
Strongly Equivalent Logi Programs

Vladimir Lifshitz

University of Texas at Austin, USA

David Peare

DFKI, Saarbr�uken, Germany

Agust��n Valverde

University of M�alaga, Spain

Abstrat

A logi program �

1

is said to be equivalent to a logi program �

2

in the sense of the answer set semantis if �

1

and �

2

have the same

answer sets. We are interested in the following stronger ondition: for

every logi program �, �

1

[� has the same answer sets as �

2

[�.

The study of strong equivalene is important, beause we learn from

it how one an simplify a part of a logi program without looking

at the rest of it. The main theorem shows that the veri�ation of

strong equivalene an be aomplished by heking the equivalene of

formulas in a monotoni logi, alled the logi of here-and-there, whih

is intermediate between lassial logi and intuitionisti logi.

1 Introdution

This paper is about logi programs with negation as failure under the answer

set (\stable model") semantis

[

Gelfond and Lifshitz, 1988

℄

. A program �

1

is said to be equivalent to a program �

2

if �

1

and �

2

have the same answer

sets. We are interested here in the following stronger ondition: for every

program �, �

1

[� is equivalent to �

2

[�.

Consider, for instane, the one-rule programs p not q and p. These

programs have the same answer set fpg, but they are not equivalent in the

strong sense: if we add the rule q to eah of the two programs, the answer set

for the �rst will beome fqg, and the answer set for the seond will beome

fp; qg. On the other hand, the program

p q ;

q

1

is strongly equivalent to

p ;

q :

The rule p q;not q is strongly equivalent to the empty set: removing this

rule from a program does not a�et the program's answer sets.

There is an interesting analogy between the strong equivalene of logi

programs and equivalene of propositional formulas. In eah of the examples

above, let's think of rules as propositional formulas: replae every not

with :, every omma with ^, and turn every rule

Head Body

into the impliation

Body ! Head :

The programs in the �rst example above turn into

f:q ! pg and fpg

|two sets of formulas that are not equivalent in propositional logi. On

the other hand, the seond example turns into a pair of equivalent sets of

formulas

fq ! p; qg and fp; qg:

And so does the third example:

fq ^ :q ! pg and ;

are propositionally equivalent.

This analogy is not omplete, however. In propositional logi, :p ! q

is equivalent to :q ! p, but the rules q not p and p not q are not

strongly equivalent; they are not even equivalent in the weak sense.

In onnetion with the last example one might remember that

intuitionistially the formulas :p! q and :q ! p are not equivalent. Could

intuitionisti logi be a better tool for the study of strong equivalene than

lassial logi?

Using intuitionisti logi for this purpose is indeed a good idea, but even

better results will be ahieved if we use a stronger subsystem of lassial

propositional logi|\the logi of here-and-there," HT . The main theorem

of this paper shows that there is a perfet math between the logi of

here-and-there and the strong equivalene of logi programs: two programs

are strongly equivalent if and only if these programs, viewed as sets of

propositional formulas, are equivalent in HT .

The logi of here-and-there an be de�ned in terms of 3-valued truth

tables. These truth tables were originally introdued by Heyting [1930℄

2

as a tehnial devie, for the purpose of demonstrating that intuitionisti

logi is weaker than lassial. Heyting remarks that the truth values in

these tables \an be interpreted as follows: 0 denotes a orret proposition,

1 denotes a false proposition, and 2 denotes a proposition that annot

be false but whose orretness is not proved." The proof of the fat

that intuitionisti logi annot be desribed by a �nite set of truth values

in

[

G�odel, 1932

℄

uses an in�nite monotonially dereasing sequene of

systems whose �rst member is lassial logi, and whose seond member

happens to be HT . The logi of here-and-there is known also as \the

logi of present and future" or \the Smetanih logi." It was apparently

�rst axiomatised in

[

 Lukasiewiz, 1941

℄

. The importane of HT for the

study of logi programming an be seen from the results of Peare [1997,

1999℄.

Sine HT is a 3-valued logi, there is an exponential time algorithm

for deiding whether two propositional formulas are equivalent in HT .

Consequently, the strong equivalene of logi programs an be veri�ed in

exponential time.

Interesting questions about the strong equivalene of programs arise in

disjuntive logi programming. Compare the disjuntive rule

p; q (1)

with the program

p not q ;

q not p :

(2)

Eah of these two programs has the answer sets fpg, fqg, but (1) and (2)

are not strongly equivalent: the program obtained by adding the rules

p q ;

q p

(3)

to (1) has the answer set fp; qg, whih is not an answer set for the program

obtained by adding the same rules to (2). On the other hand, the program

p; q ;

? p; q

(4)

is strongly equivalent to

p not q ;

q not p ;

? p; q :

(5)

This fat illustrates the possibility of eliminating \exlusive disjuntions"

from a logi program.

3

Although program (1) is disjuntive, the ounterexample (3) proving

that (1) and (2) are not strongly equivalent does not ontain disjuntive

rules. It does not even ontain negation as failure. We'll see that this is a

general phenomenon: if there exists a program � suh that �

1

[� is not

equivalent to �

2

[� then we an always �nd a program � with this property

suh that the rules of � are syntatially very simple. Furthermore, we'll

show that the relationship between logi HT and the strong equivalene of

logi programs disussed above holds in the presene of disjuntive rules, if

we agree to identify the semiolon with _. Written as sets of propositional

formulas, (4) and (5) beome

fp _ q;:(p ^ q)g (6)

and

f:p! q;:q ! p;:(p ^ q)g: (7)

These two sets are equivalent in the logi of here-and-there (although they

are not equivalent in the weaker intuitionisti logi).

Several published results on the answer set semantis address, impliitly,

the topi of strong equivalene. Theorem 1 from

[

Erdem and Lifshitz, 1999

℄

,

disussed in Setion 5 below, is similar to the assertion about the strong

equivalene between programs (4) and (5). Corollary 4.10 from

[

Inoue and

Sakama, 1998

℄

gives an example of strong equivalene for programs with

negation as failure in the heads of rules. Theorems stated in Setion 4

of

[

Lifshitz et al., 1999

℄

provide numerous examples of strongly equivalent

programs with nested expressions in the heads and bodies of rules. We'll

return to some of these examples in Setion 4.2.

The study of strong equivalene is important, beause we learn from it

how one an simplify a part of a logi program without looking at the rest

of it.

In the next two setions, we review the logi of here-and-there and the

answer set semantis of logi programs. In Setion 4 we state and prove the

main theorem and give examples of its use. In Setion 5 the main theorem

is extended to programs with two kinds of negation.

2 Logi of Here-and-There

Propositional formulas are built from propositional atoms and the 0-plae

onnetive ? using the binary onnetives ^, _ and !. We write > for

? ! ?, and :F for F ! ?. A theory is a set of propositional formulas.

Reall that, in lassial propositional logi, interpretations an be viewed

as sets of atoms. The satisfation relation between an interpretation I and

a formula F an be then de�ned reursively, as follows:

4

� for an atom p, I j= p if p 2 I,

� I 6j= ?,

� I j= F ^G if I j= F and I j= G,

� I j= F _G if I j= F or I j= G,

� I j= F ! G if I 6j= F or I j= G.

A model of a theory � in the sense of lassial logi is an interpretation that

satis�es every formula in �.

2.1 Semantis

An HT -interpretation is an ordered pair hI

H

; I

T

i of sets of atoms suh that

I

H

� I

T

. Intuitively, suh a pair desribes \two worlds": the atoms in I

H

are true \here," and the atoms in I

T

are true \there." Aordingly, we all

the symbols H and T worlds.

1

The worlds are ordered by H < T .

For any HT -interpretation hI

H

; I

T

i, any world w, and any formula F ,

we de�ne when the triple hI

H

; I

T

; wi satis�es F reursively, as follows:

� for any atom F , hI

H

; I

T

; wi j= F if F 2 I

w

,

� hI

H

; I

T

; wi 6j= ?,

� hI

H

; I

T

; wi j= F ^G if hI

H

; I

T

; wi j= F and hI

H

; I

T

; wi j= G,

� hI

H

; I

T

; wi j= F _G if hI

H

; I

T

; wi j= F or hI

H

; I

T

; wi j= G,

� hI

H

; I

T

; wi j= F ! G if, for every world w

0

suh that w � w

0

,

hI

H

; I

T

; w

0

i 6j= F or hI

H

; I

T

; w

0

i j= G.

We say that an HT -interpretation hI

H

; I

T

i satis�es F if hI

H

; I

T

;Hi

satis�es F . A model of a theory � in the sense of logi HT is an HT -

interpretation that satis�es every formula in �.

A formula F is a onsequene of a set � of formulas in logi HT

(symbolially, � j=

HT

F) if every model of � in the sense of HT satis�es F

also. We say that � is equivalent to � in the sense of HT if � and � have

the same models in the sense of HT .

An HT -interpretation hI

H

; I

T

i is said to be total if I

H

= I

T

.

Every onsequene of � in the logi of here-and-there is a onsequene

of � in the sense of lassial logi. (Proof: An interpretation I satis�es F

i� the total interpretation hI; Ii satis�es F .) But the onverse is not true.

1

This terminology, and the de�nitions that follow, will not be new to the readers

familiar with Kripke models. HT -interpretations are a speial ase of that onept.

5

For instane, p _ :p and ::p ! p are not theorems of HT , that is to say,

they are not onsequenes of the empty set of formulas; :q ! p is not a

onsequene of :p! q. (Proof: in eah ase, take I

H

= ;, I

T

= fpg.)

In the de�nition of HT in terms of 3 truth values, the value assigned to

an atom p is determined by whether p belongs to I

H

, I

T

n I

H

, or neither.

2.2 Dedution

Reall that a natural dedution system for intuitionisti logi an be

obtained from the orresponding lassial system

[

Bibel and Eder, 1993,

Table 3

℄

by dropping the law of the exluded middle

F _ :F

from the list of postulates. A formalisation of HT an be obtained from

intuitionisti logi by adding the axiom shema

F _ (F ! G) _ :G (8)

(Lex Hendriks, personal ommuniation).

The most useful, for our purposes, onsequene of (8) is the weak law of

the exluded middle

:F _ ::F (9)

(in (8), take G to be :F). All proofs in HT given below are atually proofs

in intuitionisti logi extended with (9). There is a good reason for that:

for any two propositional formulas F

1

, F

2

that orrespond to logi programs

in the sense of Setion 3, if F

1

is equivalent to F

2

in the logi of here-and-

there then the equivalene F

1

$ F

2

an be derived from the weak law of

the exluded middle in intuitionisti logi (Dik de Jongh and Lex Hendriks,

personal ommuniation).

It is easy to see that De Morgan's laws

:(F _G)$:F ^ :G;

:(F ^G)$:F _ :G

are provable in HT . Indeed, the �rst equivalene and one half of the seond

are provable intuitionistially; to derive :F _ :G from :(F ^ G), onsider

two ases :F , ::F .

Using De Morgan's laws, we an verify that (6) is equivalent to (7): these

two sets of formulas an be rewritten as

fp _ q;:p _ :qg

and

f:p! q;:q ! p;:p _ :qg;

6

whih are intuitionistially equivalent.

Another interesting equivalene provable in HT is

:F _G$::F ! G:

Left-to-right, it is provable intuitionistially; right-to-left, onsider two ases

:F , ::F .

3 Logi Programs and Answer Sets

The presentation below follows essentially

[

Lifshitz et al., 1999

℄

, exept that

the seond kind of negation is not allowed here.

2

Formulas are built from propositional atoms and the 0-plae onne-

tives > and ? using negation as failure (not), onjuntion (,) and disjuntion

(;). A rule is an expression of the form

Head Body (10)

where Head and Body are formulas. If Body is > then we identify rule (10)

with formula Head . A program is a set of rules.

We de�ne when a set X of atoms satis�es a formula F (symbolially,

X j= F) reursively, as follows:

� for an atom p, X j= p if p 2 X,

� X j= >,

� X 6j= ?,

� X j= (F;G) if X j= F and X j= G,

� X j= (F ;G) if X j= F or X j= G,

� X j= not F if X 6j= F .

The redut �

X

of a program � with respet to a set X of atoms is

obtained by replaing every maximal ourrene of a formula of the form

not F in � (that is, every ourrene of not F that isn't in the range of

another not)

� with ? if X j= F ,

� with >, otherwise.

3

2

Adding the seond negation is disussed in Setion 5.

3

As observed in

[

Ferraris and Lifshitz, 2000

℄

, this de�nition is equivalent to the

reursive de�nition of a redut given in

[

Lifshitz et al., 1999

℄

.

7

The onept of an answer set is de�ned �rst for programs not ontaining

negation as failure. A set X of atoms is losed under suh a program � if,

for every rule (10) in �, X j= Head whenever X j= Body . An answer set for

a program � without negation as failure is a minimal set losed under �.

For an arbitrary program �, we say that X is an answer set for � if X

is an answer set for the redut �

X

.

Let us hek, for instane, that fpg is an answer set for (2). The redut

of (2) with respet to fpg is

p > ;

q ? :

Clearly fpg is a minimal set losed under this redut.

4 Strong Equivalene

4.1 Main Theorem

A program � is unary if, in every rule of �, the head is an atom and the

body is either > or an atom.

In the statement of the theorem, we identify formulas and rules in

the sense of Setion 3 with propositional formulas, as desribed in the

introdution. Aordingly, programs beome a speial ase of theories, and

we an talk about the equivalene of programs in the logi of here and there.

Theorem 1 For any programs �

1

and �

2

, the following onditions are

equivalent:

(a) for every program �, programs �

1

[� and �

2

[� have the same

answer sets,

(b) for every unary program �, programs �

1

[� and �

2

[� have the same

answer sets,

() �

1

is equivalent to �

2

in the logi of here-and-there.

The fat that (b) implies (a) shows that the strong equivalene ondition

we are interested in (\for every �, �

1

[� is equivalent to �

2

[�") does

not depend very muh on what kind of program � is assumed to be: it does

not matter whether � is required to belong to the narrow lass of unary

programs or is allowed to be an arbitrary program with nested expressions.

The fat that (a) is equivalent to () expresses the orrespondene between

the strong equivalene of logi programs and the equivalene of formulas in

the logi of here-and-there.

The proof of the theorem is given in Setion 4.5 below.

8

4.2 Some Examples

We have already seen how the equivalene of onditions (a) and (), along

with the properties of the logi of here-and-there stated in Setion 2, an

be used to prove the strong equivalene of logi programs. Here are further

examples.

Replaing a rule of the form

not F

1

; : : : ;not F

k

 G

in any program by the onstraint

4

? F

1

; : : : ; F

k

; G

does not a�et the program's answer sets

[

Inoue and Sakama, 1998,

Setion 4.2

℄

, beause the orresponding formulas are equivalent in HT . This

fat is interesting beause the role of onstraints in a logi program is well

understood: adding a onstraint to a program eliminates its answer sets that

\violate" the onstraint

[

Lifshitz et al., 1999, Proposition 2

℄

.

In any program, replaing a subformula of the form not(F;G) with

not F ;not G does not hange its answer sets, as well as replaing not(F ;G)

with not F;not G

[

Lifshitz et al., 1999, Proposition 4(iv)

℄

. Indeed, as we

saw in Setion 2, the logi of here-and-there satis�es De Morgan's laws.

In any program ontaining the rules

F ;G ;

? F;G ;

F H

replaing the last rule by the onstraint

? not F;H

does not a�et the program's answer sets, beause the orresponding sets of

formulas are equivalent in HT (and even in intuitionisti logi).

On the other hand, Theorem 1 an be used to prove that some pairs of

programs are not strongly equivalent. For instane, the program

p q ;

p not q

(11)

is not strongly equivalent to p, beause p is not a onsequene of the formulas

q ! p, :q ! p in the logi of here-and-there. (Proof: Take I

H

= ;,

I

T

= fp; qg.) This fat an be also proved diretly, by adding q p to eah

of the two programs.

4

A onstraint is a rule whose head is ?.

9

4.3 A Remark on Intuitionisti Logi

The example of programs (4) and (5) shows that the logi of here-and-there

in the statement of Theorem 1 annot be replaed by intuitionisti logi:

these programs are strongly equivalent, but not intuitionistially equivalent.

Program (4) is syntatially rather ompliated: it ontains a disjuntive

rule and a onstraint. But we an give a similar ounterexample without

using rules like these. Consider the program

q not p ;

p not q ;

r p; q ;

s p ;

s q

(12)

and the program obtained from (12) by adding the rule

s not r : (13)

These programs are not equivalent to eah other intuitionistially, whih

an be proved using a Kripke model with 3 worlds. But they are strongly

equivalent. To derive :r ! s from

:p! q; :q! p; (p ^ q)! r; p! s; q ! s (14)

in HT , assume :r. Using the third of formulas (14) and de Morgan's laws,

we derive :p _ :q. Using the �rst two of formulas (14), we derive p _ q.

Using the last two of formulas (14), we derive s.

4.4 Equilibrium Logi

In order to prove the main theorem we shall make use of some results about

a system of nonmonotoni reasoning alled equilibrium logi, developed in

Peare [1997, 1999℄.

Equilibrium logi an be desribed as a speial kind of minimal model

reasoning in logi HT , as follows. An equilibrium model of a theory � is a

total HT -interpretation hI; Ii suh that

(i) hI; Ii is a model of �, and

(ii) for every proper subset J of I, hJ; Ii is not a model of �.

Consider, for instane, the theory omprising a single atomi formula p.

Some of its models in the sense of logi HT are

hfpg; fpgi;

hfpg; fp; qgi;

hfp; qg; fp; qgi:

10

The �rst of them is an equilibrium model. The seond is not, beause it is

not total. The third is not an equilibrium model either, beause it does not

satisfy the minimality ondition (ii).

As another example, take the theory ::p. Some of its models in the

sense of logi HT are

h;; fpgi;

hfpg; fpgi:

Neither is an equilibrium model: the �rst is not total, and the seond is not

minimal. In fat, this theory has no equilibrium models.

Equilibrium logi is de�ned by that whih holds in all equilibrium models.

The main property of equilibrium logi that we need here is aptured in

Lemma 3 below, whih asserts essentially that the onept of an equilibrium

model is a generalization of the onept of an answer set.

Lemma 1 For any program � without negation as failure, an HT-

interpretation hI

H

; I

T

i is a model of � in the sense of HT i� both I

H

and

I

T

are models of � in the sense of lassial logi.

Proof. Let � be a program without negation as failure. An HT -

interpretation hI

H

; I

T

i is a model of � i�, for every rule Head Body

in �,

hI

H

; I

T

;Hi j= Body implies hI

H

; I

T

;Hi j= Head

and

hI

H

; I

T

; T i j= Body implies hI

H

; I

T

; T i j= Head :

Sine Head and Body do not ontain negation as failure, these onditions

an be simpli�ed as follows:

I

H

j= Body implies I

H

j= Head ;

I

T

j= Body implies I

T

j= Head :

To require this to hold for every rule Head Body in � means to require

that I

H

and I

T

be models of � in the sense of lassial logi.

Lemma 2 An HT-interpretation hI

H

; I

T

i is a model of a program � i� it

is a model of the redut �

(I

T

)

.

The proof of the lemma uses two fats that an be easily veri�ed

by strutural indution. One is a \monotoniity property" of HT -

interpretations:

Fat 1 For any HT-interpretation hI

H

; I

T

i and any propositional formula F ,

if hI

H

; I

T

;Hi j= F then hI

H

; I

T

; T i j= F .

11

The other relates the satisfation relation of HT to the satisfation

relation of lassial logi:

Fat 2 For any HT-interpretation hI

H

; I

T

i and any propositional formula F ,

hI

H

; I

T

; T i j= F i� I

T

j= F .

Proof of Lemma 2. Aording to the de�nition of the redut (Setion 3),

�

(I

T

)

is the program obtained from � by the simultaneous replaement

of some maximal subformulas of the form not F with >, and of all other

maximal subformulas of this form with ?. It is suÆient to hek that, for

any maximal subformula not F and for the formula G that replaes it,

hI

H

; I

T

i j= not F i� hI

H

; I

T

i j= G:

Sine G is either > or ?, this laim an be rewritten as

hI

H

; I

T

i j= not F i� G = >:

The left-hand side of this equivalene holds i�

hI

H

; I

T

;Hi 6j= F and hI

H

; I

T

; T i 6j= F:

By Fat 1, the �rst onjuntive term is a onsequene of the seond one, and

an be dropped. By Fat 2, the seond term an be rewritten as I

T

6j= F ,

whih is the ondition haraterizing the ase G = > in the de�nition of the

redut.

Lemma 3 For any program � and any set I of atoms, the HT-

interpretation hI; Ii is an equilibrium model of � i� I is an answer set

for �.

This lemma generalises Proposition 10 from

[

Peare, 1997

℄

to programs

with nested expressions. Its proof uses the following fat:

Fat 3 A set of atoms is losed under a program � i� it is a model of � in

the sense of lassial logi.

To prove this assertion, note that a set of atoms satis�es a formula F in

the sense of Setion 3 i� it satis�es F in the sense of lassial logi.

Proof of Lemma 3. By the de�nition of an answer set, I is an answer set

for � i� I is an answer set for the redut �

I

, that is, i�

� I is losed under �

I

, and

� for every proper subset J of I, J is not losed under �

I

.

12

In view of Fat 3, these onditions an be restated as follows:

� I is a model of �

I

, and

� for every proper subset J of I, J is not a model of �

I

.

By Lemma 1, this is equivalent to saying that

� hI; Ii is a model of �

I

, and

� for every proper subset J of I, hJ; Ii is not a model of �

I

.

By Lemma 2, �

I

in both lauses an be replaed with �, whih turns these

onditions into the de�nition of an equilibrium model of �.

4.5 Proof of Main Theorem

The de�nition of a unary program (Setion 4.1) is extended to propositional

theories in a natural way: A theory � is unary if every formula in � is either

an atom or an impliation whose anteedent and onsequent are atoms. In

view of Lemma 3, Theorem 1 is a speial ase of the following assertion:

Lemma 4 For any theories �

1

and �

2

, the following onditions are

equivalent:

(a) for every theory �, theories �

1

[� and �

2

[� have the same equilibrium

models,

(b) for every unary theory �, theories �

1

[� and �

2

[� have the same

equilibrium models,

() �

1

is equivalent to �

2

in the logi of here-and-there.

Proof. Obviously (a) implies (b). To see that () implies (a), observe that

if �

1

and �

2

are equivalent in logi HT then �

1

[� and �

2

[� are equivalent

in HT also, so that both theories have the same equilibrium models. It

remains to hek that (b) implies ().

Suppose that �

1

has a model hI

H

; I

T

i whih is not a model of �

2

. We'll

show how to �nd a unary theory � suh that hI

T

; I

T

i is an equilibrium

model of one of the theories �

1

[�, �

2

[� but not an equilibrium model of

the other.

Case 1: hI

T

; I

T

i is not a model of �

2

. It is easy to see that it is a

model of �

1

. Indeed, from the assumption that hI

H

; I

T

i is a model of �

1

we an onlude by Fat 1 that hI

H

; I

T

; T i satis�es every formula in �

1

;

onsequently hI

T

; I

T

i satis�es every formula in �

1

as well. We take � = I

T

.

It is lear that hI

T

; I

T

i is a model of �

1

[I

T

; by inspetion, it is an

13

equilibrium model of this theory. On the other hand, it is not a model

of �

2

, so that it annot be a model of �

2

[I

T

.

Case 2: hI

T

; I

T

i is a model of �

2

. De�ne

� = I

H

[fA! B : A;B 2 I

T

n I

H

; A 6= Bg:

Sine hI

T

; I

T

i satis�es every formula in �, it is a model of �

2

[�. To see

that it is in equilibrium, onsider any model hJ; I

T

i of �

2

[� suh that J is

a proper subset of I

T

. Clearly J must ontain I

H

. But it annot be equal to

I

H

, sine by assumption hI

H

; I

T

i is not a model of �

2

. Thus I

H

� J � I

T

.

Take an atom A 2 J n I

H

and an atom B 2 I

T

nJ . For these atoms, A! B

belongs to �. But hJ; I

T

i does not satisfy this impliation, ontrary to the

assumption that it is a model of �

2

[�. Finally, we'll hek that hI

T

; I

T

i is

not an equilibrium model of �

1

[�. To see this, onsider the model hI

H

; I

T

i

of �

1

. Clearly it is a model of I

H

. Moreover, this model satis�es eah

impliation A ! B in �: hI

H

; I

T

;Hi does not satisfy A beause A 62 I

H

,

and hI

H

; I

T

; T i satis�es B beause B 2 I

T

. We see that hI

H

; I

T

i satis�es

all formulas in �, so that this is a model of �

1

[�. On the other hand,

I

H

is di�erent from I

T

, beause hI

T

; I

T

i is a model of �

2

, and hI

H

; I

T

i is

not. Consequently, I

H

is a proper subset of I

T

, so that hI

T

; I

T

i is not an

equilibrium model of �

1

[�.

5 Adding a Seond Negation

Answer sets are usually de�ned for logi programs possessing a seond

kind of negation, whih expresses the diret or expliit falsity of an atom.

In

[

Gelfond and Lifshitz, 1991

℄

and

[

Lifshitz et al., 1999

℄

, this seond

negation is alled \lassial" and denoted by :.

A literal is understood to be a propositional atom or an atom pre�xed

by :. We de�ne extended formulas, extended rules and extended programs

exatly as we de�ned formulas, rules and programs in Setion 3 above, exept

that arbitrary literals are allowed in them in plae of atoms. The semantis

of extended programs de�nes when a onsistent set X of literals is an answer

set for an extended program �; see

[

Lifshitz et al., 1999

℄

for details.

Adding a seond negation to the syntax of logi programs is important

for appliations to knowledge representation, but, omputationally, this

extension is not very essential. In fat, the seond negation an be eliminated

from a program by a simple syntati transformation. For every atom A of

the underlying language, hoose a new atom A

0

. For any extended program

�, let �

0

be the non-extended program obtained from � by replaing all

negative literals :A with A

0

. By Cons we denote the set of all onstraints

of the form ? A;A

0

. It is easy to show that there is a 1{1 orrespondene

14

between the answer sets for � and the answer sets for �

0

[Cons ; if X is

an answer set for � then the orresponding answer set X

0

for �

0

[Cons

is obtained from X by replaing every negative literal :A with A

0

. For

instane, if � is

p;:p ;

q p ;

:q

(15)

then �

0

[Cons is

p; p

0

;

q p ;

q

0

;

? p; p

0

;

? q; q

0

(16)

(assuming that the underlying language has no atoms other than p and q).

The only answer set for (15) is f:pg; aordingly, the only answer set for

(16) is fp

0

g.

Questions onerning the strong equivalene of programs also arise in

this extended setting. For instane, it was shown in

[

Erdem and Lifshitz,

1999

℄

that, in any extended program, the disjuntive rule

p;:p (17)

an be equivalently replaed by the two nondisjuntive rules

p not :p ;

:p not p :

(18)

The following theorem allows us to redue the veri�ation of the strong

equivalene of extended programs to heking the equivalene of sets of

formulas in HT .

Theorem 2 For any extended programs �

1

and �

2

, the following onditions

are equivalent:

(a) for every extended program �, extended programs �

1

[� and �

2

[�

have the same answer sets,

(b) �

0

1

[Cons is equivalent to �

0

2

[Cons in the logi of here-and-there.

To see, for instane, that (17) and (18) are strongly equivalent it suÆes

to hek the equivalene in HT of

p; p

0

;

? p; p

0

15

and

p not p

0

;

p

0

 not p ;

? p; p

0

:

But these are exatly programs (4) and (5) disussed in the introdution,

with p

0

substituted for q. Rewritten as sets of propositional formulas, these

two programs beome (6) and (7), whih we have already shown to be

equivalent in Setion 2.

Proof of Theorem 2. Let �

1

, �

2

and � be extended programs suh that

�

0

1

[Cons is equivalent to �

0

2

[Cons in HT . By Theorem 1, �

0

1

[Cons [�

0

has the same answer sets as �

0

2

[Cons[�

0

. Consequently �

1

[� has the same

answer sets as �

2

[�. Conversely, assume that �

1

, �

2

be extended programs

suh that, for every extended program �, �

1

[� has the same answer sets

as �

2

[�. Then, for every extended program �, �

0

1

[�

0

[Cons has the

same answer sets as �

0

2

[�

0

[Cons . Sine every non-extended program in

the language with the additional atoms A

0

an be represented in the form �

0

for some extended program � in the original language, Theorem 1 implies

that �

0

1

[Cons is equivalent to �

0

2

[Cons in HT .

Alternatively, strong equivalene of extended programs an be studied by

extending the language of HT with a seond negation�, known in the logial

literature as strong negation. Strong negation was originally introdued by

Nelson

[

Nelson, 1949

℄

in order to model a logial onept of onstrutible

falsity. Later Vorob'ev

[

Vorob'ev, 1952a, Vorob'ev, 1952b

℄

showed how to

axiomatise the notion of strong negation. Adding � together with the

Vorob'ev axioms to the logi HT yields a logi with �ve truth values, alled

here-and-there with strong negation, whih we an denote by N5 . This

logi is studied algebraially in

[

Kraht, 1998

℄

; proof systems an be found

in

[

Peare et al., 2000b

℄

and

[

Peare et al., 2000a

℄

. N5 -interpretations are

like HT -interpretations hI

H

; I

T

i, exept that I

H

and I

T

are now sets of

literals, as before with I

H

� I

T

. The onept of an equilibrium model in

N5 is de�ned analogously to the ase of HT

[

Peare, 1997

℄

.

To identify extended formulas and extended rules with propositional

formulas of N5 , we translate : to strong negation �. The orrespondene

between the language of logi programs and the language of propositional

formulas in the presene of two negations is summarised in the following

table:

Extended formulas ; ; not :

N5 formulas ^ _ : �

Our main theorem readily generalises to the new setting (the method of

16

proof is exatly the same): we an show that two extended programs are

strongly equivalent if and only if they are equivalent in the logi N5 .

It is interesting to note that the method of eliminating the seond

negation from extended programs disussed at the beginning of this setion

an be generalised to N5 . For any formula F in the language of N5 , there is

an equivalent \redued" formula r(F) in whih the strong negation symbol�

has been \driven-in" so that it stands diretly in front of an atom

[

Vorob'ev,

1964

℄

. Consider the syntati transformation that eliminates strong negation

from a formula F by replaing eah part of the form � A in r(F) with a new

atom A

0

. Under the assumptions :(A ^A

0

), this transformation provides a

redution of N5 to HT . This is similar to the redution of Nelson's logi of

strong negation to intuitionisti logi proposed by Gurevih [1977℄.

6 Conlusion

Fats about the strong equivalene of logi programs tell us how one an

simplify a part of a logi program without looking at the other parts.

Strong equivalene an be haraterized in terms of the logi of here-

and-there. The set of theorems of this logi inludes all intuitionistially

provable propositional formulas, the weak law of the exluded middle, and

De Morgan's laws. The fat that two programs are strongly equivalent an be

often established by deriving them from eah other using these logial means.

There is a exponential time algorithm for verifying strong equivalene.

The de�nition of the answer set semantis for extended nondisjuntive

programs in

[

Gelfond and Lifshitz, 1991

℄

was suggested by the view that

suh programs are merely a speial ase of default theories in the sense

of

[

Reiter, 1980

℄

. Defaults are a generalisation of inferene rules: besides the

premise and the onlusion, a default has \justi�ations." Aordingly, the

symbol in a logi program is similar to the bar separating the onlusion

from the premise in an inferene rule. The role of negation as failure in

a program is similar to the role of justi�ations in a default theory. An

extension for a default theory is a theory in the sense of lassial logi;

aordingly, the symbol : in a logi program is lassial negation.

The results of this paper provide additional evidene in support of an

alternative view of the answer set semantis, presented in

[

Peare, 1997

℄

.

Answer sets are a speial ase of equilibrium models. Rules in a logi

program are similar to propositional formulas in the logi of here-and-

there, and negation as failure being the ounterparts of impliation

and negation. Introduing the seond negation is similar to adding strong

negation to that logi. This perspetive is useful, in partiular, for the study

of strong equivalene.

17

Aknowledgements

We are grateful to Yuliya Babovih, Pedro Cabalar, Jonathan Campbell,

Esra Erdem, Selim Erdo�gan, Mihael Gelfond, Paolo Ferraris, Dik de Jongh,

Lex Hendriks, Joohyung Lee, Grigori Mints and Hudson Turner for useful

disussions related to the subjet of this paper. The work of the �rst author

was partially supported by National Siene Foundation under grant IIS-

9732744.

Referenes

[

Bibel and Eder, 1993

℄

Wolfgang Bibel and Elmar Eder. A survey of logial

aluli. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, The

Handbook of Logi in AI and Logi Programming, volume 1, pages 67{182.

Oxford University Press, 1993.

[

Erdem and Lifshitz, 1999

℄

Esra Erdem and Vladimir Lifshitz. Transfor-

mations of logi programs related to ausality and planning. In Logi Pro-

gramming and Non-monotoni Reasoning: Pro. Fifth Int'l Conf. (Leture

Notes in Arti�ial Intelligene 1730), pages 107{116, 1999.

[

Ferraris and Lifshitz, 2000

℄

Paolo Ferraris and Vladimir Lifshitz. Weight

onstraints as nested expressions. In preparation, 2000.

[

Gelfond and Lifshitz, 1988

℄

Mihael Gelfond and Vladimir Lifshitz. The

stable model semantis for logi programming. In Robert Kowalski and

Kenneth Bowen, editors, Logi Programming: Pro. Fifth Int'l Conf. and

Symp., pages 1070{1080, 1988.

[

Gelfond and Lifshitz, 1991

℄

Mihael Gelfond and Vladimir Lifshitz. Clas-

sial negation in logi programs and disjuntive databases. New Genera-

tion Computing, 9:365{385, 1991.

[

G�odel, 1932

℄

Kurt G�odel. Zum intuitionistishen Aussagenkalk�ul. Anzeiger

der Akademie der Wissenshaften in Wien, pages 65{66, 1932. Repro-

dued in: Kurt G�odel, Colleted Works, Vol. 1, OUP, 1986.

[

Gurevih, 1977

℄

Yuri Gurevih. Intuitionisti logi with strong negation.

Studia Logia, 36:49{59, 1977.

[

Heyting, 1930

℄

Arend Heyting. Die formalen Regeln der intuitionistishen

Logik. Sitz. Berlin, pages 42{56, 1930.

[

Inoue and Sakama, 1998

℄

Katsumi Inoue and Chiaki Sakama. Negation as

failure in the head. Journal of Logi Programming, 35:39{78, 1998.

18

[

Kraht, 1998

℄

Marus Kraht. On extensions of intermediate logis by

strong negation. Journal of Philosophial Logi, 27, 1998.

[

Lifshitz et al., 1999

℄

Vladimir Lifshitz, Lappoon R. Tang, and Hudson

Turner. Nested expressions in logi programs. Annals of Mathematis

and Arti�ial Intelligene, 25:369{389, 1999.

[

 Lukasiewiz, 1941

℄

Jan Lukasiewiz. Die Logik und das Grundlagenprob-

lem. In Les Entretiens de Z�urih sue les Fondements et la m�ethode des

sienes math�ematiques 1938, pages 82{100. Z�urih, 1941.

[

Nelson, 1949

℄

David Nelson. Construtible falsity. Journal of Symboli

Logi, 14:16{26, 1949.

[

Peare et al., 2000a

℄

David Peare, Immaulada de Guzm�an, and

Agust��n Valverde. A tableau alulus for equilibrium entailment. In

Pro. TABLEAUX-2000, pages 352{367, 2000.

[

Peare et al., 2000b

℄

David Peare, Immaulada de Guzm�an, and Agustin

Valverde. Computing equilibrium models using signed formulas. In

Pro. CL-2000, pages 688{702, 2000.

[

Peare, 1997

℄

David Peare. A new logial haraterization of stable models

and answer sets. In J�urgen Dix, Luis Pereira, and Teodor Przymusinski,

editors, Non-Monotoni Extensions of Logi Programming (Leture Notes

in Arti�ial Intelligene 1216), pages 57{70. Springer-Verlag, 1997.

[

Peare, 1999

℄

David Peare. From here to there: Stable negation in logi

programming. In D. Gabbay and H. Wansing, editors, What Is Negation?

Kluwer, 1999.

[

Reiter, 1980

℄

Raymond Reiter. A logi for default reasoning. Arti�ial

Intelligene, 13:81{132, 1980.

[

Vorob'ev, 1952a

℄

Nikolay Vorob'ev. Construtive propositional alulus

with strong negation. Doklady Akademii Nauk SSSR, 85:465{468, 1952.

In Russian.

[

Vorob'ev, 1952b

℄

Nikolay Vorob'ev. The problem of deduibility in

onstrutive propositional alulus with strong negation. Doklady

Akademii Nauk SSSR, 85:689{692, 1952. In Russian.

[

Vorob'ev, 1964

℄

Nikolay Vorob'ev. Construtive propositional alulus with

strong negation. Transations of Steklov's Institute, 72:195{227, 1964. In

Russian.

19

