f

p is a model of T ∃!. (b) An interpretation J of the signature
of T ∃! with the universe of cardinality > 1 is a model of T ∃! iff J = I f

p for some model I
of T .

EXAMPLE 3, CONTINUED. T ∃!6 consists of the rules

p(x, y) ⇐ a(x, y),
q(x, y) ⇐ b(x, y),

p(x, y)↔ q(x, y) ⇐ c(x),
¬p(x, y) ⇐ ¬p(x, y),
¬q(x, y) ⇐ ¬q(x, y),

⊥ ⇐ ¬(∃!y)p(x, y),
⊥ ⇐ ¬(∃!y)q(x, y).



Eliminating Function Symbols from a Nonmonotonic Causal Theory

The mapping I 7→ Ifgpq establishes a 1–1 correspondence between the non-singleton models
of T6 and the non-singleton models of T ∃!6 .

The (simplified) result of applying the transformation from [Ferraris, Lee, Lierler, Lif-
schitz, and Yang 2011, Section 5.3] to T ∃!6 is

a(x, y) → p(x, y),
b(x, y) → q(x, y),

c(x) ∧ p(x, y) → q(x, y),
c(x) ∧ q(x, y) → p(x, y),
c(x) ∧ p̂(x, y) → q̂(x, y),
c(x) ∧ q̂(x, y) → p̂(x, y),

¬p(x, y) → p̂(x, y),
¬q(x, y) → q̂(x, y),
¬¬(∃!y)p(x, y),
¬¬(∃!y)q(x, y),
¬(p(x) ∧ p̂(x)),
¬(¬p(x) ∧ ¬p̂(x)),
¬(q(x) ∧ q̂(x)),
¬(¬q(x) ∧ ¬q̂(x)).

The non-singleton stable models of the conjunction of the universal closures of these for-
mulas, with the intensional predicates p, q, p̂, q̂, turn into the non-singleton models of T ∃!6

as soon as the interpretations of the auxiliary predicates p̂ and q̂ are dropped.

9 Related Work
The problem addressed in this paper is similar to the problem of eliminating multi-valued
propositional constants from a multi-valued causal theory [Giunchiglia, Lee, Lifschitz,
McCain, and Turner 2004]. In this sense, our general elimination and modified definite
elimination are similar to the elimination methods proposed in [Lee 2005, Section 6.4.2].
On the other hand, modified definite elimination does not introduce rules similar to con-
straint (6.26) from [Lee 2005], and our proofs (not included in this note) are entirely differ-
ent: the semantics of multi-valued propositional constants is based on a fixpoint construc-
tion and does not refer to syntactic transformations.

Eliminating function constants in the framework of a different nonmonotonic formalism—
a version of the stable model semantics—is discussed in [Lin and Wang 2008].

10 Conclusion
In this paper we investigated some of the cases when an explainable function symbol can
be eliminated from a first-order causal theory in favor of a predicate symbol. This is a step
towards the goal of creating a compiler from the modular action language MAD [Lifschitz
and Ren 2006] into answer set programming. It will differ from the current version of
COALA [Gebser, Grote, and Schaub 2010] in that it will be applicable to action descriptions
that involve non-Boolean fluents and synonymity rules.

Acknowledgments: We are grateful to Joohyung Lee for useful comments. This research
was supported by the National Science Foundation under grant IIS-0712113.



Vladimir Lifschitz and Fangkai Yang

References
Doğandağ, S., F. N. Alpaslan, and V. Akman [2001]. Using stable model semantics

(SMODELS) in the Causal Calculator (CCALC). In Proceedings 10th Turkish Sym-
posium on Artificial Intelligence and Neural Networks, pp. 312–321.

Doğandağ, S., P. Ferraris, and V. Lifschitz [2004]. Almost definite causal theories. In
Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pp. 74–86.

Erdoğan, S. T. and V. Lifschitz [2006]. Actions as special cases. In Proceedings of In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR), pp. 377–387.

Ferraris, P., J. Lee, Y. Lierler, V. Lifschitz, and F. Yang [2011]. Representing first-order
causal theories by logic programs. Theory and Practice of Logic Programming. To
appear.

Ferraris, P., J. Lee, and V. Lifschitz [2007]. A new perspective on stable models. In
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.
372–379.

Ferraris, P., J. Lee, and V. Lifschitz [2011]. Stable models and circumscription. Artificial
Intelligence 175, 236–263.

Ferraris, P., J. Lee, V. Lifschitz, and R. Palla [2009]. Symmetric splitting in the gen-
eral theory of stable models. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), pp. 797–803.

Gebser, M., T. Grote, and T. Schaub [2010]. Coala: a compiler from action languages
to ASP. In Proceedings of European Conference on Logics in Artificial Intelligence
(JELIA), pp. 169–181.

Gelfond, M. and V. Lifschitz [1988]. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen (Eds.), Proceedings of International Logic Program-
ming Conference and Symposium, pp. 1070–1080. MIT Press.

Gelfond, M. and V. Lifschitz [1991]. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing 9, 365–385.

Giunchiglia, E., J. Lee, V. Lifschitz, N. McCain, and H. Turner [2004]. Nonmonotonic
causal theories. Artificial Intelligence 153(1–2), 49–104.

Giunchiglia, E. and V. Lifschitz [1998]. An action language based on causal explanation:
Preliminary report. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pp. 623–630. AAAI Press.

Lee, J. [2005]. Automated Reasoning about Actions9. Ph.D. thesis, University of Texas
at Austin.

Lee, J., Y. Lierler, V. Lifschitz, and F. Yang [2010]. Representing synonymity in causal
logic and in logic programming10. In Proceedings of International Workshop on
Nonmonotonic Reasoning (NMR).

Lifschitz, V. [1997]. On the logic of causal explanation. Artificial Intelligence 96, 451–
465.

9http://peace.eas.asu.edu/joolee/papers/dissertation.pdf
10http://userweb.cs.utexas.edu/users/vl/papers/syn.pdf



Eliminating Function Symbols from a Nonmonotonic Causal Theory

Lifschitz, V. [2002]. Answer set programming and plan generation. Artificial Intelli-
gence 138, 39–54.

Lifschitz, V. [2008]. What is answer set programming? In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 1594–1597. MIT Press.

Lifschitz, V. and W. Ren [2006]. A modular action description language. In Proceedings
of National Conference on Artificial Intelligence (AAAI), pp. 853–859.

Lifschitz, V. and W. Ren [2007]. The semantics of variables in action descriptions. In
Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 1025–
1030.

Lifschitz, V. and F. Yang [2010]. Translating first-order causal theories into answer set
programming. In Proceedings of the European Conference on Logics in Artificial
Intelligence (JELIA), pp. 247–259.

Lin, F. and Y. Wang [2008]. Answer set programming with functions. In Proceedings of
International Conference on Principles of Knowledge Representation and Reason-
ing (KR), pp. 454–465.

Marek, V. and M. Truszczyński [1999]. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pp.
375–398. Springer Verlag.

McCain, N. [1997]. Causality in Commonsense Reasoning about Actions11. Ph.D. thesis,
University of Texas at Austin.

McCain, N. and H. Turner [1997]. Causal theories of action and change. In Proceedings
of National Conference on Artificial Intelligence (AAAI), pp. 460–465.

McCarthy, J. [1986]. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence 26(3), 89–116.

Niemelä, I. [1999]. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Reiter, R. [1991]. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz (Ed.), Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pp. 359–380. Academic Press.

11ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz


