
Strongly Equivalent Logi
 Programs

Vladimir Lifs
hitz

University of Texas at Austin, USA

David Pear
e

DFKI, Saarbr�u
ken, Germany

Agust��n Valverde

University of M�alaga, Spain

Abstra
t

A logi
 program �

1

is said to be equivalent to a logi
 program �

2

in the sense of the answer set semanti
s if �

1

and �

2

have the same

answer sets. We are interested in the following stronger
ondition: for

every logi
 program �, �

1

[� has the same answer sets as �

2

[�.

The study of strong equivalen
e is important, be
ause we learn from

it how one
an simplify a part of a logi
 program without looking

at the rest of it. The main theorem shows that the veri�
ation of

strong equivalen
e
an be a

omplished by
he
king the equivalen
e of

formulas in a monotoni
 logi
,
alled the logi
 of here-and-there, whi
h

is intermediate between
lassi
al logi
 and intuitionisti
 logi
.

1 Introdu
tion

This paper is about logi
 programs with negation as failure under the answer

set (\stable model") semanti
s

[

Gelfond and Lifs
hitz, 1988

℄

. A program �

1

is said to be equivalent to a program �

2

if �

1

and �

2

have the same answer

sets. We are interested here in the following stronger
ondition: for every

program �, �

1

[� is equivalent to �

2

[�.

Consider, for instan
e, the one-rule programs p not q and p. These

programs have the same answer set fpg, but they are not equivalent in the

strong sense: if we add the rule q to ea
h of the two programs, the answer set

for the �rst will be
ome fqg, and the answer set for the se
ond will be
ome

fp; qg. On the other hand, the program

p q ;

q

1

is strongly equivalent to

p ;

q :

The rule p q;not q is strongly equivalent to the empty set: removing this

rule from a program does not a�e
t the program's answer sets.

There is an interesting analogy between the strong equivalen
e of logi

programs and equivalen
e of propositional formulas. In ea
h of the examples

above, let's think of rules as propositional formulas: repla
e every not

with :, every
omma with ^, and turn every rule

Head Body

into the impli
ation

Body ! Head :

The programs in the �rst example above turn into

f:q ! pg and fpg

|two sets of formulas that are not equivalent in propositional logi
. On

the other hand, the se
ond example turns into a pair of equivalent sets of

formulas

fq ! p; qg and fp; qg:

And so does the third example:

fq ^ :q ! pg and ;

are propositionally equivalent.

This analogy is not
omplete, however. In propositional logi
, :p ! q

is equivalent to :q ! p, but the rules q not p and p not q are not

strongly equivalent; they are not even equivalent in the weak sense.

In
onne
tion with the last example one might remember that

intuitionisti
ally the formulas :p! q and :q ! p are not equivalent. Could

intuitionisti
 logi
 be a better tool for the study of strong equivalen
e than

lassi
al logi
?

Using intuitionisti
 logi
 for this purpose is indeed a good idea, but even

better results will be a
hieved if we use a stronger subsystem of
lassi
al

propositional logi
|\the logi
 of here-and-there," HT . The main theorem

of this paper shows that there is a perfe
t mat
h between the logi
 of

here-and-there and the strong equivalen
e of logi
 programs: two programs

are strongly equivalent if and only if these programs, viewed as sets of

propositional formulas, are equivalent in HT .

The logi
 of here-and-there
an be de�ned in terms of 3-valued truth

tables. These truth tables were originally introdu
ed by Heyting [1930℄

2

as a te
hni
al devi
e, for the purpose of demonstrating that intuitionisti

logi
 is weaker than
lassi
al. Heyting remarks that the truth values in

these tables \
an be interpreted as follows: 0 denotes a
orre
t proposition,

1 denotes a false proposition, and 2 denotes a proposition that
annot

be false but whose
orre
tness is not proved." The proof of the fa
t

that intuitionisti
 logi

annot be des
ribed by a �nite set of truth values

in

[

G�odel, 1932

℄

uses an in�nite monotoni
ally de
reasing sequen
e of

systems whose �rst member is
lassi
al logi
, and whose se
ond member

happens to be HT . The logi
 of here-and-there is known also as \the

logi
 of present and future" or \the Smetani
h logi
." It was apparently

�rst axiomatised in

[

 Lukasiewi
z, 1941

℄

. The importan
e of HT for the

study of logi
 programming
an be seen from the results of Pear
e [1997,

1999℄.

Sin
e HT is a 3-valued logi
, there is an exponential time algorithm

for de
iding whether two propositional formulas are equivalent in HT .

Consequently, the strong equivalen
e of logi
 programs
an be veri�ed in

exponential time.

Interesting questions about the strong equivalen
e of programs arise in

disjun
tive logi
 programming. Compare the disjun
tive rule

p; q (1)

with the program

p not q ;

q not p :

(2)

Ea
h of these two programs has the answer sets fpg, fqg, but (1) and (2)

are not strongly equivalent: the program obtained by adding the rules

p q ;

q p

(3)

to (1) has the answer set fp; qg, whi
h is not an answer set for the program

obtained by adding the same rules to (2). On the other hand, the program

p; q ;

? p; q

(4)

is strongly equivalent to

p not q ;

q not p ;

? p; q :

(5)

This fa
t illustrates the possibility of eliminating \ex
lusive disjun
tions"

from a logi
 program.

3

Although program (1) is disjun
tive, the
ounterexample (3) proving

that (1) and (2) are not strongly equivalent does not
ontain disjun
tive

rules. It does not even
ontain negation as failure. We'll see that this is a

general phenomenon: if there exists a program � su
h that �

1

[� is not

equivalent to �

2

[� then we
an always �nd a program � with this property

su
h that the rules of � are synta
ti
ally very simple. Furthermore, we'll

show that the relationship between logi
 HT and the strong equivalen
e of

logi
 programs dis
ussed above holds in the presen
e of disjun
tive rules, if

we agree to identify the semi
olon with _. Written as sets of propositional

formulas, (4) and (5) be
ome

fp _ q;:(p ^ q)g (6)

and

f:p! q;:q ! p;:(p ^ q)g: (7)

These two sets are equivalent in the logi
 of here-and-there (although they

are not equivalent in the weaker intuitionisti
 logi
).

Several published results on the answer set semanti
s address, impli
itly,

the topi
 of strong equivalen
e. Theorem 1 from

[

Erdem and Lifs
hitz, 1999

℄

,

dis
ussed in Se
tion 5 below, is similar to the assertion about the strong

equivalen
e between programs (4) and (5). Corollary 4.10 from

[

Inoue and

Sakama, 1998

℄

gives an example of strong equivalen
e for programs with

negation as failure in the heads of rules. Theorems stated in Se
tion 4

of

[

Lifs
hitz et al., 1999

℄

provide numerous examples of strongly equivalent

programs with nested expressions in the heads and bodies of rules. We'll

return to some of these examples in Se
tion 4.2.

The study of strong equivalen
e is important, be
ause we learn from it

how one
an simplify a part of a logi
 program without looking at the rest

of it.

In the next two se
tions, we review the logi
 of here-and-there and the

answer set semanti
s of logi
 programs. In Se
tion 4 we state and prove the

main theorem and give examples of its use. In Se
tion 5 the main theorem

is extended to programs with two kinds of negation.

2 Logi
 of Here-and-There

Propositional formulas are built from propositional atoms and the 0-pla
e

onne
tive ? using the binary
onne
tives ^, _ and !. We write > for

? ! ?, and :F for F ! ?. A theory is a set of propositional formulas.

Re
all that, in
lassi
al propositional logi
, interpretations
an be viewed

as sets of atoms. The satisfa
tion relation between an interpretation I and

a formula F
an be then de�ned re
ursively, as follows:

4

� for an atom p, I j= p if p 2 I,

� I 6j= ?,

� I j= F ^G if I j= F and I j= G,

� I j= F _G if I j= F or I j= G,

� I j= F ! G if I 6j= F or I j= G.

A model of a theory � in the sense of
lassi
al logi
 is an interpretation that

satis�es every formula in �.

2.1 Semanti
s

An HT -interpretation is an ordered pair hI

H

; I

T

i of sets of atoms su
h that

I

H

� I

T

. Intuitively, su
h a pair des
ribes \two worlds": the atoms in I

H

are true \here," and the atoms in I

T

are true \there." A

ordingly, we
all

the symbols H and T worlds.

1

The worlds are ordered by H < T .

For any HT -interpretation hI

H

; I

T

i, any world w, and any formula F ,

we de�ne when the triple hI

H

; I

T

; wi satis�es F re
ursively, as follows:

� for any atom F , hI

H

; I

T

; wi j= F if F 2 I

w

,

� hI

H

; I

T

; wi 6j= ?,

� hI

H

; I

T

; wi j= F ^G if hI

H

; I

T

; wi j= F and hI

H

; I

T

; wi j= G,

� hI

H

; I

T

; wi j= F _G if hI

H

; I

T

; wi j= F or hI

H

; I

T

; wi j= G,

� hI

H

; I

T

; wi j= F ! G if, for every world w

0

su
h that w � w

0

,

hI

H

; I

T

; w

0

i 6j= F or hI

H

; I

T

; w

0

i j= G.

We say that an HT -interpretation hI

H

; I

T

i satis�es F if hI

H

; I

T

;Hi

satis�es F . A model of a theory � in the sense of logi
 HT is an HT -

interpretation that satis�es every formula in �.

A formula F is a
onsequen
e of a set � of formulas in logi
 HT

(symboli
ally, � j=

HT

F) if every model of � in the sense of HT satis�es F

also. We say that � is equivalent to � in the sense of HT if � and � have

the same models in the sense of HT .

An HT -interpretation hI

H

; I

T

i is said to be total if I

H

= I

T

.

Every
onsequen
e of � in the logi
 of here-and-there is a
onsequen
e

of � in the sense of
lassi
al logi
. (Proof: An interpretation I satis�es F

i� the total interpretation hI; Ii satis�es F .) But the
onverse is not true.

1

This terminology, and the de�nitions that follow, will not be new to the readers

familiar with Kripke models. HT -interpretations are a spe
ial
ase of that
on
ept.

5

For instan
e, p _ :p and ::p ! p are not theorems of HT , that is to say,

they are not
onsequen
es of the empty set of formulas; :q ! p is not a

onsequen
e of :p! q. (Proof: in ea
h
ase, take I

H

= ;, I

T

= fpg.)

In the de�nition of HT in terms of 3 truth values, the value assigned to

an atom p is determined by whether p belongs to I

H

, I

T

n I

H

, or neither.

2.2 Dedu
tion

Re
all that a natural dedu
tion system for intuitionisti
 logi

an be

obtained from the
orresponding
lassi
al system

[

Bibel and Eder, 1993,

Table 3

℄

by dropping the law of the ex
luded middle

F _ :F

from the list of postulates. A formalisation of HT
an be obtained from

intuitionisti
 logi
 by adding the axiom s
hema

F _ (F ! G) _ :G (8)

(Lex Hendriks, personal
ommuni
ation).

The most useful, for our purposes,
onsequen
e of (8) is the weak law of

the ex
luded middle

:F _ ::F (9)

(in (8), take G to be :F). All proofs in HT given below are a
tually proofs

in intuitionisti
 logi
 extended with (9). There is a good reason for that:

for any two propositional formulas F

1

, F

2

that
orrespond to logi
 programs

in the sense of Se
tion 3, if F

1

is equivalent to F

2

in the logi
 of here-and-

there then the equivalen
e F

1

$ F

2

an be derived from the weak law of

the ex
luded middle in intuitionisti
 logi
 (Di
k de Jongh and Lex Hendriks,

personal
ommuni
ation).

It is easy to see that De Morgan's laws

:(F _G)$:F ^ :G;

:(F ^G)$:F _ :G

are provable in HT . Indeed, the �rst equivalen
e and one half of the se
ond

are provable intuitionisti
ally; to derive :F _ :G from :(F ^ G),
onsider

two
ases :F , ::F .

Using De Morgan's laws, we
an verify that (6) is equivalent to (7): these

two sets of formulas
an be rewritten as

fp _ q;:p _ :qg

and

f:p! q;:q ! p;:p _ :qg;

6

whi
h are intuitionisti
ally equivalent.

Another interesting equivalen
e provable in HT is

:F _G$::F ! G:

Left-to-right, it is provable intuitionisti
ally; right-to-left,
onsider two
ases

:F , ::F .

3 Logi
 Programs and Answer Sets

The presentation below follows essentially

[

Lifs
hitz et al., 1999

℄

, ex
ept that

the se
ond kind of negation is not allowed here.

2

Formulas are built from propositional atoms and the 0-pla
e
onne
-

tives > and ? using negation as failure (not),
onjun
tion (,) and disjun
tion

(;). A rule is an expression of the form

Head Body (10)

where Head and Body are formulas. If Body is > then we identify rule (10)

with formula Head . A program is a set of rules.

We de�ne when a set X of atoms satis�es a formula F (symboli
ally,

X j= F) re
ursively, as follows:

� for an atom p, X j= p if p 2 X,

� X j= >,

� X 6j= ?,

� X j= (F;G) if X j= F and X j= G,

� X j= (F ;G) if X j= F or X j= G,

� X j= not F if X 6j= F .

The redu
t �

X

of a program � with respe
t to a set X of atoms is

obtained by repla
ing every maximal o

urren
e of a formula of the form

not F in � (that is, every o

urren
e of not F that isn't in the range of

another not)

� with ? if X j= F ,

� with >, otherwise.

3

2

Adding the se
ond negation is dis
ussed in Se
tion 5.

3

As observed in

[

Ferraris and Lifs
hitz, 2000

℄

, this de�nition is equivalent to the

re
ursive de�nition of a redu
t given in

[

Lifs
hitz et al., 1999

℄

.

7

The
on
ept of an answer set is de�ned �rst for programs not
ontaining

negation as failure. A set X of atoms is
losed under su
h a program � if,

for every rule (10) in �, X j= Head whenever X j= Body . An answer set for

a program � without negation as failure is a minimal set
losed under �.

For an arbitrary program �, we say that X is an answer set for � if X

is an answer set for the redu
t �

X

.

Let us
he
k, for instan
e, that fpg is an answer set for (2). The redu
t

of (2) with respe
t to fpg is

p > ;

q ? :

Clearly fpg is a minimal set
losed under this redu
t.

4 Strong Equivalen
e

4.1 Main Theorem

A program � is unary if, in every rule of �, the head is an atom and the

body is either > or an atom.

In the statement of the theorem, we identify formulas and rules in

the sense of Se
tion 3 with propositional formulas, as des
ribed in the

introdu
tion. A

ordingly, programs be
ome a spe
ial
ase of theories, and

we
an talk about the equivalen
e of programs in the logi
 of here and there.

Theorem 1 For any programs �

1

and �

2

, the following
onditions are

equivalent:

(a) for every program �, programs �

1

[� and �

2

[� have the same

answer sets,

(b) for every unary program �, programs �

1

[� and �

2

[� have the same

answer sets,

(
) �

1

is equivalent to �

2

in the logi
 of here-and-there.

The fa
t that (b) implies (a) shows that the strong equivalen
e
ondition

we are interested in (\for every �, �

1

[� is equivalent to �

2

[�") does

not depend very mu
h on what kind of program � is assumed to be: it does

not matter whether � is required to belong to the narrow
lass of unary

programs or is allowed to be an arbitrary program with nested expressions.

The fa
t that (a) is equivalent to (
) expresses the
orresponden
e between

the strong equivalen
e of logi
 programs and the equivalen
e of formulas in

the logi
 of here-and-there.

The proof of the theorem is given in Se
tion 4.5 below.

8

4.2 Some Examples

We have already seen how the equivalen
e of
onditions (a) and (
), along

with the properties of the logi
 of here-and-there stated in Se
tion 2,
an

be used to prove the strong equivalen
e of logi
 programs. Here are further

examples.

Repla
ing a rule of the form

not F

1

; : : : ;not F

k

 G

in any program by the
onstraint

4

? F

1

; : : : ; F

k

; G

does not a�e
t the program's answer sets

[

Inoue and Sakama, 1998,

Se
tion 4.2

℄

, be
ause the
orresponding formulas are equivalent in HT . This

fa
t is interesting be
ause the role of
onstraints in a logi
 program is well

understood: adding a
onstraint to a program eliminates its answer sets that

\violate" the
onstraint

[

Lifs
hitz et al., 1999, Proposition 2

℄

.

In any program, repla
ing a subformula of the form not(F;G) with

not F ;not G does not
hange its answer sets, as well as repla
ing not(F ;G)

with not F;not G

[

Lifs
hitz et al., 1999, Proposition 4(iv)

℄

. Indeed, as we

saw in Se
tion 2, the logi
 of here-and-there satis�es De Morgan's laws.

In any program
ontaining the rules

F ;G ;

? F;G ;

F H

repla
ing the last rule by the
onstraint

? not F;H

does not a�e
t the program's answer sets, be
ause the
orresponding sets of

formulas are equivalent in HT (and even in intuitionisti
 logi
).

On the other hand, Theorem 1
an be used to prove that some pairs of

programs are not strongly equivalent. For instan
e, the program

p q ;

p not q

(11)

is not strongly equivalent to p, be
ause p is not a
onsequen
e of the formulas

q ! p, :q ! p in the logi
 of here-and-there. (Proof: Take I

H

= ;,

I

T

= fp; qg.) This fa
t
an be also proved dire
tly, by adding q p to ea
h

of the two programs.

4

A
onstraint is a rule whose head is ?.

9

4.3 A Remark on Intuitionisti
 Logi

The example of programs (4) and (5) shows that the logi
 of here-and-there

in the statement of Theorem 1
annot be repla
ed by intuitionisti
 logi
:

these programs are strongly equivalent, but not intuitionisti
ally equivalent.

Program (4) is synta
ti
ally rather
ompli
ated: it
ontains a disjun
tive

rule and a
onstraint. But we
an give a similar
ounterexample without

using rules like these. Consider the program

q not p ;

p not q ;

r p; q ;

s p ;

s q

(12)

and the program obtained from (12) by adding the rule

s not r : (13)

These programs are not equivalent to ea
h other intuitionisti
ally, whi
h

an be proved using a Kripke model with 3 worlds. But they are strongly

equivalent. To derive :r ! s from

:p! q; :q! p; (p ^ q)! r; p! s; q ! s (14)

in HT , assume :r. Using the third of formulas (14) and de Morgan's laws,

we derive :p _ :q. Using the �rst two of formulas (14), we derive p _ q.

Using the last two of formulas (14), we derive s.

4.4 Equilibrium Logi

In order to prove the main theorem we shall make use of some results about

a system of nonmonotoni
 reasoning
alled equilibrium logi
, developed in

Pear
e [1997, 1999℄.

Equilibrium logi

an be des
ribed as a spe
ial kind of minimal model

reasoning in logi
 HT , as follows. An equilibrium model of a theory � is a

total HT -interpretation hI; Ii su
h that

(i) hI; Ii is a model of �, and

(ii) for every proper subset J of I, hJ; Ii is not a model of �.

Consider, for instan
e, the theory
omprising a single atomi
 formula p.

Some of its models in the sense of logi
 HT are

hfpg; fpgi;

hfpg; fp; qgi;

hfp; qg; fp; qgi:

10

The �rst of them is an equilibrium model. The se
ond is not, be
ause it is

not total. The third is not an equilibrium model either, be
ause it does not

satisfy the minimality
ondition (ii).

As another example, take the theory ::p. Some of its models in the

sense of logi
 HT are

h;; fpgi;

hfpg; fpgi:

Neither is an equilibrium model: the �rst is not total, and the se
ond is not

minimal. In fa
t, this theory has no equilibrium models.

Equilibrium logi
 is de�ned by that whi
h holds in all equilibrium models.

The main property of equilibrium logi
 that we need here is
aptured in

Lemma 3 below, whi
h asserts essentially that the
on
ept of an equilibrium

model is a generalization of the
on
ept of an answer set.

Lemma 1 For any program � without negation as failure, an HT-

interpretation hI

H

; I

T

i is a model of � in the sense of HT i� both I

H

and

I

T

are models of � in the sense of
lassi
al logi
.

Proof. Let � be a program without negation as failure. An HT -

interpretation hI

H

; I

T

i is a model of � i�, for every rule Head Body

in �,

hI

H

; I

T

;Hi j= Body implies hI

H

; I

T

;Hi j= Head

and

hI

H

; I

T

; T i j= Body implies hI

H

; I

T

; T i j= Head :

Sin
e Head and Body do not
ontain negation as failure, these
onditions

an be simpli�ed as follows:

I

H

j= Body implies I

H

j= Head ;

I

T

j= Body implies I

T

j= Head :

To require this to hold for every rule Head Body in � means to require

that I

H

and I

T

be models of � in the sense of
lassi
al logi
.

Lemma 2 An HT-interpretation hI

H

; I

T

i is a model of a program � i� it

is a model of the redu
t �

(I

T

)

.

The proof of the lemma uses two fa
ts that
an be easily veri�ed

by stru
tural indu
tion. One is a \monotoni
ity property" of HT -

interpretations:

Fa
t 1 For any HT-interpretation hI

H

; I

T

i and any propositional formula F ,

if hI

H

; I

T

;Hi j= F then hI

H

; I

T

; T i j= F .

11

The other relates the satisfa
tion relation of HT to the satisfa
tion

relation of
lassi
al logi
:

Fa
t 2 For any HT-interpretation hI

H

; I

T

i and any propositional formula F ,

hI

H

; I

T

; T i j= F i� I

T

j= F .

Proof of Lemma 2. A

ording to the de�nition of the redu
t (Se
tion 3),

�

(I

T

)

is the program obtained from � by the simultaneous repla
ement

of some maximal subformulas of the form not F with >, and of all other

maximal subformulas of this form with ?. It is suÆ
ient to
he
k that, for

any maximal subformula not F and for the formula G that repla
es it,

hI

H

; I

T

i j= not F i� hI

H

; I

T

i j= G:

Sin
e G is either > or ?, this
laim
an be rewritten as

hI

H

; I

T

i j= not F i� G = >:

The left-hand side of this equivalen
e holds i�

hI

H

; I

T

;Hi 6j= F and hI

H

; I

T

; T i 6j= F:

By Fa
t 1, the �rst
onjun
tive term is a
onsequen
e of the se
ond one, and

an be dropped. By Fa
t 2, the se
ond term
an be rewritten as I

T

6j= F ,

whi
h is the
ondition
hara
terizing the
ase G = > in the de�nition of the

redu
t.

Lemma 3 For any program � and any set I of atoms, the HT-

interpretation hI; Ii is an equilibrium model of � i� I is an answer set

for �.

This lemma generalises Proposition 10 from

[

Pear
e, 1997

℄

to programs

with nested expressions. Its proof uses the following fa
t:

Fa
t 3 A set of atoms is
losed under a program � i� it is a model of � in

the sense of
lassi
al logi
.

To prove this assertion, note that a set of atoms satis�es a formula F in

the sense of Se
tion 3 i� it satis�es F in the sense of
lassi
al logi
.

Proof of Lemma 3. By the de�nition of an answer set, I is an answer set

for � i� I is an answer set for the redu
t �

I

, that is, i�

� I is
losed under �

I

, and

� for every proper subset J of I, J is not
losed under �

I

.

12

In view of Fa
t 3, these
onditions
an be restated as follows:

� I is a model of �

I

, and

� for every proper subset J of I, J is not a model of �

I

.

By Lemma 1, this is equivalent to saying that

� hI; Ii is a model of �

I

, and

� for every proper subset J of I, hJ; Ii is not a model of �

I

.

By Lemma 2, �

I

in both
lauses
an be repla
ed with �, whi
h turns these

onditions into the de�nition of an equilibrium model of �.

4.5 Proof of Main Theorem

The de�nition of a unary program (Se
tion 4.1) is extended to propositional

theories in a natural way: A theory � is unary if every formula in � is either

an atom or an impli
ation whose ante
edent and
onsequent are atoms. In

view of Lemma 3, Theorem 1 is a spe
ial
ase of the following assertion:

Lemma 4 For any theories �

1

and �

2

, the following
onditions are

equivalent:

(a) for every theory �, theories �

1

[� and �

2

[� have the same equilibrium

models,

(b) for every unary theory �, theories �

1

[� and �

2

[� have the same

equilibrium models,

(
) �

1

is equivalent to �

2

in the logi
 of here-and-there.

Proof. Obviously (a) implies (b). To see that (
) implies (a), observe that

if �

1

and �

2

are equivalent in logi
 HT then �

1

[� and �

2

[� are equivalent

in HT also, so that both theories have the same equilibrium models. It

remains to
he
k that (b) implies (
).

Suppose that �

1

has a model hI

H

; I

T

i whi
h is not a model of �

2

. We'll

show how to �nd a unary theory � su
h that hI

T

; I

T

i is an equilibrium

model of one of the theories �

1

[�, �

2

[� but not an equilibrium model of

the other.

Case 1: hI

T

; I

T

i is not a model of �

2

. It is easy to see that it is a

model of �

1

. Indeed, from the assumption that hI

H

; I

T

i is a model of �

1

we
an
on
lude by Fa
t 1 that hI

H

; I

T

; T i satis�es every formula in �

1

;

onsequently hI

T

; I

T

i satis�es every formula in �

1

as well. We take � = I

T

.

It is
lear that hI

T

; I

T

i is a model of �

1

[I

T

; by inspe
tion, it is an

13

equilibrium model of this theory. On the other hand, it is not a model

of �

2

, so that it
annot be a model of �

2

[I

T

.

Case 2: hI

T

; I

T

i is a model of �

2

. De�ne

� = I

H

[fA! B : A;B 2 I

T

n I

H

; A 6= Bg:

Sin
e hI

T

; I

T

i satis�es every formula in �, it is a model of �

2

[�. To see

that it is in equilibrium,
onsider any model hJ; I

T

i of �

2

[� su
h that J is

a proper subset of I

T

. Clearly J must
ontain I

H

. But it
annot be equal to

I

H

, sin
e by assumption hI

H

; I

T

i is not a model of �

2

. Thus I

H

� J � I

T

.

Take an atom A 2 J n I

H

and an atom B 2 I

T

nJ . For these atoms, A! B

belongs to �. But hJ; I

T

i does not satisfy this impli
ation,
ontrary to the

assumption that it is a model of �

2

[�. Finally, we'll
he
k that hI

T

; I

T

i is

not an equilibrium model of �

1

[�. To see this,
onsider the model hI

H

; I

T

i

of �

1

. Clearly it is a model of I

H

. Moreover, this model satis�es ea
h

impli
ation A ! B in �: hI

H

; I

T

;Hi does not satisfy A be
ause A 62 I

H

,

and hI

H

; I

T

; T i satis�es B be
ause B 2 I

T

. We see that hI

H

; I

T

i satis�es

all formulas in �, so that this is a model of �

1

[�. On the other hand,

I

H

is di�erent from I

T

, be
ause hI

T

; I

T

i is a model of �

2

, and hI

H

; I

T

i is

not. Consequently, I

H

is a proper subset of I

T

, so that hI

T

; I

T

i is not an

equilibrium model of �

1

[�.

5 Adding a Se
ond Negation

Answer sets are usually de�ned for logi
 programs possessing a se
ond

kind of negation, whi
h expresses the dire
t or expli
it falsity of an atom.

In

[

Gelfond and Lifs
hitz, 1991

℄

and

[

Lifs
hitz et al., 1999

℄

, this se
ond

negation is
alled \
lassi
al" and denoted by :.

A literal is understood to be a propositional atom or an atom pre�xed

by :. We de�ne extended formulas, extended rules and extended programs

exa
tly as we de�ned formulas, rules and programs in Se
tion 3 above, ex
ept

that arbitrary literals are allowed in them in pla
e of atoms. The semanti
s

of extended programs de�nes when a
onsistent set X of literals is an answer

set for an extended program �; see

[

Lifs
hitz et al., 1999

℄

for details.

Adding a se
ond negation to the syntax of logi
 programs is important

for appli
ations to knowledge representation, but,
omputationally, this

extension is not very essential. In fa
t, the se
ond negation
an be eliminated

from a program by a simple synta
ti
 transformation. For every atom A of

the underlying language,
hoose a new atom A

0

. For any extended program

�, let �

0

be the non-extended program obtained from � by repla
ing all

negative literals :A with A

0

. By Cons we denote the set of all
onstraints

of the form ? A;A

0

. It is easy to show that there is a 1{1
orresponden
e

14

between the answer sets for � and the answer sets for �

0

[Cons ; if X is

an answer set for � then the
orresponding answer set X

0

for �

0

[Cons

is obtained from X by repla
ing every negative literal :A with A

0

. For

instan
e, if � is

p;:p ;

q p ;

:q

(15)

then �

0

[Cons is

p; p

0

;

q p ;

q

0

;

? p; p

0

;

? q; q

0

(16)

(assuming that the underlying language has no atoms other than p and q).

The only answer set for (15) is f:pg; a

ordingly, the only answer set for

(16) is fp

0

g.

Questions
on
erning the strong equivalen
e of programs also arise in

this extended setting. For instan
e, it was shown in

[

Erdem and Lifs
hitz,

1999

℄

that, in any extended program, the disjun
tive rule

p;:p (17)

an be equivalently repla
ed by the two nondisjun
tive rules

p not :p ;

:p not p :

(18)

The following theorem allows us to redu
e the veri�
ation of the strong

equivalen
e of extended programs to
he
king the equivalen
e of sets of

formulas in HT .

Theorem 2 For any extended programs �

1

and �

2

, the following
onditions

are equivalent:

(a) for every extended program �, extended programs �

1

[� and �

2

[�

have the same answer sets,

(b) �

0

1

[Cons is equivalent to �

0

2

[Cons in the logi
 of here-and-there.

To see, for instan
e, that (17) and (18) are strongly equivalent it suÆ
es

to
he
k the equivalen
e in HT of

p; p

0

;

? p; p

0

15

and

p not p

0

;

p

0

 not p ;

? p; p

0

:

But these are exa
tly programs (4) and (5) dis
ussed in the introdu
tion,

with p

0

substituted for q. Rewritten as sets of propositional formulas, these

two programs be
ome (6) and (7), whi
h we have already shown to be

equivalent in Se
tion 2.

Proof of Theorem 2. Let �

1

, �

2

and � be extended programs su
h that

�

0

1

[Cons is equivalent to �

0

2

[Cons in HT . By Theorem 1, �

0

1

[Cons [�

0

has the same answer sets as �

0

2

[Cons[�

0

. Consequently �

1

[� has the same

answer sets as �

2

[�. Conversely, assume that �

1

, �

2

be extended programs

su
h that, for every extended program �, �

1

[� has the same answer sets

as �

2

[�. Then, for every extended program �, �

0

1

[�

0

[Cons has the

same answer sets as �

0

2

[�

0

[Cons . Sin
e every non-extended program in

the language with the additional atoms A

0

an be represented in the form �

0

for some extended program � in the original language, Theorem 1 implies

that �

0

1

[Cons is equivalent to �

0

2

[Cons in HT .

Alternatively, strong equivalen
e of extended programs
an be studied by

extending the language of HT with a se
ond negation�, known in the logi
al

literature as strong negation. Strong negation was originally introdu
ed by

Nelson

[

Nelson, 1949

℄

in order to model a logi
al
on
ept of
onstru
tible

falsity. Later Vorob'ev

[

Vorob'ev, 1952a, Vorob'ev, 1952b

℄

showed how to

axiomatise the notion of strong negation. Adding � together with the

Vorob'ev axioms to the logi
 HT yields a logi
 with �ve truth values,
alled

here-and-there with strong negation, whi
h we
an denote by N5 . This

logi
 is studied algebrai
ally in

[

Kra
ht, 1998

℄

; proof systems
an be found

in

[

Pear
e et al., 2000b

℄

and

[

Pear
e et al., 2000a

℄

. N5 -interpretations are

like HT -interpretations hI

H

; I

T

i, ex
ept that I

H

and I

T

are now sets of

literals, as before with I

H

� I

T

. The
on
ept of an equilibrium model in

N5 is de�ned analogously to the
ase of HT

[

Pear
e, 1997

℄

.

To identify extended formulas and extended rules with propositional

formulas of N5 , we translate : to strong negation �. The
orresponden
e

between the language of logi
 programs and the language of propositional

formulas in the presen
e of two negations is summarised in the following

table:

Extended formulas ; ; not :

N5 formulas ^ _ : �

Our main theorem readily generalises to the new setting (the method of

16

proof is exa
tly the same): we
an show that two extended programs are

strongly equivalent if and only if they are equivalent in the logi
 N5 .

It is interesting to note that the method of eliminating the se
ond

negation from extended programs dis
ussed at the beginning of this se
tion

an be generalised to N5 . For any formula F in the language of N5 , there is

an equivalent \redu
ed" formula r(F) in whi
h the strong negation symbol�

has been \driven-in" so that it stands dire
tly in front of an atom

[

Vorob'ev,

1964

℄

. Consider the synta
ti
 transformation that eliminates strong negation

from a formula F by repla
ing ea
h part of the form � A in r(F) with a new

atom A

0

. Under the assumptions :(A ^A

0

), this transformation provides a

redu
tion of N5 to HT . This is similar to the redu
tion of Nelson's logi
 of

strong negation to intuitionisti
 logi
 proposed by Gurevi
h [1977℄.

6 Con
lusion

Fa
ts about the strong equivalen
e of logi
 programs tell us how one
an

simplify a part of a logi
 program without looking at the other parts.

Strong equivalen
e
an be
hara
terized in terms of the logi
 of here-

and-there. The set of theorems of this logi
 in
ludes all intuitionisti
ally

provable propositional formulas, the weak law of the ex
luded middle, and

De Morgan's laws. The fa
t that two programs are strongly equivalent
an be

often established by deriving them from ea
h other using these logi
al means.

There is a exponential time algorithm for verifying strong equivalen
e.

The de�nition of the answer set semanti
s for extended nondisjun
tive

programs in

[

Gelfond and Lifs
hitz, 1991

℄

was suggested by the view that

su
h programs are merely a spe
ial
ase of default theories in the sense

of

[

Reiter, 1980

℄

. Defaults are a generalisation of inferen
e rules: besides the

premise and the
on
lusion, a default has \justi�
ations." A

ordingly, the

symbol in a logi
 program is similar to the bar separating the
on
lusion

from the premise in an inferen
e rule. The role of negation as failure in

a program is similar to the role of justi�
ations in a default theory. An

extension for a default theory is a theory in the sense of
lassi
al logi
;

a

ordingly, the symbol : in a logi
 program is
lassi
al negation.

The results of this paper provide additional eviden
e in support of an

alternative view of the answer set semanti
s, presented in

[

Pear
e, 1997

℄

.

Answer sets are a spe
ial
ase of equilibrium models. Rules in a logi

program are similar to propositional formulas in the logi
 of here-and-

there, and negation as failure being the
ounterparts of impli
ation

and negation. Introdu
ing the se
ond negation is similar to adding strong

negation to that logi
. This perspe
tive is useful, in parti
ular, for the study

of strong equivalen
e.

17

A
knowledgements

We are grateful to Yuliya Babovi
h, Pedro Cabalar, Jonathan Campbell,

Esra Erdem, Selim Erdo�gan, Mi
hael Gelfond, Paolo Ferraris, Di
k de Jongh,

Lex Hendriks, Joohyung Lee, Grigori Mints and Hudson Turner for useful

dis
ussions related to the subje
t of this paper. The work of the �rst author

was partially supported by National S
ien
e Foundation under grant IIS-

9732744.

Referen
es

[

Bibel and Eder, 1993

℄

Wolfgang Bibel and Elmar Eder. A survey of logi
al

al
uli. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, The

Handbook of Logi
 in AI and Logi
 Programming, volume 1, pages 67{182.

Oxford University Press, 1993.

[

Erdem and Lifs
hitz, 1999

℄

Esra Erdem and Vladimir Lifs
hitz. Transfor-

mations of logi
 programs related to
ausality and planning. In Logi
 Pro-

gramming and Non-monotoni
 Reasoning: Pro
. Fifth Int'l Conf. (Le
ture

Notes in Arti�
ial Intelligen
e 1730), pages 107{116, 1999.

[

Ferraris and Lifs
hitz, 2000

℄

Paolo Ferraris and Vladimir Lifs
hitz. Weight

onstraints as nested expressions. In preparation, 2000.

[

Gelfond and Lifs
hitz, 1988

℄

Mi
hael Gelfond and Vladimir Lifs
hitz. The

stable model semanti
s for logi
 programming. In Robert Kowalski and

Kenneth Bowen, editors, Logi
 Programming: Pro
. Fifth Int'l Conf. and

Symp., pages 1070{1080, 1988.

[

Gelfond and Lifs
hitz, 1991

℄

Mi
hael Gelfond and Vladimir Lifs
hitz. Clas-

si
al negation in logi
 programs and disjun
tive databases. New Genera-

tion Computing, 9:365{385, 1991.

[

G�odel, 1932

℄

Kurt G�odel. Zum intuitionistis
hen Aussagenkalk�ul. Anzeiger

der Akademie der Wissens
haften in Wien, pages 65{66, 1932. Repro-

du
ed in: Kurt G�odel, Colle
ted Works, Vol. 1, OUP, 1986.

[

Gurevi
h, 1977

℄

Yuri Gurevi
h. Intuitionisti
 logi
 with strong negation.

Studia Logi
a, 36:49{59, 1977.

[

Heyting, 1930

℄

Arend Heyting. Die formalen Regeln der intuitionistis
hen

Logik. Sitz. Berlin, pages 42{56, 1930.

[

Inoue and Sakama, 1998

℄

Katsumi Inoue and Chiaki Sakama. Negation as

failure in the head. Journal of Logi
 Programming, 35:39{78, 1998.

18

[

Kra
ht, 1998

℄

Mar
us Kra
ht. On extensions of intermediate logi
s by

strong negation. Journal of Philosophi
al Logi
, 27, 1998.

[

Lifs
hitz et al., 1999

℄

Vladimir Lifs
hitz, Lappoon R. Tang, and Hudson

Turner. Nested expressions in logi
 programs. Annals of Mathemati
s

and Arti�
ial Intelligen
e, 25:369{389, 1999.

[

 Lukasiewi
z, 1941

℄

Jan Lukasiewi
z. Die Logik und das Grundlagenprob-

lem. In Les Entretiens de Z�uri
h sue les Fondements et la m�ethode des

s
ien
es math�ematiques 1938, pages 82{100. Z�uri
h, 1941.

[

Nelson, 1949

℄

David Nelson. Constru
tible falsity. Journal of Symboli

Logi
, 14:16{26, 1949.

[

Pear
e et al., 2000a

℄

David Pear
e, Imma
ulada de Guzm�an, and

Agust��n Valverde. A tableau
al
ulus for equilibrium entailment. In

Pro
. TABLEAUX-2000, pages 352{367, 2000.

[

Pear
e et al., 2000b

℄

David Pear
e, Imma
ulada de Guzm�an, and Agustin

Valverde. Computing equilibrium models using signed formulas. In

Pro
. CL-2000, pages 688{702, 2000.

[

Pear
e, 1997

℄

David Pear
e. A new logi
al
hara
terization of stable models

and answer sets. In J�urgen Dix, Luis Pereira, and Teodor Przymusinski,

editors, Non-Monotoni
 Extensions of Logi
 Programming (Le
ture Notes

in Arti�
ial Intelligen
e 1216), pages 57{70. Springer-Verlag, 1997.

[

Pear
e, 1999

℄

David Pear
e. From here to there: Stable negation in logi

programming. In D. Gabbay and H. Wansing, editors, What Is Negation?

Kluwer, 1999.

[

Reiter, 1980

℄

Raymond Reiter. A logi
 for default reasoning. Arti�
ial

Intelligen
e, 13:81{132, 1980.

[

Vorob'ev, 1952a

℄

Nikolay Vorob'ev. Constru
tive propositional
al
ulus

with strong negation. Doklady Akademii Nauk SSSR, 85:465{468, 1952.

In Russian.

[

Vorob'ev, 1952b

℄

Nikolay Vorob'ev. The problem of dedu
ibility in

onstru
tive propositional
al
ulus with strong negation. Doklady

Akademii Nauk SSSR, 85:689{692, 1952. In Russian.

[

Vorob'ev, 1964

℄

Nikolay Vorob'ev. Constru
tive propositional
al
ulus with

strong negation. Transa
tions of Steklov's Institute, 72:195{227, 1964. In

Russian.

19

