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Abstract

A logic program II; is said to be equivalent to a logic program Il
in the sense of the answer set semantics if II; and II; have the same
answer sets. We are interested in the following stronger condition: for
every logic program II, II; U II has the same answer sets as II, U II.
The study of strong equivalence is important, because we learn from
it how one can simplify a part of a logic program without looking
at the rest of it. The main theorem shows that the verification of
strong equivalence can be accomplished by checking the equivalence of
formulas in a monotonic logic, called the logic of here-and-there, which
is intermediate between classical logic and intuitionistic logic.

1 Introduction

This paper is about logic programs with negation as failure under the answer
set (“stable model”) semantics [Gelfond and Lifschitz, 1988]. A program II;
is said to be equivalent to a program Il5 if II; and Il have the same answer
sets. We are interested here in the following stronger condition: for every
program II, II; UII is equivalent to IIy U II.

Counsider, for instance, the one-rule programs p <— not ¢ and p. These
programs have the same answer set {p}, but they are not equivalent in the
strong sense: if we add the rule ¢ to each of the two programs, the answer set
for the first will become {¢}, and the answer set for the second will become
{p,q}. On the other hand, the program

pq,
q



is strongly equivalent to

p)

q .
The rule p < ¢, not q is strongly equivalent to the empty set: removing this
rule from a program does not affect the program’s answer sets.

There is an interesting analogy between the strong equivalence of logic
programs and equivalence of propositional formulas. In each of the examples
above, let’s think of rules as propositional formulas: replace every mnot
with —, every comma with A, and turn every rule

Head < Body

into the implication
Body — Head.

The programs in the first example above turn into

{—q — p} and {p}

—two sets of formulas that are not equivalent in propositional logic. On
the other hand, the second example turns into a pair of equivalent sets of
formulas

{g — p.q} and {p,q}.
And so does the third example:

{gN\—q— p} and 0

are propositionally equivalent.

This analogy is not complete, however. In propositional logic, —p — ¢
is equivalent to —q — p, but the rules ¢ < not p and p < not g are not
strongly equivalent; they are not even equivalent in the weak sense.

In connection with the last example one might remember that
intuitionistically the formulas —p — g and —g — p are not equivalent. Could
intuitionistic logic be a better tool for the study of strong equivalence than
classical logic?

Using intuitionistic logic for this purpose is indeed a good idea, but even
better results will be achieved if we use a stronger subsystem of classical
propositional logic—“the logic of here-and-there,” HT. The main theorem
of this paper shows that there is a perfect match between the logic of
here-and-there and the strong equivalence of logic programs: two programs
are strongly equivalent if and only if these programs, viewed as sets of
propositional formulas, are equivalent in HT'.

The logic of here-and-there can be defined in terms of 3-valued truth
tables. These truth tables were originally introduced by Heyting [1930]



as a technical device, for the purpose of demonstrating that intuitionistic
logic is weaker than classical. Heyting remarks that the truth values in
these tables “can be interpreted as follows: 0 denotes a correct proposition,
1 denotes a false proposition, and 2 denotes a proposition that cannot
be false but whose correctness is not proved.” The proof of the fact
that intuitionistic logic cannot be described by a finite set of truth values
in [Godel, 1932] uses an infinite monotonically decreasing sequence of
systems whose first member is classical logic, and whose second member
happens to be HT. The logic of here-and-there is known also as “the
logic of present and future” or “the Smetanich logic.” It was apparently
first axiomatised in [Lukasiewicz, 1941]. The importance of HT for the
study of logic programming can be seen from the results of Pearce [1997,
1999].

Since HT is a 3-valued logic, there is an exponential time algorithm
for deciding whether two propositional formulas are equivalent in HT.
Consequently, the strong equivalence of logic programs can be verified in
exponential time.

Interesting questions about the strong equivalence of programs arise in
disjunctive logic programming. Compare the disjunctive rule

D q (1)

with the program
p < not q ,
q< notp.

(2)

Each of these two programs has the answer sets {p}, {¢}, but (1) and (2)
are not strongly equivalent: the program obtained by adding the rules

P<q,
7 p (3)

to (1) has the answer set {p, ¢}, which is not an answer set for the program
obtained by adding the same rules to (2). On the other hand, the program

p;q,
4
L+pyg @
is strongly equivalent to
p < not q ,
q < notp, (5)
1L pq.

This fact illustrates the possibility of eliminating “exclusive disjunctions”
from a logic program.



Although program (1) is disjunctive, the counterexample (3) proving
that (1) and (2) are not strongly equivalent does not contain disjunctive
rules. It does not even contain negation as failure. We’ll see that this is a
general phenomenon: if there exists a program II such that II; UII is not
equivalent to IIoUII then we can always find a program II with this property
such that the rules of Il are syntactically very simple. Furthermore, we’ll
show that the relationship between logic HT and the strong equivalence of
logic programs discussed above holds in the presence of disjunctive rules, if
we agree to identify the semicolon with V. Written as sets of propositional
formulas, (4) and (5) become

{rVg,-(prg)} (6)

and
{-p—=q¢-q—=p,-(Nq)} (7)

These two sets are equivalent in the logic of here-and-there (although they
are not equivalent in the weaker intuitionistic logic).

Several published results on the answer set semantics address, implicitly,
the topic of strong equivalence. Theorem 1 from [Erdem and Lifschitz, 1999],
discussed in Section 5 below, is similar to the assertion about the strong
equivalence between programs (4) and (5). Corollary 4.10 from [Inoue and
Sakama, 1998] gives an example of strong equivalence for programs with
negation as failure in the heads of rules. Theorems stated in Section 4
of [Lifschitz et al., 1999] provide numerous examples of strongly equivalent
programs with nested expressions in the heads and bodies of rules. We'll
return to some of these examples in Section 4.2.

The study of strong equivalence is important, because we learn from it
how one can simplify a part of a logic program without looking at the rest
of it.

In the next two sections, we review the logic of here-and-there and the
answer set semantics of logic programs. In Section 4 we state and prove the
main theorem and give examples of its use. In Section 5 the main theorem
is extended to programs with two kinds of negation.

2 Logic of Here-and-There

Propositional formulas are built from propositional atoms and the 0-place
connective | using the binary connectives A, V and —. We write T for
1 — 1, and —=F for F — 1. A theory is a set of propositional formulas.

Recall that, in classical propositional logic, interpretations can be viewed
as sets of atoms. The satisfaction relation between an interpretation I and
a formula F' can be then defined recursively, as follows:



for an atom p, I Epifp eI,

I L,

IEFANGifIEFandI|=G

IEFVGiIEForlEG,
e [EF—>GifIEForllEQG.

A model of a theory I' in the sense of classical logic is an interpretation that
satisfies every formula in I'.

2.1 Semantics

An HT-interpretation is an ordered pair (I*!) I') of sets of atoms such that
I C IT. Intuitively, such a pair describes “two worlds”: the atoms in I
are true “here,” and the atoms in I are true “there.” Accordingly, we call
the symbols H and T' worlds.! The worlds are ordered by H < T.

For any HT-interpretation (I IT) any world w, and any formula F,
we define when the triple (I, I7 w) satisfies F recursively, as follows:

e for any atom F, (I T w) |= F if F € IV,
[ ]

IH,IT,w = F/\Glf(IH IT w) = F and (I I, w) = G,

( w)
( )
o (I 1T w) EFVGif (I7, 17 w) = F or (I7, 17 w) = G
( w) E F — G if, for every world w' such that w < o/,
(IH,IT w') £ For (I, 1" ') |= G.

We say that an HT-interpretation (I*/ IT) satisfies F if (I 1T H)
satisfies F'. A model of a theory I' in the sense of logic HT is an HT-
interpretation that satisfies every formula in I'.

A formula F is a consequence of a set I' of formulas in logic HT
(symbolically, I' Egr F) if every model of I in the sense of HT satisfies F
also. We say that I' is equivalent to A in the sense of HT if I" and A have
the same models in the sense of HT'.

An HT-interpretation (I IT) is said to be total if I = I7.

Every consequence of I' in the logic of here-and-there is a consequence
of I" in the sense of classical logic. (Proof: An interpretation I satisfies F’
iff the total interpretation (I, I) satisfies F'.) But the converse is not true.

!This terminology, and the definitions that follow, will not be new to the readers
familiar with Kripke models. HT-interpretations are a special case of that concept.



For instance, p V —p and ——p — p are not theorems of HT, that is to say,
they are not consequences of the empty set of formulas; -¢ — p is not a
consequence of —=p — q. (Proof: in each case, take I =0, IT = {p}.)

In the definition of HT in terms of 3 truth values, the value assigned to
an atom p is determined by whether p belongs to I, I\ I# | or neither.

2.2 Deduction

Recall that a natural deduction system for intuitionistic logic can be
obtained from the corresponding classical system [Bibel and Eder, 1993,
Table 3] by dropping the law of the excluded middle

Fv-F

from the list of postulates. A formalisation of HT can be obtained from
intuitionistic logic by adding the axiom schema

FV(F—G)V-G (8)

(Lex Hendriks, personal communication).
The most useful, for our purposes, consequence of (8) is the weak law of
the excluded middle
—FV ——F (9)

(in (8), take G to be —F'). All proofs in HT given below are actually proofs
in intuitionistic logic extended with (9). There is a good reason for that:
for any two propositional formulas Fi, F5 that correspond to logic programs
in the sense of Section 3, if F} is equivalent to F5 in the logic of here-and-
there then the equivalence F; <> F> can be derived from the weak law of
the excluded middle in intuitionistic logic (Dick de Jongh and Lex Hendriks,
personal communication).
It is easy to see that De Morgan’s laws

=(FVG)+ —~FA-G,
“(FAG) < -FV-G

are provable in HT'. Indeed, the first equivalence and one half of the second
are provable intuitionistically; to derive =F V =G from —(F A G), consider
two cases —F, -—F.

Using De Morgan’s laws, we can verify that (6) is equivalent to (7): these
two sets of formulas can be rewritten as

{pVaqg,—pV—q}

and
{-p—q9¢,~¢—=p,~pV —q},



which are intuitionistically equivalent.
Another interesting equivalence provable in HT is

-FVG<+ ——F—Q(G.

Left-to-right, it is provable intuitionistically; right-to-left, consider two cases
_I_Z?7 _l_|F'

3 Logic Programs and Answer Sets

The presentation below follows essentially [Lifschitz et al., 1999], except that
the second kind of negation is not allowed here.?

Formulas are built from propositional atoms and the 0-place connec-
tives T and L using negation as failure (not), conjunction (,) and disjunction
(;). A rule is an expression of the form

Head < Body (10)

where Head and Body are formulas. If Body is T then we identify rule (10)
with formula Head. A program is a set of rules.

We define when a set X of atoms satisfies a formula F' (symbolically,
X [E F) recursively, as follows:

e for an atom p, X Epifp € X,
e XET,

X WL

XE(F,G) ifXEFandX =G
e X = (F;G)if X =For X =G,
e X Enot Fif X £ F.

The reduct II* of a program II with respect to a set X of atoms is
obtained by replacing every maximal occurrence of a formula of the form
not F in II (that is, every occurrence of not F' that isn’t in the range of
another not)

e with L if X = F,

e with T, otherwise.?

? Adding the second negation is discussed in Section 5.
3As observed in [Ferraris and Lifschitz, 2000], this definition is equivalent to the
recursive definition of a reduct given in [Lifschitz et al., 1999].



The concept of an answer set is defined first for programs not containing
negation as failure. A set X of atoms is closed under such a program II if|
for every rule (10) in II, X |= Head whenever X |= Body. An answer set for
a program II without negation as failure is a minimal set closed under II.

For an arbitrary program II, we say that X is an answer set for II if X
is an answer set for the reduct ITX.

Let us check, for instance, that {p} is an answer set for (2). The reduct
of (2) with respect to {p} is

pe T,
g+ L.

Clearly {p} is a minimal set closed under this reduct.

4 Strong Equivalence

4.1 Main Theorem

A program II is unary if, in every rule of II, the head is an atom and the
body is either T or an atom.

In the statement of the theorem, we identify formulas and rules in
the sense of Section 3 with propositional formulas, as described in the
introduction. Accordingly, programs become a special case of theories, and
we can talk about the equivalence of programs in the logic of here and there.

Theorem 1 For any programs Iy and Ils, the following conditions are
equivalent:

(a) for every program II, programs II; UIL and Il U II have the same
answer sets,

(b) for every unary program II, programs I1; UIL and IIo UII have the same
answer sets,

(c) II; is equivalent to Iy in the logic of here-and-there.

The fact that (b) implies (a) shows that the strong equivalence condition
we are interested in (“for every II, II; UII is equivalent to Il U II”) does
not depend very much on what kind of program II is assumed to be: it does
not matter whether II is required to belong to the narrow class of unary
programs or is allowed to be an arbitrary program with nested expressions.
The fact that (a) is equivalent to (c) expresses the correspondence between
the strong equivalence of logic programs and the equivalence of formulas in
the logic of here-and-there.

The proof of the theorem is given in Section 4.5 below.



4.2 Some Examples

We have already seen how the equivalence of conditions (a) and (c), along
with the properties of the logic of here-and-there stated in Section 2, can
be used to prove the strong equivalence of logic programs. Here are further
examples.

Replacing a rule of the form

not Fi;...;not Fj, + G
in any program by the constraint?
L (—Fl,...,Fk,G

does not affect the program’s answer sets [Inoue and Sakama, 1998,
Section 4.2], because the corresponding formulas are equivalent in HT. This
fact is interesting because the role of constraints in a logic program is well
understood: adding a constraint to a program eliminates its answer sets that
“violate” the constraint [Lifschitz et al., 1999, Proposition 2].

In any program, replacing a subformula of the form not(F,G) with
not F; not G does not change its answer sets, as well as replacing not(F; G)
with not F,not G [Lifschitz et al., 1999, Proposition 4(iv)]. Indeed, as we
saw in Section 2, the logic of here-and-there satisfies De Morgan’s laws.

In any program containing the rules

F;G ,
1« F G,
F+— H

replacing the last rule by the constraint
1L ¢ not FFH

does not affect the program’s answer sets, because the corresponding sets of
formulas are equivalent in HT (and even in intuitionistic logic).

On the other hand, Theorem 1 can be used to prove that some pairs of
programs are not strongly equivalent. For instance, the program

p<gq,
11
p < not q (11)

is not strongly equivalent to p, because p is not a consequence of the formulas
¢ — p, ~q¢ — p in the logic of here-and-there. (Proof: Take Il = ),
IT = {p,q}.) This fact can be also proved directly, by adding q + p to each
of the two programs.

YA constraint is a rule whose head is L.



4.3 A Remark on Intuitionistic Logic

The example of programs (4) and (5) shows that the logic of here-and-there
in the statement of Theorem 1 cannot be replaced by intuitionistic logic:
these programs are strongly equivalent, but not intuitionistically equivalent.
Program (4) is syntactically rather complicated: it contains a disjunctive
rule and a constraint. But we can give a similar counterexample without
using rules like these. Consider the program

q < notp,

p < not q

r<p,q, (12)
s+<p,

S4q

and the program obtained from (12) by adding the rule
s < notr . (13)

These programs are not equivalent to each other intuitionistically, which
can be proved using a Kripke model with 3 worlds. But they are strongly
equivalent. To derive —r — s from

-p—4q, ¢q—=p, (PAq) =T, p—=>5 q—>5s (14)

in AT, assume —r. Using the third of formulas (14) and de Morgan’s laws,
we derive —p V —q. Using the first two of formulas (14), we derive p V q.
Using the last two of formulas (14), we derive s.

4.4 Equilibrium Logic

In order to prove the main theorem we shall make use of some results about
a system of nonmonotonic reasoning called equilibrium logic, developed in
Pearce [1997, 1999].

Equilibrium logic can be described as a special kind of minimal model
reasoning in logic HT, as follows. An equilibrium model of a theory I' is a
total HT-interpretation (I, I) such that

(i) (Z,I) is a model of I, and
(ii) for every proper subset J of I, (J,I) is not a model of T".

Consider, for instance, the theory comprising a single atomic formula p.
Some of its models in the sense of logic HT are

({p}, {p}),
({r}, {p, q})
({p,a}, {p. q}).

10



The first of them is an equilibrium model. The second is not, because it is
not total. The third is not an equilibrium model either, because it does not
satisfy the minimality condition (ii).
As another example, take the theory ——p. Some of its models in the
sense of logic HT are
@, {r}),

{p}, {p})-

Neither is an equilibrium model: the first is not total, and the second is not
minimal. In fact, this theory has no equilibrium models.
Equilibrium logic is defined by that which holds in all equilibrium models.
The main property of equilibrium logic that we need here is captured in
Lemma 3 below, which asserts essentially that the concept of an equilibrium
model is a generalization of the concept of an answer set.

Lemma 1 For any program I without negation as failure, an HT-
interpretation (I IT) is a model of I1 in the sense of HT iff both I and
IT are models of II in the sense of classical logic.

Proof. Let II be a program without negation as failure. An HT-
interpretation (I I7) is a model of II iff, for every rule Head < Body
in II,

(I 1T H) |= Body implies (I, 1T H) \= Head
and

(1 1", T) = Body implies (I, I, T) = Head.

Since Head and Body do not contain negation as failure, these conditions
can be simplified as follows:

I" \= Body implies I |= Head,

IT = Body implies IT |= Head.

To require this to hold for every rule Head < Body in II means to require
that I and I” be models of II in the sense of classical logic.

Lemma 2 An HT-interpretation (I I7) is a model of a program II iff it
ts a model of the reduct ™.

The proof of the lemma uses two facts that can be easily verified
by structural induction. One is a “monotonicity property” of HT-
interpretations:

Fact 1 For any HT -interpretation <IH, IT> and any propositional formula F,
if (17 IT H) |= F then (I% ITT) |= F.

11



The other relates the satisfaction relation of HT to the satisfaction
relation of classical logic:

Fact 2 For any HT -interpretation (I | IT) and any propositional formula F,
(IH 1T, TYEF iff IT = F.

Proof of Lemma 2. According to the definition of the reduct (Section 3),
) is the program obtained from II by the simultaneous replacement
of some maximal subformulas of the form not F' with T, and of all other
maximal subformulas of this form with L. It is sufficient to check that, for
any maximal subformula not F' and for the formula G that replaces it,

(I 17 |= not F iff (I 1) = G.
Since G is either T or L, this claim can be rewritten as
(I 17) = not Fiff G =T.
The left-hand side of this equivalence holds iff
(1 1T H) - F and (I%,17,T) |~ F.

By Fact 1, the first conjunctive term is a consequence of the second one, and
can be dropped. By Fact 2, the second term can be rewritten as I7 K F,
which is the condition characterizing the case G = T in the definition of the
reduct.

Lemma 3 For any program Il and any set I of atoms, the HT-
interpretation (I,I) is an equilibrium model of II iff I is an answer set
for 11.

This lemma generalises Proposition 10 from [Pearce, 1997] to programs
with nested expressions. Its proof uses the following fact:

Fact 3 A set of atoms is closed under a program I iff it is a model of 11 in
the sense of classical logic.

To prove this assertion, note that a set of atoms satisfies a formula F' in
the sense of Section 3 iff it satisfies F' in the sense of classical logic.

Proof of Lemma 3. By the definition of an answer set, I is an answer set
for IT iff T is an answer set for the reduct I/, that is, iff

e I is closed under II’, and

e for every proper subset J of I, J is not closed under IT7.

12



In view of Fact 3, these conditions can be restated as follows:
e I is a model of IT!, and
e for every proper subset J of I, J is not a model of IT .
By Lemma 1, this is equivalent to saying that
e (I,I) is a model of IT!, and
e for every proper subset J of I, (J,I) is not a model of I,

By Lemma 2, I/ in both clauses can be replaced with II, which turns these
conditions into the definition of an equilibrium model of II.

4.5 Proof of Main Theorem

The definition of a unary program (Section 4.1) is extended to propositional
theories in a natural way: A theory I is unary if every formula in I' is either
an atom or an implication whose antecedent and consequent are atoms. In
view of Lemma 3, Theorem 1 is a special case of the following assertion:

Lemma 4 For any theories I'y and DI's, the following conditions are
equivalent:

(a) for every theory L', theories 'y UL" and Iy UL have the same equilibrium
models,

(b) for every unary theory T, theories I'y UT and I's UT' have the same
equilibrium models,

(c) 'y is equivalent to I'y in the logic of here-and-there.

Proof. Obviously (a) implies (b). To see that (c) implies (a), observe that
if I'y and I'y are equivalent in logic HT then I'; UT" and I's UT" are equivalent
in HT also, so that both theories have the same equilibrium models. It
remains to check that (b) implies (c).

Suppose that I'; has a model (I*/| I"') which is not a model of I'y. We’ll
show how to find a unary theory I' such that (I7,I7) is an equilibrium
model of one of the theories I'y UL', I'y UT" but not an equilibrium model of
the other.

Case 1: (IT,IT) is not a model of T'5. It is easy to see that it is a
model of I';. Indeed, from the assumption that (I IT) is a model of I';
we can conclude by Fact 1 that (I, I T) satisfies every formula in I'y;
consequently (IT, I} satisfies every formula in I'; as well. We take I' = I7.
It is clear that (I7,IT) is a model of Ty U IT; by inspection, it is an

13



equilibrium model of this theory. On the other hand, it is not a model
of T'y, so that it cannot be a model of Ty U IT.
Case 2: (IT,I7) is a model of I'y. Define

r=1"u{A—B: ABeI"\I" A+B)}

Since (I7, IT) satisfies every formula in T, it is a model of I'; UT. To see
that it is in equilibrium, consider any model (J, IT) of I'y UT such that J is
a proper subset of I7". Clearly J must contain I*. But it cannot be equal to
TH | since by assumption (I, IT) is not a model of I'y. Thus I# c J C I7.
Take an atom A € J\ I and an atom B € I7\ J. For these atoms, A — B
belongs to I'. But (J, IT7) does not satisfy this implication, contrary to the
assumption that it is a model of 'y UT. Finally, we'll check that (17, IT) is
not an equilibrium model of 'y UT. To see this, consider the model (I, IT)
of I'y. Clearly it is a model of I*. Moreover, this model satisfies each
implication A — B in I': (I IT H) does not satisfy A because A ¢ I,
and (I 1T T) satisfies B because B € IT. We see that (I IT) satisfies
all formulas in I', so that this is a model of I'y UI'. On the other hand,
I is different from I, because (I7,I7) is a model of T'y, and (I, IT) is
not. Consequently, I is a proper subset of I7 so that (I, I) is not an
equilibrium model of I’y UT.

5 Adding a Second Negation

Answer sets are usually defined for logic programs possessing a second
kind of negation, which expresses the direct or explicit falsity of an atom.
In [Gelfond and Lifschitz, 1991] and [Lifschitz et al., 1999], this second
negation is called “classical” and denoted by —.

A literal is understood to be a propositional atom or an atom prefixed
by —. We define extended formulas, extended rules and extended programs
exactly as we defined formulas, rules and programs in Section 3 above, except
that arbitrary literals are allowed in them in place of atoms. The semantics
of extended programs defines when a consistent set X of literals is an answer
set for an extended program II; see [Lifschitz et al., 1999] for details.

Adding a second negation to the syntax of logic programs is important
for applications to knowledge representation, but, computationally, this
extension is not very essential. In fact, the second negation can be eliminated
from a program by a simple syntactic transformation. For every atom A of
the underlying language, choose a new atom A’. For any extended program
II, let IT' be the non-extended program obtained from II by replacing all
negative literals —A with A’. By Cons we denote the set of all constraints
of the form | <+ A, A’. It is easy to show that there is a 1-1 correspondence

14



between the answer sets for IT and the answer sets for II' U Cons; if X is
an answer set for IT then the corresponding answer set X' for II' U Cons
is obtained from X by replacing every negative literal —A with A’. For
instance, if IT is
p,™p,
g<p, (15)
-q
then II' U Cons is
Py,
q<p,
q, (16)
L<pp,
1 +q,q

(assuming that the underlying language has no atoms other than p and g).
The only answer set for (15) is {—p}; accordingly, the only answer set for
(16) is {p'}.

Questions concerning the strong equivalence of programs also arise in
this extended setting. For instance, it was shown in [Erdem and Lifschitz,
1999] that, in any extended program, the disjunctive rule

PP (17)
can be equivalently replaced by the two nondisjunctive rules

p < not —p ,

—p < not p . (18)

The following theorem allows us to reduce the verification of the strong
equivalence of extended programs to checking the equivalence of sets of
formulas in HT'.

Theorem 2 For any extended programs I1; and s, the following conditions
are equivalent:

(a) for every extended program II, extended programs Iy UII and Il UTI
have the same answer sets,

(b) II} U Cons is equivalent to IT}, U Cons in the logic of here-and-there.

To see, for instance, that (17) and (18) are strongly equivalent it suffices
to check the equivalence in HT of

np,
L<pp

15



and
p < not p',
p' < not p,
L+pp.

But these are exactly programs (4) and (5) discussed in the introduction,
with p’ substituted for q. Rewritten as sets of propositional formulas, these
two programs become (6) and (7), which we have already shown to be
equivalent in Section 2.

Proof of Theorem 2. Let II;, IIs and II be extended programs such that
IT} U Cons is equivalent to II5 U Cons in HT. By Theorem 1, IT} U Cons UII'
has the same answer sets as I, U ConsUII'. Consequently IT; UII has the same
answer sets as IIoUIIL. Conversely, assume that 11, IIs be extended programs
such that, for every extended program II, IT; U II has the same answer sets
as IIo UIL. Then, for every extended program II, I} UII' U Cons has the
same answer sets as [T, UII' U Cons. Since every non-extended program in
the language with the additional atoms A’ can be represented in the form IT’
for some extended program II in the original language, Theorem 1 implies
that II} U Cons is equivalent to IT5 U Cons in HT.

Alternatively, strong equivalence of extended programs can be studied by
extending the language of HT with a second negation ~, known in the logical
literature as strong negation. Strong negation was originally introduced by
Nelson [Nelson, 1949] in order to model a logical concept of constructible
falsity. Later Vorob’ev [Vorob’ev, 1952a, Vorob’ev, 1952b] showed how to
axiomatise the notion of strong negation. Adding ~ together with the
Vorob’ev axioms to the logic HT yields a logic with five truth values, called
here-and-there with strong negation, which we can denote by N5. This
logic is studied algebraically in [Kracht, 1998|; proof systems can be found
in [Pearce et al., 2000b] and [Pearce et al., 2000a]. N5-interpretations are
like HT-interpretations (I, I7) except that I’ and I are now sets of
literals, as before with I# C I”T. The concept of an equilibrium model in
N5 is defined analogously to the case of HT [Pearce, 1997).

To identify extended formulas and extended rules with propositional
formulas of N5, we translate — to strong negation ~. The correspondence
between the language of logic programs and the language of propositional
formulas in the presence of two negations is summarised in the following
table:

Extended formulas ‘ ;
MR

N5 formulas ‘ A

Our main theorem readily generalises to the new setting (the method of

16



proof is exactly the same): we can show that two extended programs are
strongly equivalent if and only if they are equivalent in the logic N5.

It is interesting to note that the method of eliminating the second
negation from extended programs discussed at the beginning of this section
can be generalised to N5. For any formula F' in the language of N5, there is
an equivalent “reduced” formula r(F") in which the strong negation symbol ~
has been “driven-in” so that it stands directly in front of an atom [Vorob’ev,
1964]. Consider the syntactic transformation that eliminates strong negation
from a formula F' by replacing each part of the form ~ A in r(F') with a new
atom A’. Under the assumptions —(A A A’), this transformation provides a
reduction of N5 to HT. This is similar to the reduction of Nelson’s logic of
strong negation to intuitionistic logic proposed by Gurevich [1977].

6 Conclusion

Facts about the strong equivalence of logic programs tell us how one can
simplify a part of a logic program without looking at the other parts.
Strong equivalence can be characterized in terms of the logic of here-
and-there. The set of theorems of this logic includes all intuitionistically
provable propositional formulas, the weak law of the excluded middle, and
De Morgan’s laws. The fact that two programs are strongly equivalent can be
often established by deriving them from each other using these logical means.
There is a exponential time algorithm for verifying strong equivalence.

The definition of the answer set semantics for extended nondisjunctive
programs in [Gelfond and Lifschitz, 1991] was suggested by the view that
such programs are merely a special case of default theories in the sense
of [Reiter, 1980]. Defaults are a generalisation of inference rules: besides the
premise and the conclusion, a default has “justifications.” Accordingly, the
symbol < in a logic program is similar to the bar separating the conclusion
from the premise in an inference rule. The role of negation as failure in
a program is similar to the role of justifications in a default theory. An
extension for a default theory is a theory in the sense of classical logic;
accordingly, the symbol — in a logic program is classical negation.

The results of this paper provide additional evidence in support of an
alternative view of the answer set semantics, presented in [Pearce, 1997].
Answer sets are a special case of equilibrium models. Rules in a logic
program are similar to propositional formulas in the logic of here-and-
there, < and negation as failure being the counterparts of implication
and negation. Introducing the second negation is similar to adding strong
negation to that logic. This perspective is useful, in particular, for the study
of strong equivalence.
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