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Abstract. Strong equivalence of logic programs is an important con-
cept in the theory of answer set programming. Equilibrium logic was
used to show that propositional formulas are strongly equivalent if and
only if they are equivalent in the logic of here-and-there. We extend
equilibrium logic to formulas with infinitely long conjunctions and dis-
junctions, define and axiomatize an infinitary counterpart to the logic of
here-and-there, and show that the theorem on strong equivalence holds
in the infinitary case as well.

1 Introduction

The original definition of a stable model [3] is restricted to Prolog-style rules—
implications with a conjunction of literals in the antecedent and an atom in the
consequent. Extending it to arbitrary propositional formulas has been accom-
plished by two equivalent constructions: using equilibrium logic [13] and using
modified reducts [2]. Equilibrium logic served as the basis for the characteriza-
tion of strong equivalence of logic programs [10] in terms of the logic of Kripke
models with two worlds, “the logic of here-and-there.” The first axiomatization
of that logic was given without proof by  Lukasiewicz [11]: add the axiom schema

(¬F → G)→ (((G→ F )→ G)→ G)) (1)

to propositional intuitionistic logic. This axiomatization was rediscovered and
proved complete by Thomas [15]. (In the notation of that paper, axiom schema (1)
is 3′′2 .) A few years earlier, Umezawa [17] had proposed a simpler axiom schema

F ∨ (F → G) ∨ ¬G (2)

that can be used to axiomatize the logic of here-and-there instead of (1). The
completeness of this axiomatization was proved by Hosoi [6].

The definition of a stable model for propositional formulas [2] was extended to
formulas with infinitely long conjunctions and disjunctions by Truszczynski [16].



Harrison et al. [4] introduced a deductive system that includes an infinitary
counterpart of axiom schema (2) and proved that if two infinitary formulas
are equivalent in that system then they are strongly equivalent. Whether the
converse holds is posed in that paper as an open question.

In this note, our goals are

(i) to define the infinitary version of the logic of here-and-there,
(ii) to define its nonmonotonic counterpart—the infinitary version of equilibrium

logic,
(iii) to verify that stable models of infinitary formulas in the sense of Truszczynski

can be characterized in terms of infinitary equilibrium logic,
(iv) to verify that infinitary propositional formulas are strongly equivalent to

each other iff they are equivalent in the infinitary logic of here-and-there,
(v) to find an axiomatization of that logic.

The results of this note give a positive answer to the open question mentioned
above. Moreover, they show that some axiom schemas introduced by Harrison
et al. are redundant.

We will see in Sections 2–5 that achieving goals (i)–(iv) is straightforward,
given the work done earlier for finite formulas. Goal (v) is more challenging;
see Sections 6, 7. Early work on deductive systems of infinitary propositional
formulas [14, 8] was restricted to classical logic. Infinitary intuitionistic logic
was studied by Nadel [12]. We are not aware of published work on extending
intermediate systems, such as the logic of here-and-there, to infinitary formulas.
Additional difficulties arise in connection with the fact that we allow uncountable
conjunctions and disjunctions, not covered by Nadel’s work.

The main reason why we are interested in stable models of infinitary propo-
sitional formulas is that they can be used to define the semantics of the input
language of the ASP grounder gringo. Consider, for instance, the aggregate
expression

#count{X:p(X)}==1.

Intuitively, it says that the cardinality of the set {X | p(X)} is 1. If there are
infinitely many possible values for X (for instance, if the program uses integers or
terms containing function symbols) then this meaning cannot be expressed using
a propositional formula. Aggregate expressions like this can be represented by
first-order formulas [9], but that method has significant limitations. For example,
it is not clear how to apply it to the expression

#count{X:p(X)}==Y.

Such expressions are included, however, in the subset of the input language of
gringo studied by Harrison et al [5], who approached the problem of defining
the semantics of that language using infinitary propositional formulas. That
direction of research shows that the study of strong equivalence of infinitary
propositional formulas may be essential for answer set programming.

A preliminary version of this paper was presented at the 2014 Workshop on
Answer Set Programming and Other Computing Paradigms.



2 Review: Infinitary Formulas and Their Stable Models

Let σ be a propositional signature, that is, a set of propositional atoms. For every
nonnegative integer r, (infinitary propositional) formulas (over σ) of rank r are
defined recursively, as follows:

– every atom from σ is a formula of rank 0,
– if H is a set of formulas, and r is the smallest nonnegative integer that is

greater than the ranks of all elements of H, then H∧ and H∨ are formulas
of rank r,

– if F and G are formulas, and r is the smallest nonnegative integer that is
greater than the ranks of F and G, then F → G is a formula of rank r.

We will write {F,G}∧ as F ∧G, and {F,G}∨ as F ∨G. The symbols > and ⊥
will be understood as abbreviations for ∅∧ and ∅∨ respectively; ¬F stands for
F → ⊥, and F ↔ G stands for (F → G) ∧ (G→ F ). These conventions allow
us to view finite propositional formulas over σ as a special case of infinitary
formulas.

A set or family of formulas is bounded if the ranks of its members are bounded
from above. For any bounded family (Fα)α∈A of formulas, we denote the formula
{Fα : α ∈ A}∧ by

∧
α∈A Fα, and similarly for disjunctions.

Subsets of a signature σ will be also called interpretations of σ. The satisfac-
tion relation between an interpretation and a formula is defined recursively, as
follows:

– For every atom p from σ, I |= p if p ∈ I.
– I |= H∧ if for every formula F in H, I |= F .
– I |= H∨ if there is a formula F in H such that I |= F .
– I |= F → G if I 6|= F or I |= G.

The reduct F I of a formula F w.r.t. an interpretation I is defined recursively,
as follows:

– For every atom p from σ, pI is p if p ∈ I, and ⊥ otherwise.
– (H∧)I = {GI | G ∈ H}∧.
– (H∨)I = {GI | G ∈ H}∨.
– (G→ H)I is GI → HI if I |= G→ H, and ⊥ otherwise.

An interpretation I is a stable model of a set H of formulas if it is minimal
w.r.t. set inclusion among the interpretations satisfying the reducts F I of all
formulas F from H.

3 Infinitary Logic of Here-and-There

An HT-interpretation of σ is an ordered pair 〈I, J〉 of interpretations of σ such
that I ⊆ J . Intuitively, such a pair describes “two worlds”: the atoms in I are
true “here” (“in the world H”), and the atoms in J are true “there” (“in the
world T”).

The satisfaction relation between an HT-interpretation and a formula is de-
fined recursively, as follows:



– For every atom p from σ, 〈I, J〉 |= p if p ∈ I.
– 〈I, J〉 |= H∧ if for every formula F in H, 〈I, J〉 |= F .
– 〈I, J〉 |= H∨ if there is a formula F in H such that 〈I, J〉 |= F .
– 〈I, J〉 |= F → G if

(i) 〈I, J〉 6|= F or 〈I, J〉 |= G, and
(ii) J |= F → G.

An HT-model of a set H of infinitary formulas is an HT-interpretation that
satisfies all formulas in H.

About a formula F we say that it is forced in the world H of an HT-
interpretation 〈I, J〉 if it is satisfied by 〈I, J〉; we will say that it is forced in
the world T if it is satisfied by J . The set of worlds in which F is forced will
be called the truth value of F with respect to 〈I, J〉. It is easy to check by in-
duction on the rank that every formula that is forced in H is forced in T as
well. Consequently, the only possible truth values of a formula are ∅, {T}, and
{H,T}.

4 Equilibrium Models

An HT-interpretation 〈I, J〉 is total if I = J . It is clear that a total HT-
interpretation 〈J, J〉 satisfies F iff J satisfies F .

An equilibrium model of a set H of infinitary formulas is a total HT-model
〈J, J〉 of H such that for every proper subset I of J , 〈I, J〉 is not an HT-model
of H.

The following proposition is similar to Theorem 1 from [2].

Theorem 1 An interpretation J is a stable model of a set H of infinitary for-
mulas iff 〈J, J〉 is an equilibrium model of H.

Lemma 1. For any infinitary formula F and any HT-interpretation 〈I, J〉,

I |= F J iff 〈I, J〉 |= F.

The lemma can be proved by strong induction on the rank of F .

Proof of Theorem 1 It follows from the lemma that a total HT-interpretation
〈J, J〉 is an equilibrium model of H iff

– J satisfies all formulas from H, and
– there is no proper subset I of J such that I satisfies the reducts F J of all

formulas F from H.

This condition expresses that J is a stable model of H.



5 Strong Equivalence

About sets H1, H2 of infinitary formulas we say that they are strongly equivalent
to each other if, for every set H of infinitary formulas, the sets H1∪H and H2∪H
have the same stable models. About formulas F and G we say that they are
strongly equivalent if the singleton sets {F} and {G} are strongly equivalent.

A unary formula is an atom or a formula of the form p → q, where p and q
are atoms. The following theorem is similar to the main theorem from [10].

Theorem 2 For any sets H1, H2 of infinitary formulas, the following conditions
are equivalent:

(i) H1 is strongly equivalent to H2,
(ii) for every set H of unary formulas, sets H1 ∪ H and H2 ∪ H have the same

stable models;
(iii) sets H1 and H2 have the same HT-models.

Proof. Clearly, (i) implies (ii). To see that (iii) implies (i), observe that if sets
H1 and H2 have the same HT-models then H1 ∪ H and H2 ∪ H have the same
HT-models, and consequently have the same equilibrium models. It follows by
Theorem 1 that H1 ∪H and H2 ∪H have the same stable models.

It remains to check that (ii) implies (iii). Suppose 〈I, J〉 is an HT-model ofH1

but not an HT-model of H2. We will show how to find a set H of unary formulas
such that 〈J, J〉 is an equilibrium model of one of the sets H1 ∪ H,H2 ∪ H but
not the other. It will follow that the interpretation J is a stable model of one
but not the other.

Case 1: 〈J, J〉 is not an HT-model of H2. Since 〈I, J〉 is an HT-model of H1, it
is easy to see that 〈J, J〉 must be an HT-model of H1 as well. Then we can take
H = J . Indeed, it is clear that 〈J, J〉 is an HT-model of H1 ∪ J . Furthermore,
for any I that is a proper subset of J , 〈I, J〉 cannot be an HT-model of H1 ∪ J ,
so that 〈J, J〉 is an equilibrium model of H1 ∪J . On the other hand, since 〈J, J〉
is not a HT-model of H2, it cannot be an HT-model of H2 ∪ J .

Case 2: 〈J, J〉 is an HT-model of H2. Let H be the set

I ∪ {p→ q | p, q ∈ J \ I}.

Since 〈J, J〉 satisfies every formula in H, it is an HT-model of H2∪H. To see that
it is an equilibrium model, consider any HT-model 〈K,J〉 of H2 ∪H. Clearly, K
must contain I. But it cannot be equal to I, since 〈I, J〉 is not an HT-model of
H2. Thus I ⊂ K ⊂ J . Consider an atom p in K \ I and an atom q in J \K. For
these atoms, p → q belongs to H. But 〈K,J〉 does not satisfy this implication,
contrary to the assumption that it is an HT-model of H2 ∪H. We may conclude
that 〈J, J〉 is an equilibrium model of H2 ∪H. Finally, we will check that 〈J, J〉
is not an equilibrium model of H1 ∪ H. Consider the HT-model 〈I, J〉 of H1.
Clearly, it is an HT-model of I. Moreover, it satisfies each implication p→ q in



H: 〈I, J〉 does not satisfy p because p 6∈ I, and J satisfies q because q ∈ J . We
see that 〈I, J〉 satisfies all formulas in H, so that it is an HT-model of H1 ∪ H.
Furthermore, I is different from J since 〈J, J〉 is an HT-model of H2 and 〈I, J〉
is not. Consequently, I is a proper subset of J , and we may conclude that 〈J, J〉
is not an equilibrium model of H1 ∪H.

A part of any formula can be replaced with a strongly equivalent formula
without changing the set of stable models. For instance, it is easy to check that
the formulas p ∧ ¬p and ⊥ are strongly equivalent to each other; it follows that
the formulas

F ∧ (q → (p ∧ ¬p)) and F ∧ ¬q (3)

have the same stable models. Corollary 1 expresses a more general fact: several
parts (even infinitely many) can be simultaneously replaced by strongly equiv-
alent formulas. Its statement uses the following definitions [4]. Let σ and σ′ be
disjoint signatures. A substitution is a bounded family of formulas over σ with
index set σ′. For any substitution φ and any formula F over the signature σ∪σ′,
φF stands for the formula over σ formed as follows:

– If F ∈ σ then φF = F .
– If F ∈ σ′ then φF = φF .
– If F is H∧ then φF = {φG | G ∈ H}∧.
– If F is H∨ then φF = {φG | G ∈ H}∨.
– If F is G→ H then φF = φG→ φH.

For instance, if σ′ = {r}, φr = p ∧ ¬p, and ψr = ⊥, then φ(F ∧ (q → r)) and
ψ(F ∧ (q → r)) are the formulas (3).

Corollary 1 Let φ and ψ be substitutions such that for all p ∈ σ′, φp is strongly
equivalent to ψp. Then for any formula F , φF is strongly equivalent to ψF , so
that φF and ψF have the same stable models.

Proof. By Theorem 2, the assertion of the corollary can be stated as follows:
if for all p ∈ σ′, φp and ψp are satisfied by the same HT-interpretations, then for
any formula F , φF and ψF are satisfied by the same HT-interpretations. This
is easy to check by induction on the rank of F .

6 An Axiomatization of the Infinitary Logic of
Here-and-There

We present an axiomatization HT∞ of the infinitary logic of here-and-there.
The derivable objects in HT∞ are (infinitary) sequents—expressions of the form
Γ ⇒ F , where F is an infinitary formula, and Γ is a finite set of infinitary
formulas (“F under assumptions Γ”). To simplify notation, we will write Γ as
a list. We will identify a sequent of the form ⇒ F with the formula F .



The inference rules are the introduction and elimination rules for the propo-
sitional connectives

(∧I) Γ ⇒ H for all H ∈ H
Γ ⇒ H∧ (∧E) Γ ⇒ H

∧

Γ ⇒ H (H ∈ H)

(∨I) Γ ⇒ H
Γ ⇒ H∨ (H ∈ H) (∨E) Γ ⇒ H

∨ ∆,H ⇒ F for all H ∈ H
Γ,∆⇒ F

(→I) Γ, F ⇒ G
Γ ⇒ F → G (→E) Γ ⇒ F ∆⇒ F → G

Γ,∆⇒ G ,

where H is a bounded set of formulas, and the weakening rule

(W ) Γ ⇒ F
Γ,∆⇒ F .

The set of axioms in HT∞ is a subset of the set of axioms introduced in
the extended system of natural deduction from [4]. HT∞ includes three axiom
schemas:

F ⇒ F,

F ∨ (F → G) ∨ ¬G, (4)

and ∧
α∈A

∨
F∈Hα

F →
∨

(Fα)α∈A

∧
α∈A

Fα (5)

for every non-empty family (Hα)α∈A of sets of formulas such that its union
is bounded; the disjunction in the consequent of (5) extends over all elements
(Fα)α∈A of the Cartesian product of the family (Hα)α∈A. Axiom schema (4) was
mentioned in the introduction in connection with the problem of axiomatizing
the logic of here-and-there in the finite case, but now F and G can be infinitary
formulas. Axiom schema (5) generalizes (one direction of) the distributivity of
conjunction over disjunction to infinitary formulas: if A = {1, 2},H1 = {F1, G1},
and H2 = {F2, G2}, then (5) turns into

(F1 ∨G1) ∧ (F2 ∨G2)→ (F1 ∧ F2) ∨ (F1 ∧G2) ∨ (G1 ∧ F2) ∨ (G1 ∧G2).

The set of theorems of HT∞ is the smallest set of sequents that includes the
axioms of the system and is closed under the application of its inference rules.
We say that formulas F and G are equivalent in HT∞ if F ↔ G is a theorem
of HT∞.

The following theorem expresses the soundness and completeness of HT∞.

Theorem 3 An infinitary formula F is a theorem of HT∞ iff it is satisfied by
all HT-interpretations.

The proof of soundness is straightforward. The proof of completeness given
in the next section is analogous to the proof of completeness for classical propo-
sitional logic from [7].

From Theorems 2 and 3 we conclude:

Corollary 2 Bounded sets H1, H2 of infinitary formulas are strongly equivalent
iff H∧1 is equivalent to H∧2 in HT∞.



7 Proof of Completeness

In the proof of completeness, we use the following construction, due to Cabalar
and Ferraris [1, Section 5]. Let 〈I, J〉 be an HT-interpretation. We define the set
MIJ to be

I ∪ {¬¬p | p ∈ J} ∪ {¬p | p ∈ σ \ J} ∪ {p→ q | p, q ∈ J \ I}

(recall that σ is the set of all atoms). By vIJ(F ) we denote the truth value of F
with respect to 〈I, J〉 (see Section 3). We will omit the subscripts I, J in MIJ

and vIJ(F ) when it is clear which HT-interpretation we refer to.

Lemma 2. For any infinitary formula F and HT-interpretation 〈I, J〉,

(i) if v(F ) = ∅ then M∧ ⇒ ¬F is a theorem of HT∞;
(ii) if v(F ) = {T} then for every atom q in J \ I, M∧ ⇒ F ↔ q is a theorem of

HT∞;
(iii) if v(F ) = {H,T} then M∧ ⇒ F is a theorem of HT∞.

Proof. We will prove the claim by strong induction on the rank of F . We
assume the claim holds for all formulas with rank less than n and show that it
holds for a formula F of rank n. We consider cases corresponding to the different
possible forms of F and truth values v(F ). Note that if v(F ) is {T} then the
set J \ I is non-empty. Indeed, if I = J then the truth value of any formula is
either ∅ or {H,T}.
Case 1: F is an atom.

Case 1.1: v(F ) = ∅. Then F ∈ σ \ J , and ¬F ∈M .

Case 1.2: v(F ) = {T}. Then F ∈ J \ I, and for every atom q in J \ I, the
implications F → q and q → F are in M .

Case 1.3: v(F ) = {H,T}. Then F ∈M .

Case 2: F is of the form H∧. The induction hypothesis is then applicable to all
formulas in H.

Case 2.1: v(F ) = ∅. Then there exists a formula G in H such that v(G) is ∅. By
the induction hypothesis, M∧ ⇒ ¬G is a theorem of HT∞. From this we can
derive M∧ ⇒ ¬(H∧).

Case 2.2: v(F ) = {T}. Let H1 be the set of all formulas in H with truth value
{T}, and H2 be the set of all formulas in H with truth value {H,T}. It is clear
that H1 ∪ H2 = H and that H1 is non-empty. Consider an arbitrary element q
of J \ I. By the induction hypothesis M∧ ⇒ G ↔ q is a theorem for every G
in H1, and M∧ ⇒ G is a theorem for every G in H2. From these we can derive
M∧ ⇒ H∧1 ↔ q and M∧ ⇒ H∧2 . Then we can derive M∧ ⇒ H∧ ↔ q.

Case 2.3: v(F ) = {H,T}. Then for each element G in H, v(G) = {H,T}, and
by the induction hypothesis M∧ ⇒ G is a theorem. From these sequents we can
derive M∧ ⇒ H∧.



Case 3: F is of the form H∨. The induction hypothesis is then applicable to all
formulas in H.

Case 3.1: v(F ) = ∅. Then for each element G in H, v(G) = ∅, and by the
induction hypothesis M∧ ⇒ ¬G is a theorem. From these sequents we can
derive M∧ ⇒ ¬(H∨).

Case 3.2: v(F ) = {T}. Let H1 be the set of all formulas in H with truth value
{T}, and H2 be the set of all formulas in H with truth value ∅. It is clear that
H1 ∪ H2 = H and that H1 is non-empty. Consider an arbitrary element q of
J \ I. By the induction hypothesis M∧ ⇒ G ↔ q is a theorem for every G in
H1, and M∧ ⇒ ¬G is a theorem for every G in H2. From these we can derive
M∧ ⇒ H∨1 ↔ q and M∧ ⇒ ¬(H∨2 ). Then we can derive M∧ ⇒ H∨ ↔ q.

Case 3.3: v(F ) = {H,T}. Then there exists a formula G in H such that v(G) is
{H,T}. By the induction hypothesis, M∧ ⇒ G is a theorem. From this we can
derive M∧ ⇒ H∨.

Case 4: F is of the form F1 → F2. The induction hypothesis is then applicable
to F1 and F2.

Case 4.1: v(F ) = ∅. Then v(F1) is non-empty and v(F2) is empty.

Case 4.1.1: v(F1) = {T}. By the induction hypothesis M∧ ⇒ ¬F2 is a theorem,
as is M∧ ⇒ F1 ↔ q for any q in J \ I. Consider an atom q in J \ I. By the
construction of M , we know that ¬¬q is an element of M . From the sequents
M∧ ⇒ F1 ↔ q, M∧ ⇒ ¬F2, and M∧ ⇒ ¬¬q, we can derive M∧ ⇒ ¬(F1 → F2).

Case 4.1.2: v(F1) = {H,T}. By the induction hypothesis, both M∧ ⇒ F1 and
M∧ ⇒ ¬F2 are theorems. From these sequents we can deriveM∧ ⇒ ¬(F1 → F2).

Case 4.2: v(F ) = {T}. Then v(F1) = {H,T} and v(F2) = {T}. By the induction
hypothesis M∧ ⇒ F2 ↔ q is a theorem for any q ∈ J \ I, and M∧ ⇒ F1 is a
theorem as well. From these two sequents we can derive M∧ ⇒ (F1 → F2)↔ q.

Case 4.3: v(F ) = {H,T}.

Case 4.3.1: v(F1) = ∅. Then by the induction hypothesis M∧ ⇒ ¬F1 is a theo-
rem. From this we can derive M∧ ⇒ F1 → F2.

Case 4.3.2: v(F2) = {H,T}. Then by the induction hypothesis M∧ ⇒ F2 is a
theorem. From this we can derive M∧ ⇒ F1 → F2.

Case 4.3.3: v(F1) 6= ∅ and v(F2) 6= {H,T}. Since v(F ) is {H,T}, v(F1) is
different from {H,T} and therefore must be equal to {T}. It follows that v(F2)
is different from ∅, and therefore must be {T} also. Consider an element q in
J \ I. By the induction hypothesis both M∧ ⇒ F1 ↔ q and M∧ ⇒ F2 ↔ q are
theorems. From these two sequents we can derive M∧ ⇒ F1 → F2.

Note that in the proof of the lemma we did not refer to axiom schemas (4)
and (5); the assertion of the lemma would hold even if those axioms were removed
from HT∞.



Lemma 3. The disjunction of the formulas M∧
IJ over all HT-interpretations

〈I, J〉 is a theorem of HT∞.

Proof. Let Q stand for the set of disjunctions

p ∨ (p→ q) ∨ ¬q, (6)

¬p ∨ ¬¬p (7)

for all p, q from σ. Let (HD)D∈Q be the following family of sets:

HD = {p, p→ q,¬q} if D = p ∨ (p→ q) ∨ ¬q;
HD = {¬p,¬¬p} if D = ¬p ∨ ¬¬p.

Then the formula ∧
D∈Q

∨
S∈HD

S →
∨

(SD)D∈Q

∧
D∈Q

SD,

(where the disjunction in the consequent extends over all elements (SD)D∈Q of
the Cartesian product of the family (HD)D∈Q) is an instance of axiom schema (5).
Since the antecedent of this implication is the conjunction of all formulas in Q,
it is a theorem of HT∞. It follows that the consequent is a theorem as well. To
complete the proof it is sufficient to show that for every disjunctive term∧

D∈Q
SD (8)

of the consequent there exists an HT-interpretation 〈I, J〉 such that the sequent∧
D∈Q

SD ⇒M∧
IJ (9)

is a theorem.
Consider one of the conjunctions (8), and let C be set of its conjunctive

terms. The elements of C are formulas of the forms

p, ¬p, ¬¬p, p→ q.

If C contains both a formula and its negation then (9) is a theorem for every
〈I, J〉. Otherwise, let I denote the set of all atoms in C, and J denote the set of
all atoms p such that ¬¬p is in C. Let us check that I ⊆ J . Assume p ∈ I so that
p ∈ C. Since C is consistent, it does not contain ¬p, and since it contains a term
from each disjunction (7), it contains ¬¬p. So 〈I, J〉 is an HT-interpretation.

We will show that every formula from MIJ belongs to C. By the choice of I,
I ⊆ C. By the choice of J , {¬¬p | p ∈ J} ⊆ C. Consequently {¬p | p ∈ σ\J} ⊆ C,
because C contains one term from each disjunction (7). Finally, we need to check
that {p → q | p, q ∈ J \ I} ⊆ C. Consider a pair of atoms p, q that occur in J
but not in I. By the choice of I, p is not in C, and by the choice of J , ¬q is not



in C. Since C contains one term from each of the disjunctions (6) and contains
neither p nor ¬q, C must contain p→ q.

Proof of Completeness Let F be an infinitary formula over signature σ that is
satisfied by all HT-interpretations of σ. By Lemma 2(iii), MIJ ⇒ F is a theorem
of HT∞ for all HT-interpretations 〈I, J〉. By Lemma 3, it follows that F is a
theorem also.

It is clear from the proof that HT∞ will remain complete if we require that
formulas F and G in axiom schema (4) must be literals, and that the sets Hi in
axiom schema (5) must be finite.

8 Example: Infinitary De Morgan’s Law

As observed in Section 6, the set of axioms in HT∞ is a subset of the set of
axioms introduced in the extended system of natural deduction from [4]. From
the results presented in this note it is clear that the other axioms in the extended
system are redundant. The infinitary De Morgan’s law,

¬
∧
F∈H

F →
∨
F∈H

¬F, (10)

is one of these redundant axioms. In this section, we show directly, without a
reference to the general completeness theorem, how to prove (10) in HT∞.

Let Q stand for the set of disjunctions

F ∨ (F → G) ∨ ¬G, (11)

for all formulas F,G from H. Let (HD)D∈Q be the following family of sets:

HD = {F, F → G,¬G}.

Then the formula ∧
D∈Q

∨
S∈HD

S →
∨

(SD)D∈Q

∧
D∈Q

SD, (12)

(where the disjunction in the consequent extends over all elements (SD)D∈Q of
the Cartesian product of the family (HD)D∈Q) is an instance of axiom schema (5).
Since the antecedent of this implication is the conjunction of all formulas in Q,
it is a theorem of HT∞. It follows that the consequent is a theorem as well. To
complete the proof it is sufficient to show that from the antecedent of (10) and
any disjunctive term ∧

D∈Q
SD (13)

of the consequent of (12), we can derive the consequent of (10). Consider one of
the conjunctions (13), and let C be set of its conjunctive terms. The elements of
C are formulas of the forms

F, F → G, ¬G.



If C contains ¬F for some formula F then the consequent of (10) follows imme-
diately. Otherwise, we will show that assuming C∧ and any element F of H we
can derive ∧

F∈H
F, (14)

contradicting the antecedent of (10), and allowing us to derive ¬F from C∧

and the antecedent of (10). If C contains every formula F in H then (14) is
immediate. Otherwise, there is some G from H which is not in C. Assume G.
Since G is not in C and C does not contain the negation of any formula, we may
conclude that C contains G→ F for all formulas F from H. It follows that from
G and C∧ we can derive (14).

9 Conclusion

Under the stable model semantics, two sets of propositional formulas are strongly
equivalent if and only if they are equivalent in the logic of here-and-there. This
theorem was originally proved using equilibrium logic in [10]. In this paper, we
extended equilibrium logic to infinitary formulas; we defined an infinitary coun-
terpart to the logic of here-and-there and introduced an axiomatization, HT∞,
of that system; finally, we showed that bounded sets of infinitary propositional
formulas are strongly equivalent if and only if they are equivalent in HT∞.
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