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Abstract

Propositional formulas that are equivalent in intuitionistic logic, or in its extension known
as the logic of here-and-there, have the same stable models. We extend this theorem to
propositional formulas with infinitely long conjunctions and disjunctions and show how to
apply this generalization to proving properties of aggregates in answer set programming.
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1 Introduction

This note is about the extension of the stable model semantics to infinitary propo-
sitional formulas defined by Truszczynski (2012). That extension, introduced orig-
inally as a tool for proving a theorem about the logic FO(ID), has been used also
to prove a new generalization of Fages’ theorem (Lifschitz and Yang 2012).

One of the reasons why stable models of infinitary formulas are important is
that they are closely related to aggregates in answer set programming (ASP). The
semantics of aggregates proposed by Ferraris (2005, Section 4.1) treats a ground
aggregate as shorthand for a propositional formula. An aggregate with variables has
to be grounded before that semantics can be applied to it. For instance, to explain
the precise meaning of the expression 1{p(X )} (“there exists at least one object
with the property p”) in the body of an ASP rule we first rewrite it as

1{p(t1), . . . , p(tn)},

where t1, . . . , tn are all ground terms in the language of the program, and then turn
it into the propositional formula

p(t1) ∨ · · · ∨ p(tn)· (1)

But this description of the meaning of 1{p(X )} implicitly assumes that the Her-
brand universe of the program is finite. If the program contains function symbols
then an infinite disjunction has to be used instead of (1).
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There is nothing exotic or noncomputable about ASP programs containing both
aggregates and function symbols. For instance, the program

p(f (a))
q ← 1{p(X )}

has simple intuitive meaning, and its stable model {p(f (a)), q} can be computed
by Version 3 of the answer set solver clingo.1 More generally, stable models of
infinitary propositional formulas in the sense of Truszczynski (2012) can be used
to define the semantics of aggregates in the input language of clingo (Harrison
2013); this is our main motivation for studying their properties.

Remark 1
Attempts to define the semantics of aggregates for other ASP languages encounter
similar difficulties if the Herbrand universe is infinite. For instance, the defini-
tion of a ground instance of a rule in Section 2.2 of the ASP Core document
(https://www.mat.unical.it /aspcomp2013/files/ASP-CORE-2.0.pdf, Version
2.02) talks about replacing the expression {e1; . . . ; en} in a rule with a set denoted
by inst({e1; . . . ; en}). But that set can be infinite and then it cannot be included
in a rule.

Our goal here is to develop methods for proving that pairs F , G of infinitary
formulas have the same stable models. From the results of Pearce (1997) and Ferraris
(2005) we know that in the case of grounded logic programs in the sense of Gelfond
and Lifschitz (1988) and, more generally, sets of finite propositional formulas, it is
sufficient to check that the equivalence F ↔ G is provable intuitionistically. Some
extensions of intuitionistic propositional logic, including the logic of here-and-there,
can be used as well. In this note, we extend these results to deductive systems of
infinitary propositional logic.

This goal is closely related to the idea of strong equivalence (Lifschitz, Pearce,
Valverde, 2001). The provability of F ↔ G in the deductive systems of infinitary
logic described below guarantees not only that F and G have the same stable
models, but also that for any set H of infinitary formulas, H ∪ {F} and H ∪ {G}
have the same stable models.

We review the stable model semantics of infinitary propositional formulas in
Section 2. Then we define a basic infinitary system of natural deduction, similar to
propositional intuitionistic logic (Section 3), and study its properties (Section 4).
The main theorem is stated and proved in Section 5, and applied to examples
involving aggregates in Section 6. A useful extension of the basic system is discussed
in Section 7.

A preliminary report on this work was presented at the 2013 International Con-
ference on Logic Programming and Nonmonotonic Reasoning (Harrison, Lifschitz,
Truszczynski, 2013) .

1 http://potassco.sourceforge.net.
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2 Stable Models of Infinitary Propositional Formulas

The definitions of infinitary formulas and their stable models given below are equiv-
alent to the definitions proposed by Truszczynski (2012).

Let σ be a propositional signature, that is, a set of propositional atoms. The sets
Fσ

0 , Fσ
1 , . . . are defined as follows:

• Fσ
0 = σ,

• Fσ
i+1 is obtained from Fσ

i by adding expressions H∨ and H∧ for all subsets
H of Fσ

i , and expressions F → G for all F ,G ∈ Fσ
i .

The elements of
⋃∞

i=0 Fσ
i are called (infinitary) formulas over σ.

Remark 2
This definition differs from the syntax introduced in early work on infinitary propo-
sitional formulas (Scott and Tarski 1958; Karp 1964) in several ways. It treats the
collection H of conjunctive or disjunctive terms as a set, rather than a family in-
dexed by ordinals. Thus there is no order among conjunctive or disjunctive terms
in this framework, and there can be no repetitions among them. More importantly,
there is no restriction here on the cardinality of the set of conjunctive or disjunctive
terms. On the other hand, in the hierarchy Fσ

i of sets of formulas, i is a natural
number; transfinite levels are not allowed.

A set H of formulas is bounded if it is contained in one of the sets Fσ
i . For a

bounded set H of formulas, H∧ and H∨ are infinitary formulas.
The symbol ⊥ will be understood as an abbreviation for ∅∨; ¬F stands for

F → ⊥, and F ↔ G stands for (F → G) ∧ (G → F ).
We will write {F ,G}∧ as F ∧G , and {F ,G}∨ as F ∨G . This convention allows us

to view finite propositional formulas over σ as a special case of infinitary formulas.
For any bounded family {Fα}α∈A of formulas, we denote the formula {Fα : α ∈ A}∧
by
∧

α∈A Fα, and similarly for disjunctions.
Subsets of a signature σ will be also called its interpretations. The satisfaction

relation between an interpretation I and a formula F is defined as follows:

• For every p ∈ σ, I |= p if p ∈ I .
• I |= H∧ if for every formula F ∈ H, I |= F .
• I |= H∨ if there is a formula F ∈ H such that I |= F .
• I |= F → G if I 6|= F or I |= G .

We say that I satisfies a set H of formulas if I satisfies all elements of H. Two
sets of formulas are equivalent to each other if they are satisfied by the same inter-
pretations. A formula F is tautological if it is satisfied by all interpretations.

The reduct F I of a formula F with respect to an interpretation I is defined as
follows:

• For p ∈ σ, pI = ⊥ if I 6|= p; otherwise pI = p.
• (H∧)I = {GI | G ∈ H}∧.
• (H∨)I = {GI | G ∈ H}∨.
• (G → H )I = ⊥ if I 6|= G → H ; otherwise (G → H )I = GI → H I .
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The reduct HI of a set H of formulas is the set consisting of the reducts of the
elements of H. An interpretation I is a stable model of a set H of formulas if it
is minimal w.r.t. set inclusion among the interpretations satisfying HI ; a stable
model of a formula F is a stable model of singleton {F}. This is a straightforward
extension of the definition of a stable model due to Ferraris (2005) to infinitary
formulas.

It is easy to see that I |= F I iff I |= F . It follows that every stable model of H
satisfies H.

3 Basic Infinitary System of Natural Deduction

Inference rules of the deductive system described below are similar to the standard
natural deduction rules of propositional logic.2 Its derivable objects are (infinitary)

sequents—expressions of the form Γ⇒ F , where F is an infinitary formula, and Γ is
a finite set of infinitary formulas (“F under assumptions Γ”). To simplify notation,
we will write Γ as a list. We will identify a sequent of the form ⇒ F with the
formula F .

There is one axiom schema F ⇒ F . The inference rules are the introduction and
elimination rules for the propositional connectives

(∧I ) Γ⇒ H for all H ∈ H
Γ⇒ H∧ (∧E ) Γ⇒ H∧

Γ⇒ H (H ∈ H)

(∨I ) Γ⇒ H
Γ⇒ H∨ (H ∈ H) (∨E ) Γ⇒ H∨ ∆,H ⇒ F for all H ∈ H

Γ,∆⇒ F

(→I ) Γ,F ⇒ G
Γ⇒ F → G (→E ) Γ⇒ F ∆⇒ F → G

Γ,∆⇒ G ,

where H is a bounded set of formulas, and the weakening rule

(W ) Γ⇒ F
Γ,∆⇒ F ·

Remark 3
The usual conjunction introduction rule is

Γ⇒ F ∆⇒ G
Γ,∆⇒ F ∧G

;

the corresponding infinitary rule above is similar to the more restrictive version:

Γ⇒ F Γ⇒ G
Γ⇒ F ∧G

·

In the presence of the weakening rule (W ), the two versions are equivalent to each
other. The situation with disjunction elimination is similar. The usual contradiction
rule

(C ) Γ⇒ ⊥
Γ⇒ F

2 See, for instance, (Lifschitz et al. 2008, Section 1.2.1).
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is a special case of (∨E ). We do not include the law of the excluded middle in the
set of axioms, so that this deductive system is similar to intuitionistic, rather than
classical, propositional logic.

The set of theorems of the basic system is the smallest set of sequents that
includes the axioms of the system and is closed under the application of its inference
rules. We say that formulas F and G are equivalent in the basic system if F ↔ G
is a theorem of the basic system. The reason why we are interested in this relation
is that formulas equivalent in the basic system have the same stable models, as
discussed in Section 5 below.

Example 1
Let {Fi}i∈N be a bounded family of formulas. We will check that the formula

F0 ∧
∧
i≥0

(Fi → Fi+1) (2)

is equivalent in the basic system to the formula
∧

i≥0 Fi . The sequent

F0 ∧
∧
i≥0

(Fi → Fi+1)⇒ F0 ∧
∧
i≥0

(Fi → Fi+1)

belongs to the set of theorems of the basic system. Consequently so do the sequents

F0 ∧
∧
i≥0

(Fi → Fi+1) ⇒ F0

and

F0 ∧
∧
i≥0

(Fi → Fi+1)⇒ Fj → Fj+1

for all j ≥ 0. Consequently the sequents

F0 ∧
∧
i≥0

(Fi → Fi+1)⇒ Fj

for all j ≥ 0 belong to the set of theorems as well (by induction on j ). Consequently
so does the sequent

F0 ∧
∧
i≥0

(Fi → Fi+1) ⇒
∧
i≥0

Fi ·

A similar argument (except that induction is not needed) shows that the sequent∧
i≥0

Fi ⇒ F0 ∧
∧
i≥0

(Fi → Fi+1)

is a theorem of the basic system also. Consequently so is the sequent

⇒ F0 ∧
∧
i≥0

(Fi → Fi+1) ↔
∧
i≥0

Fi ·

This argument could be expressed more concisely, without explicit references to
the set of theorems of the basic system, as follows. Assume (2). Then F0 and, for
every i ≥ 0, Fi → Fi+1. Then, by induction, Fi for every i . And so forth. This style
of presentation is used in the next example.
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Example 2
Let {Fα}α∈A be a bounded family of formulas, and let G be a formula. Let us show
that (∨

α∈A
Fα

)
→ G (3)

is equivalent in the basic system to the formula∧
α∈A

(Fα → G)· (4)

Left-to-right: assume (3) and Fα. Then
∨

α∈A Fα, and consequently G . Thus we
established Fα → G under assumption (3) alone for every α, and consequently es-
tablished (4) under this assumption as well. Right-to-left: assume (4) and

∨
α∈A Fα,

and consider the cases corresponding to the disjunctive terms of this disjunction.
Assume Fα. From (4), Fα → G , and consequently G . Thus we established G in
each case, so that (3) follows from (4) alone.

It is easy to see that the infinitary counterparts of the intuitionistically provable
De Morgan’s laws∨

F∈H
¬F → ¬

∧
F∈H

F (5)

and ∧
F∈H

¬F ↔ ¬
∨

F∈H
F , (6)

where H is a bounded set of formulas, are theorems of the basic system. So are the
infinitary distributivity laws ∨

{Fi}i∈I

∧
i∈I

Fi

→ (∧
i∈I

∨
F∈Hi

F

)
(7)

and (∨
i∈I

∧
F∈Hi

F

)
→

 ∧
{Fi}i∈I

∨
i∈I

Fi

 (8)

for every non-empty family {Hi}i∈I of sets of formulas such that its union is
bounded. The disjunction in the antecedent of (7) and the conjunction in the con-
sequent of (8) extend over all elements {Fi}i∈I of the Cartesian product of the
family {Hi}i∈I . In Section 7 we discuss an extension of the basic system in which
we postulate the converses of implications (5), (7), and (8).

4 Properties of the Basic System

The following property of the basic system is easy to verify.
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Proposition 1
If a sequent consisting of finite formulas is intuitionistically provable then it is a
theorem of the basic system.

Recall that we define the set of theorems of the basic system to be the smallest set
of formulas that includes the axioms and is closed under the inference rules. When
we want to prove that every theorem of the basic system has a certain property P ,
it is clearly sufficient to check that every axiom has the property P , and that the
set of sequents that have the property P is closed under the application of the
inference rules. In this way we can establish, in particular, the following fact:

Proposition 2
For any theorem Γ⇒ F of the basic system, the formula Γ∧ → F is tautological.

Remark 4
The assertion of Proposition 2 will remain true even if we extend the set of axioms
to include the law of the excluded middle

F ∨ ¬F · (9)

The converse is not true, however, even in the presence of this axiom schema.
This fact can be established by standard methods used to prove incompleteness in
infinitary logic, which utilize the Downward Löwenheim-Skolem Theorem and the
Mostowski Collapsing Lemma.3 We can make the system complete by postulating
the following infinitary version of the law of the excluded middle:

∨
J⊆I

∧
j∈J

Fj ∧
∧

j∈I\J

¬Fj

 , (10)

for any non-empty bounded family {Fi}i∈I of formulas.4

Let σ and σ′ be disjoint signatures. In this section, a substitution is a bounded
family of formulas over σ with index set σ′. For any substitution φ and any for-
mula F over the signature σ ∪ σ′, φF stands for the formula over σ formed as
follows:

• If F ∈ σ then φF = F .
• If F ∈ σ′ then φF = φF .
• If F is H∧ then φF = {φG | G ∈ H}∧.
• If F is H∨ then φF = {φG | G ∈ H}∨.
• If F is G → H then φF = φG → φH .

Formulas of the form φF will be called instances of F .

3 John Schlipf, personal communication.
4 The proof of this fact is similar to the proof of completeness of classical propositional logic due

to Kalmár (1935). For any interpretation I , let LI denote the conjunction of the corresponding
set of literals. It is easy to check by induction that for any formula F , LI → F is a theorem of
the basic system if I satisfies F , and LI → ¬F is a theorem of the basic system otherwise. The
completeness of the basic system with (10) added as an axiom schema easily follows.
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Proposition 3
If F is a theorem of the basic system then every instance of F is a theorem of the
basic system also.

Proof
The notation φF extends to sequents in a natural way. The property “φS is a
theorem of the basic system” holds for every axiom S of the basic system, and it is
preserved by all inference rules.

We will refer to Proposition 3 as the substitution property of the basic system.

Example 3
We will show that for any formulas F , G , the formula ¬(F ∨ G) is equivalent to
¬F ∧ ¬G in the basic system. Note first that the formula

¬(p ∨ q)↔ ¬p ∧ ¬q (11)

is intuitionistically provable. By Proposition 1, it follows that it is a theorem of the
basic system. The equivalence

¬(F ∨G)↔ ¬F ∧ ¬G

is an instance of (11): take φp = F , φq = G . By the substitution property, it follows
that it is a theorem of the basic system as well.

Proposition 4
For any substitutions φ, ψ with the same index set, the implication∧

p

(φp ↔ ψp)→ (φF ↔ ψF )

(where p ranges over the indices) is a theorem of the basic system.

Proof
The proof is by induction on j such that F ∈ Fσ∪σ′

j , and it considers several cases,
depending on the syntactic form of F . Assume, for instance, that F is H∨. Then

φF = {φG | G ∈ H}∨ , ψF = {ψG | G ∈ H}∨ ·

By the induction hypothesis, for each G in H, the implication∧
p

(φp ↔ ψp)→ (φG ↔ ψG) (12)

is a theorem of the basic system. We need to show that∧
p

(φp ↔ ψp)→ ({φG | G ∈ H}∨ ↔ {ψG | G ∈ H}∨) (13)

is a theorem of the basic system also. Assume∧
p

(φp ↔ ψp) (14)

and {φG | G ∈ H}∨, and consider the cases corresponding to the terms of this dis-
junction. Assume φG . Then, by (12) and (14), ψG . We can conclude {ψG | G ∈ H}∨,
that is, ψF . So we established the implication φF → ψF . The implication in the
other direction is proved in a similar way.
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Corollary 1
If for every index p, φp is equivalent to ψp in the basic system then φF is equivalent
to ψF in the basic system.

We will refer to this corollary as the replacement property of the basic system.

Example 4
The formula∧

k≥1

(pk → ¬pk )→ p0 (15)

is equivalent to∧
k≥1

¬pk → p0 (16)

in the basic system, because (16) can be obtained from (15) by replacing pk → ¬pk

with the intuitionistically equivalent ¬pk . More formally, let qk (k ≥ 1) be the
indices and let F be

∧
k≥1 qk → p0. For the substitutions

φqk
= pk → ¬pk , ψqk

= ¬pk ,

φF is (15), and ψF is (16). By the replacement property, (15) is equivalent to (16).

5 Relation of the Basic System to Stable Models

Main Theorem

For any set H of formulas,

(a) if a formula F is a theorem of the basic system then H ∪ {F} has the same
stable models as H;

(b) if F is equivalent to G in the basic system then H ∪ {F} and H ∪ {G} have
the same stable models.

Lemma 1
For any formula F and interpretation I , if I does not satisfy F then F I ⇒ ⊥ is a
theorem of the basic system.

The proof is straightforward by induction on i such that F ∈ Fσ
i .

By ΓI we denote the set {GI | G ∈ Γ}; (Γ⇒ F )I stands for ΓI ⇒ F I .

Lemma 2
For any sequent S and any interpretation I , if S is a theorem of the basic system
then so is S I .
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Proof
Consider the property of sequents: “S I is a theorem of the basic system.” To prove
the lemma, it suffices to show that all theorems of the basic system have that
property. It is clear that the reduct of every axiom of the basic system is a theorem
(of the basic system). Verifying that the set of sequents with that property is closed
under inference rules follows the same pattern for all inference rules but those
involving implication. Consider, for instance, disjunction elimination:

Γ⇒ H∨ ∆,H ⇒ F for all H ∈ H
Γ,∆⇒ F

(17)

and assume that the reducts of all sequents that are premises of that rule are
theorems. Because (H∨)I is (HI )∨, all premises of the disjunction elimination rule:

ΓI ⇒ (HI )∨ ∆I ,H I ⇒ F I for all H ∈ H
ΓI ,∆I ⇒ F I

are theorems. Therefore, so is the sequent ΓI ,∆I ⇒ F I and consequently, also the
sequent (Γ,∆⇒ F )I .

Consider now the implication introduction rule:

Γ,F ⇒ G
Γ⇒ F → G

and assume that the reduct (Γ,F ⇒ G)I is a theorem. To show that (Γ⇒ F → G)I

is a theorem it suffices to show that ΓI ⇒ (F → G)I is a theorem.

Case 1: I satisfies Γ. Since the sequent (Γ,F ⇒ G)I is a theorem, so is the sequent
ΓI ,F I ⇒ GI . Thus, ΓI ⇒ F I → GI is a theorem and so, (ΓI )∧ → (F I → GI ) is
tautological. Since I satisfies Γ, the comment at the end of Section 2 implies that I
satisfies ΓI . Consequently, I satisfies F I → GI and, by the same comment again,
also F → G . It follows that (F → G)I is F I → GI . Since the sequent (Γ,F ⇒ G)I

or, equivalently, the sequent ΓI ,F I ⇒ GI is a theorem, applying the rule

ΓI ,F I ⇒ GI

ΓI ⇒ F I → GI

we obtain that ΓI ⇒ F I → GI is a theorem. Thus, ΓI ⇒ (F → G)I , is a theorem,
too.

Case 2: I does not satisfy Γ. Then I does not satisfy one of the elements H of Γ.
By Lemma 1, H I ⇒ ⊥ is a theorem, and ΓI ⇒ (F → G)I can be derived from
H I ⇒ ⊥ by rules (C ) and (W ). Thus, it is a theorem.

Next, consider the implication elimination rule:

Γ⇒ F ∆⇒ F → G
Γ,∆⇒ G

and assume that the sequents (Γ⇒ F )I and (∆⇒ F → G)I are theorems. We will
show that (Γ,∆⇒ G)I or, equivalently, ΓI ,∆I ⇒ GI is a theorem, too.

Case 1: I satisfies F → G . Then (F → G)I is F I → GI . Thus, the sequents
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ΓI ⇒ F I and ∆I ⇒ F I → GI are theorems, and the claim follows by applying the
rule

ΓI ⇒ F I ∆I ⇒ F I → GI

ΓI ,∆I ⇒ GI
·

Case 2: I does not satisfy F → G . Then (F → G)I is ⊥ and so, ∆I ⇒ ⊥ is
a theorem. Moreover, ΓI ,∆I ⇒ GI can be derived from ∆I ⇒ ⊥ by rules (C )
and (W ). Thus, ΓI ,∆I ⇒ GI is a theorem, too.

Proof of Main Theorem
(a) Assume that F is a theorem of the basic system. By Lemma 2, for any inter-
pretation I , F I is a theorem of the basic system, and consequently is tautological,
by Proposition 2. It follows that HI and (H ∪ F )I are satisfied by the same inter-
pretations.

(b) Assume that F is equivalent to G in the basic system, that is, F ↔ G is a
theorem of the basic system. By Lemma 2, for every interpretation I , (F ↔ G)I is
a theorem of the basic system. Moreover, by Proposition 2, F ↔ G is tautological.
Thus (F ↔ G)I = F I ↔ GI and so, F I ↔ GI is a theorem of the basic system.
Consequently, F I ↔ GI is tautological, that is F I and GI are equivalent. It follows
that (H ∪ F )I and (H ∪G)I are satisfied by the same interpretations.

6 Examples Involving Aggregates

As discussed in the introduction, infinitary formulas can be used to precisely define
the semantics of aggregates in ASP when the Herbrand universe is infinite. In this
section, we give two examples demonstrating how the theory described above can
be applied to prove equivalences between programs involving aggregates.

Example 5
Intuitively, the rule

q(X )← 1{p(X ,Y )} (18)

has the same meaning as the rule

q(X )← p(X ,Y )· (19)

To make this claim precise, consider first the result of grounding rule (18) under
the assumption that the Herbrand universe C is finite. In accordance with standard
practice in ASP, we treat variable X as global and Y as local. Then the result of
grounding (18) is the set of ground rules

q(a)← 1{p(a, b) | b ∈ C}

for all a ∈ C . In the spirit of the semantics for aggregates proposed by Ferraris
[2005, Section 4.1] these rules have the same meaning as the propositional formulas(∨

b∈C

p(a, b)

)
→ q(a)· (20)
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Likewise, rule (19) can be viewed as shorthand for the set of formulas

p(a, b)→ q(a) (21)

for all a, b ∈ C . It easy to see that these sets of formulas are intuitionistically
equivalent.

How can we lift the assumption that the Herbrand universe is finite? We can
treat (20) as an infinitary formula, and show that the conjunction of formulas (20)
is equivalent to the conjunction of formulas (21) in the basic system. The fact that
the conjunction of formulas (21) for all b ∈ C is equivalent to (20) in the basic
system follows from Example 2 (Section 3).

Example 6
Intuitively,

q(X )← 2{p(X ,Y )} (22)

has the same meaning as the rule

q(X )← p(X ,Y 1), p(X ,Y 2), Y 1 6= Y 2· (23)

To make this claim precise, consider the infinitary formulas corresponding to (22):∨
b∈C

p(a, b) ∧
∧
b∈C

p(a, b)→
∨
c∈C
c 6=b

p(a, c)


→ q(a) (24)

(a ∈ C ); see (Ferraris 2005, Section 4.1) for details on representing aggregates with
propositional formulas. The formulas corresponding to (23) are

(p(a, b) ∧ p(a, c))→ q(a) (25)

(a, b, c ∈ C , b 6= c). We will show that the conjunction of formulas (24) is equivalent
to the conjunction of formulas (25) in the basic system.

It is sufficient to check that for every a ∈ C , (24) is equivalent to the conjunction
of formulas (25) over all b, c ∈ C such that b 6= c. By Example 2, this conjunction
is intuitionistically equivalent to ∨

b,c∈C
b 6=c

(p(a, b) ∧ p(a, c))

→ q(a)· (26)

By the replacement property of infinitary formulas, it suffices to check that the
antecedents of (24) and (26) are equivalent to each other.

Left-to-right: assume

∨
b∈C

p(a, b) ∧
∧
b∈C

p(a, b)→
∨
c∈C
c 6=b

p(a, c)

 · (27)
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Then
∨

b∈C p(a, b). We will reason by cases, with one case corresponding to each
possible value b0 of b. Case p(a, b0): by the second conjunctive term of (27),

p(a, b0)→
∨
c∈C
c 6=b0

p(a, c)·

Then the consequent of this implication follows. Again we will reason by cases, with
one case for each value c0 of c where c0 6= b0. Case p(a, c0): then p(a, b0)∧p(a, c0).
Consequently∨

b,c∈C
b 6=c

p(a, b) ∧ p(a, c)· (28)

Right-to-left: assume (28). We reason by cases, with one case for each pair b0, c0,
where b0 6= c0. Case p(a, b0)∧p(a, c0): from p(a, b0) we derive the first conjunctive
term of (27); from p(a, c0) we derive∨

c∈C ,
c 6=b

p(a, c),

and consequently the implication

p(a, b)→
∨
c∈C
c 6=b

p(a, c)·

The conjunction of these implications for all b ∈ C is the second conjunctive term
of (27).

7 The Extended System of Natural Deduction

In this section, we show that the assertion of the main theorem will remain true if
we extend the basic system by adding the axiom schema

F ∨ (F → G) ∨ ¬G (29)

characterizing (in the finite case) the logic of here-and-there (Hosoi 1966), and the
converses to the implications discussed at the end of Section 3:

¬
∧

F∈H
F →

∨
F∈H

¬F , (30)

(∧
i∈I

∨
F∈Hi

F

)
→

 ∨
{Fi}i∈I

∧
i∈I

Fi

 , (31)

and  ∧
{Fi}i∈I

∨
i∈I

Fi

→ (∨
i∈I

∧
F∈Hi

F

)
· (32)

When all conjunctions and disjunctions are finite, formula (30) can be derived
intuitionistically from (29), and (31) and (32) are intuitionistically provable. We
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do not know to what extent the additional axiom schemas postulated here are
independent when infinite conjunctions and disjunctions are allowed.

In the extended system, we can derive the theorem

∨
J⊆I

¬ ∨
j∈I\J

Fj ∧ ¬¬
∧
j∈J

Fj

 (33)

for any non-empty bounded family {Fi}i∈I of formulas. (This is a generalization
of the weak law of the excluded middle ¬F ∨ ¬¬F to sets of infinitary formulas,
similar to the generalization of the law of the excluded middle given in Remark 4.
It is equivalent in the basic system to the special case of (33) corresponding to a
family with a single element.) Indeed∧

i∈I
(¬Fi ∨ ¬¬Fi)

is a theorem of the extended system because ¬Fi ∧ ¬¬Fi can be intuitionistically
derived from (29) with Fi as F and ¬Fi as G . Using (31) we obtain

∨
J⊆I

 ∧
j∈I\J

¬Fj ∧
∧
j∈J
¬¬Fj

 ,

and (33) follows by De Morgan’s laws.
In the extended system, we can also derive the theorem(

F →
∨
i∈I

Gi

)
→
∨
i∈I

(F → Gi) (34)

for any formula F and non-empty family {Gi}i∈I of formulas. We use instantiations
of (29) for all Gi to obtain ∧

i∈I
F ∨ (F → Gi) ∨ ¬Gi ·

By (31) we obtain∨
{Fi}i∈I

∧
i∈I

Fi (35)

where the disjunction extends over all elements {Fi}i∈I of the Cartesian product of
the family {F ,F → Gi ,¬Gi}i∈I . We reason by cases, with one case corresponding
to each disjunctive term

∧
i∈I Fi of (35). If at least one of the formulas Fi is F

then from the antecedent of (34) we can derive
∨

i∈I Gi , and the consequent of
(34) immediately follows. If at least one of the formulas Fi is F → Gi then the
consequent of (34) is immediate as well. Otherwise,

∧
i∈I Fi is

∧
i∈I ¬Gi . Then

from the antecedent of (34) we can derive ¬F and every disjunctive term of the
consequent follows.

It is easy to check that the properties of the basic system proved in Section 4
hold for the extended system as well.
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To show that the assertion of the main theorem applies to the extended system
we will prove the modification of Lemma 2 stated below. The classical extended

system is obtained from the extended system by replacing the axiom schema (29)
with the law of the excluded middle (9).

Lemma 3
For any sequent S and any interpretation I , if S is a theorem of the extended
system then S I is a theorem of the classical extended system.

Proof
It suffices to show that every theorem S of the extended has this property: “S I is a
theorem of the classical extended system.” We only need to check that the reducts
of the axioms (29)–(32) have this property; the fact that the set of sequents with
that property is closed under the inference rules is checked in the same way as in
the proof of Lemma 2.

Let S be (29). Then S I is

F I ∨ (F → G)I ∨ (¬G)I ·

If I |= G then the second disjunctive term is F I → GI , and the disjunction can be
derived from F I ∨ ¬F I . If I 6|= G then the third disjunctive term is equivalent to
¬⊥.

Let S be (30). Since S is tautological, S I is(
¬
∧

F∈H
F

)I

→
∨

F∈H
(¬F )I ·

If I satisfies the conjunction in the antecedent, then the antecedent is ⊥. Otherwise,
at least one disjunctive term in the consequent is equivalent to ¬⊥.

Let S be (31). Since S is tautological, S I is(∧
i∈I

∨
F∈Hi

F I

)
→

 ∨
{Fi}i∈I

∧
i∈I

F I
i

 ,

which is an instantiation of the same axiom schema. The reasoning for sequents of
the form (32) is similar.

Main Theorem for the Extended System

For any set H of formulas,

(a) if a formula F is a theorem of the extended system then H ∪ {F} has the
same stable models as H;

(b) if F is equivalent to G in the extended system then H ∪ {F} and H ∪ {G}
have the same stable models.

This assertion is derived from Lemma 3 in the same way that the Main Theorem
was derived from Lemma 2, using the fact that all theorems of the classical extended
system are tautological.
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Example 7
Intuitively, the cardinality constraint {p(X )}0 (“the set of true atoms with form
p(X ) has cardinality at most 0”) has the same meaning as the conditional literal
⊥ : p(X ) (“for all X , p(X ) is false”). If we represent this conditional literal by the
infinitary formula∧

a∈C
¬p(a) (36)

then this claim can be made precise by showing that (36) is equivalent in the
extended system to the infinitary formula corresponding to {p(X )}0 in the sense
of (Ferraris 2005):

∧
A⊆C
A6=∅

∧
a∈A

p(a)→
∨

a∈C\A

p(a)

 (37)

(where C is the Herbrand universe).
It is easy to derive (37) from (36) in the basic system. The derivation of (36)

from (37) will use the following instance of (33):

∨
A⊆C

¬ ∨
a∈C\A

p(a) ∧ ¬¬
∧
a∈A

p(a)

 · (38)

We will reason by cases, with one case corresponding to each disjunctive term DA

in (38). In the case that A is empty, (36) follows from the first conjunctive term
of DA by De Morgan’s law. Otherwise, assume

∧
a∈A p(a). Then by (37),

∨
a∈C\A p(a),

which contradicts the first conjunctive term of DA. We conclude ¬
∧

a∈A p(a), which
contradicts the second conjunctive term of DA. So the assumptions DA and (37)
are contradictory. Consequently, they imply (36).

8 Conclusion

Two finite propositional formulas are strongly equivalent if and only if they are
equivalent in the logic of here-and-there (Ferraris 2005, Proposition 2). The results
of this note are similar to the if part of that theorem. We don’t know how to extend
the only if part to infinitary formulas. It is not clear whether or not any axioms or
inference rules not included in the extended system will be required. However, as
we illustrated with several examples, the results in this paper allow us to verify the
equivalence of formulas involving aggregates.
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