
Translating First-Order Causal Theories into
Answer Set Programming

Vladimir Lifschitz and Fangkai Yang

Department of Computer Science
University of Texas at Austin

Austin, TX 78712, USA
{vl,fkyang}@cs.utexas.edu

Abstract. Nonmonotonic causal logic became a basis for the seman-
tics of several expressive action languages. Norman McCain and Paolo
Ferraris showed how to embed propositional causal theories into logic
programming, and this work paved the way to the use of answer set
solvers for answering queries about actions described in causal logic. In
this paper we generalize these embeddings to first-order causal logic—a
system that has been used to simplify the semantics of variables in action
descriptions.

1 Introduction

Propositional nonmonotonic causal logic [McCain and Turner, 1997] and its gen-
eralizations became a basis for the semantics of several expressive action lan-
guages [Giunchiglia and Lifschitz, 1998, Giunchiglia et al., 2004, Lifschitz and
Ren, 2006, Lifschitz and Ren, 2007]. The last paper argues, in particular, that
one of these generalizations—first-order causal logic in the sense of [Lifschitz,
1997]—is useful for defining the semantics of variables in action descriptions.

An important theorem due to Norman McCain [McCain, 1997, Proposi-
tion 6.7] shows how to embed a subset of propositional causal logic into the
language of logic programming under the answer set semantics [Gelfond and Lif-
schitz, 1991]. A similar translation, applicable to arbitrary propositional causal
theories, is defined in [Ferraris, 2007]. These results (reviewed in the next sec-
tion) paved the way to the use of answer set programming (ASP) for answering
queries about actions described in causal logic [Gebser et al., 2010].

In this note we extend the translations given by McCain and Ferraris to first-
order causal theories. Our generalizations rely on the approach to stable models
(answer sets) proposed in [Ferraris et al., 2007, Ferraris et al., 2010].

2 Background: Translating Propositional Causal Theories
into ASP

2.1 Propositional Causal Theories

A nonmonotonic causal theory in the sense of [McCain and Turner, 1997] is a set
of causal rules of the form F ⇐ G, where F and G are propositional formulas



(the head and the body of the rule). The rule can be read “F is caused if G is
true.”

Distinguishing between being true and having a cause turns out to be essen-
tial for the study of commonsense reasoning. The assertion “if the light is on at
time 2 and you toggle the switch then the light will be off at time 3” can be
written as an implication:

On2 ∧ Toggle2 → Off 3.

In causal logic, on the other hand, we can express that under the same assump-
tion there is a cause for the light to be off at time 3:

Off 3 ⇐ On2 ∧ Toggle2.

(Performing the toggle action is the cause.) McCain and Turner show that dis-
tinctions like this help us solve the frame problem and overcome other difficulties
arising in the theory of reasoning about actions.

The semantics of theories of this kind defines when a propositional interpre-
tation (truth assignment) is a model of the given theory (is “causally explained”
by the theory, in the terminology of McCain and Turner). We do not repro-
duce the definition here, because a more general semantics is described below in
Section 3.1. But here is an example: the causal theory

p⇐ ¬q
¬q ⇐ p

(1)

has one model, according to the semantics from [McCain and Turner, 1997]. In
this model, p is true and q is false. (Since the bodies of both rules are true in
this model, both rules “fire”; consequently the heads of the rules are “caused”;
consequently the truth values of both atoms are “causally explained.”)

2.2 McCain’s Translation

McCain’s translation is applicable to a propositional causal theory T if the head
of each rule of T is a literal, and the body is a conjunction of literals:

L⇐ A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ¬An. (2)

The logic program corresponding to T consists of the logic programming rules

L← not ¬A1, . . . ,not ¬Am,not Am+1, . . . ,not An (3)

for all rules (2) of T . According to Proposition 6.7 from [McCain, 1997], complete
answer sets of this logic program are identical to the models of T . (A set of
literals is complete if it contains exactly one member of each complementary
pair of literals A,¬A. In the statement above, we identify a complete set of
literals with the corresponding truth assignment.)



For instance, McCain’s translation turns causal theory (1) into

p← not q
¬q ← not ¬p. (4)

The only answer set of this program is {p,¬q}. It is complete, and it corresponds
to the model of causal theory (1).

2.3 Eliminating Strong Negation

Rule (3) involves two kinds of negation: negation as failure (not) and strong,
or classical, negation (¬). As observed in [Gelfond and Lifschitz, 1991], strong
negation can be eliminated from a logic program in favor of additional atoms.
Denote the new atom representing a negative literal ¬A by Â. Then (3) will
become

A0 ← not Â1, . . . ,not Âm,not Am+1, . . . ,not An (5)

if L is a positive literal A0, and

Â0 ← not Â1, . . . ,not Âm,not Am+1, . . . ,not An (6)

if L is a negative literal ¬A0. The modified McCain translation of T consists of

– the rules (5), (6) corresponding to the rules of T , and
– the completeness constraints

← A, Â

← not A,not Â
(7)

for all atoms A.

For instance, the modified McCain translation of (1) is

p← not q
q̂ ← not p̂
← p, p̂
← not p,not p̂
← q, q̂
← not q,not q̂.

(8)

The only answer set of this program is {p, q̂}.

2.4 Rules as Formulas

The definition of an answer set for sets of propositional formulas proposed in
[Ferraris, 2005] is a generalization of the concept of an answer set for proposi-
tional logic programs without strong negation, in the sense that rewriting each



rule of a given program in the syntax of propositional logic produces a collec-
tion of formulas with the same answer sets as the given program. For instance,
rules (5) and (6), rewritten as propositional formulas, become

¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0

and
¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An → Â0.

The completeness constraints for an atom A turn into

¬(A ∧ Â)
¬(¬A ∧ ¬Â).

(9)

Note that the process of rewriting a rule as a formula is applicable only when
the rule does not contain strong negation; the symbol ¬ in the resulting formula
corresponds to the negation as failure symbol (not) in the rule.

One of the advantages of writing rules as formulas is that it allows us to
relate properties of answer sets to subsystems of classical logic. We know, for
instance, that if the equivalence of two sets Γ , ∆ of formulas can be proved
in intuitionistic logic (or even in the stronger logic of here-and-there) then Γ
and ∆ have the same answer sets [Ferraris, 2005, Proposition 2]. It follows that
replacing the completeness constraints (9) with the intuitionistically equivalent
formula

¬(A↔ Â) (10)

does not affect the class of answer sets.
If we rewrite program (8) in the syntax of propositional logic and modify the

completeness constraints as shown above then (8) will turn into

¬q → p
¬p̂→ q̂
¬(p↔ p̂)
¬(q ↔ q̂).

(11)

This collection of formulas is essentially identical to logic program (8), and it
has the same answer set.

2.5 Translating Arbitrary Definite Theories

The paper [Ferraris, 2007] shows, among other things, how to lift the require-
ment, in the definition of McCain’s translation, that the bodies of all causal rules
should be conjunctions of literals. Take any set T of causal rules of the forms

A⇐ G (12)

and
¬A⇐ G (13)



where A is an atom and G is an arbitrary formula (such rules are called definite).
For each rule (12), take the formula ¬¬G → A, and, for each rule (13), the
formula ¬¬G → Â. Then add completeness constraints (10) for all atoms A.
Answer sets of this collection of propositional formulas correspond to the models
of T .

In application to example (1), this modification of McCain’s translation gives

¬¬¬q → p
¬¬p→ q̂
¬(p↔ p̂)
¬(q ↔ q̂).

(14)

It is not surprising that (14) has the same answer set as (11): the two collections
of formulas are intuitionistically equivalent to each other.

2.6 Ferraris’s Translation

The main result of [Ferraris, 2007] deals with causal theories “in clausal form”:
the heads of rules are disjunctions of literals (and the bodies are arbitrary propo-
sitional formulas, as in Section 2.5). This is essentially the general case, because
any propositional causal theory can be converted to clausal form by converting
the head of each rule to conjunctive normal form D1∧· · ·∧Dk and then breaking
it into k rules with the heads D1, . . . , Dk.

Ferraris’s translation turns the rule∨
A∈Pos

A ∨
∨

A∈Neg

¬A⇐ G

(Pos and Neg are sets of atoms) into the implication

¬¬G ∧
∧

A∈Pos

(Â ∨ ¬Â) ∧
∧

A∈Neg

(A ∨ ¬A)→
∨

A∈Pos

A ∨
∨

A∈Neg

Â.

For instance, it transforms p ∨ ¬q ⇐ r into

¬¬r ∧ (p̂ ∨ ¬p̂) ∧ (q ∨ ¬q)→ p ∨ q̂. (15)

The number of “excluded middle formulas” in the antecedent of the implica-
tion, such as p̂∨¬p̂ and q∨¬q in (15), equals the number of disjunctive terms in
the head of the given causal rule. In particular, the result of Ferraris’s transla-
tion includes one such formula when the head of the given causal rule is a single
literal, as in Section 2.5. For instance, in application to (1) this process would
produce

¬¬¬q ∧ (p̂ ∨ ¬p̂)→ p
¬¬p ∧ (q ∨ ¬q)→ q̂
¬(p↔ p̂)
¬(q ↔ q̂).

(16)



This collection of formulas differs from (14) by the presence of excluded middle
formulas in the antecedents of the two implications. These conjuncive terms are
redundant: dropping them from (16) is an intuitionistically equivalent transfor-
mation and consequently does not affect the collection of answer sets.

But when the result of translating a rule has more than one excluded middle
formula in the antecedent, as in example (15), then the presence of these formulas
may be crucial for the validity of the translation [Ferraris, 2007, Section 4].

3 Review: Causal Theories and Stable Models in a
First-Order Setting

In this section we review the definition of a first-order causal theory from [Lif-
schitz, 1997] and the definition of a stable model of a first-order sentence from [Fer-
raris et al., 2010]. Both definitions are based on syntactic transformations that
produce second-order formulas.

3.1 First-Order Causal Theories

According to [Lifschitz, 1997], a first-order causal theory T is defined by

– a list p of distinct predicate constants (other than equality), called the ex-
plainable symbols of T ,1 and

– a finite set of causal rules of the form F ⇐ G, where F and G are first-order
formulas.

The semantics of first-order causal theories can be described as follows. For
each p ∈ p, choose a new predicate variable υp of the same arity, and let υp
stand for the list of all these variables. By T †(υp) we denote the conjunction of
the formulas

∀x(G→ Fp
υp) (17)

for all rules F ⇐ G of T , where x is the list of all free variables of F , G.
(The expression Fp

υp denotes the result of substituting the variables υp for the
corresponding constants p in F .) We view T as shorthand for the sentence

∀υp(T †(υp)↔ (υp = p)). (18)

(By υp = p we denote the conjunction of the formulas ∀x(υp(x)↔ p(x)) for all
p ∈ p, where x is a tuple of distinct object variables.)

Consider, for instance, the causal theory T with the explainable symbol p
that consists of two rules:

p(a)⇐ >
(here > is the logical constant true) and

¬p(x)⇐ ¬p(x).
1 To be precise, the definition in [Lifschitz, 1997] is more general: object and function

constants can be treated as explainable as well.



The first rule says that there is a cause for a to have property p. The second
rule says that if an object does not have property p then there is a cause for
that; including this rule in a causal theory has the same effect as saying that p
is “false by default” [Lifschitz, 1997, Section 3]. In this case, T †(υp) is

υp(a) ∧ ∀x(¬p(x)→ ¬υp(x)),

so that T is understood as shorthand for the sentence

∀υp(υp(a) ∧ ∀x(¬p(x)→ ¬υp(x))↔ ∀x(υp(x)↔ p(x))).

This sentence is equivalent to the first-order formula ∀x(p(x)↔ x = a).

3.2 Operator SM

If p and q are predicate constants of the same arity then p ≤ q stands for the
formula ∀x(p(x)→ q(x)), where x is a tuple of distinct object variables. If p and
q are tuples p1, . . . , pn and q1, . . . , qn of predicate constants then p ≤ q stands
for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q) ∧ ¬(q ≤ p). In second-order logic, we apply the
same notation to tuples of predicate variables.

We will define the stable model operator with the intensional predicates p,
denoted by SMp [Ferraris et al., 2010]. Some details of the definition depend on
which propositional connectives and quantifiers are treated as primitives, and
which of them are viewed as abbreviations. We assume that ⊥ (falsity), ∧, ∨,
→, ∀, ∃ are the primitives; ¬F stands for F → ⊥, > stands for ⊥ → ⊥, and
F ↔ G is (F → G) ∧ (G→ F ).

Let p be a list of distinct predicate constants (other than equality). For each
p ∈ p, choose a new predicate variable υp of the same arity, and let υp stand
for the list of all these variables. For any first-order sentence F , by SMp[F ] we
denote the second-order sentence

F ∧ ¬∃υp((υp < p) ∧ F ∗(υp)),

where F ∗(υp) is defined recursively:

– p(t)∗ = υp(t) for any p ∈ p and any tuple t of terms;
– F ∗ = F for any atomic F that does not contain members of p;
– (F ∧G)∗ = F ∗ ∧G∗;
– (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF )∗ = ∀xF ∗;
– (∃xF )∗ = ∃xF ∗.



A model of F is stable (relative to the set p of intensional predicates) if it
satisfies SMp[F ].

For instance, let F be the formula

∀x(p(x)→ (q(x) ∨ ¬q(x))

(it represents the lparse choice rule {q(X)} :- p(X)).2 If we take q to be the
only intensional predicate then F ∗(υq) is

∀x((p(x)→ (υq(x) ∨ (¬υq(x) ∧ ¬q(x)))) ∧ (p(x)→ (q(x) ∨ ¬q(x)))),

which is equivalent to ∀x(p(x) → (υq(x) ∨ ¬q(x))). Consequently SMq[F ] is
equivalent to

∀x(p(x)→ (q(x) ∨ ¬q(x))) ∧ ¬∃υq((υq < q) ∧ ∀x(p(x)→ (υq(x) ∨ ¬q(x)))).

The first conjunctive term here is logically valid and can be dropped. The sec-
ond is equivalent to the first-order formula ∀x(q(x) → p(x)), which reflects the
intuitive meaning of choice: q is an arbitrary subset of p.

4 Translating First-Order Causal Theories

4.1 A First-Order Counterpart of McCain’s Translation

In this section we extend the McCain translation as described in Section 2.5
to first-order causal theories. By T we denote here a causal theory in the sense
of Section 3.1 such that the head of every rule of T is a literal containing an
explainable predicate. Thus every rule of T has the form

p(t)⇐ G (19)

or the form
¬p(t)⇐ G, (20)

where p is an explainable predicate and t is a tuple of terms. For instance, the
example at the end of Section 3.1

p(a)⇐ >
¬p(x)⇐ ¬p(x) (21)

is a causal theory of this type.
For every member p of the list p of explainable predicates, let p̂ be a new

predicate constant of the same arity, and let p̂ be the list of all these predicate
constants. By CC we denote the conjunction of the formulas

∀x¬(p(x)↔ p̂(x)), (22)

where x is a tuple of distinct object variables, for all p from p. These formulas
are first-order counterparts of completeness constraints (10).
2 For a description of the language see http://www.tcs.hut.fi/Software/smodels/

lparse.ps.



The McCain translation MC[T ] of T is the conjunction of

– formulas ∀̃(¬¬G→ p(t)) for all rules (19) of T , and
– formulas ∀̃(¬¬G→ p̂(t)) for all rules (20) of T , and
– completeness constraints CC .

(The symbol ∀̃ denotes universal closure.) For instance, if T is (21) then MC[T ]
is the conjunction of the formulas

¬¬> → p(a)
∀x(¬¬¬p(x)→ p̂(x))
∀x¬(p(x)↔ p̂(x)),

or, after (intuitionistically acceptable) simplifications,

p(a) ∧ ∀x(¬p(x)→ p̂(x)) ∧ ∀x¬(p(x)↔ p̂(x)).

In logic programming syntax, this formula can be rewritten as

p(a)
p̂(x)← not p(x)

← p(x), p̂(x)
← not p(x),not p̂(x).

(23)

Theorem 1. The sentence SMpbp[MC[T ]] is equivalent to T ∧ CC .3

Note that formula (22) is classically equivalent to

∀x(p̂(x)↔ ¬p(x)), (24)

so that CC can be viewed as the conjunction of explicit definitions of the pred-
icates p̂ in terms of the predicates p. Since the predicates p̂ do not belong to
the language of T , Theorem 1 shows that SMpbp[MC[T ]] is a definitional, and
consequently conservative, extension of T . In other words, the pp̂-stable models
of MC[T ] are identical to the models of T extended by the interpretations of the
predicates p̂ given by explicit definitions (24). Note also that in this character-
ization of the stable models of MC[T ] the set of intensional predicates includes
both the explainable predicates p of T and the corresponding predicates p̂.

4.2 A First-Order Counterpart of Ferraris’s Translation

In this section, T is a causal theory in the sense of Section 3.1 such that

– the head of each rule of T is a disjunction of literals, and
– all predicate constants occurring in the heads of rules are explainable.

3 Recall that we identify a causal theory T with the corresponding sentence (18).



In other words, we assume that every rule of T has the form∨
A∈Pos

A ∨
∨

A∈Neg

¬A⇐ G (25)

for some sets Pos, Neg of atomic formulas that contain a predicate constant from
the set p of explainable symbols.

As in Section 4.1, for each p ∈ p we choose a new predicate constant p̂ of
the same arity. If A is an atomic formula p(t), where p ∈ p and t is a tuple of
terms, then Â stands for p̂(t).

The Ferraris translation Fer[T ] of T is the conjunction of

– formulas

∀̃

¬¬G ∧ ∧
A∈Pos

(Â ∨ ¬Â) ∧
∧

A∈Neg

(A ∨ ¬A)→
∨

A∈Pos

A ∨
∨

A∈Neg

Â

 (26)

for all rules (25) of T , and
– completeness constraints CC .

For instance, if T is (21) then Fer[T ] is the conjunction of the formulas

¬¬> ∧ (p̂(a) ∨ ¬p̂(a))→ p(a)
∀x(¬¬¬p(x) ∧ (p(x) ∨ ¬p(x))→ p̂(x))
∀x¬(p(x)↔ p̂(x)).

Theorem 2. The sentence SMpbp[Fer[T ]] is equivalent to T ∧ CC .

Thus the pp̂-stable models of Fer[T ] are identical to the models of T extended
by the interpretations of the predicates p̂ given by explicit definitions (24).

5 Proof Outlines

Our proofs of Theorems 1 and 2 are quite different from the published proofs
of similar results for the propositional case, because of the difference between
the semantics used in this paper (Section 3) and the semantics of propositional
causal theories and logic programs, which are based on reducts.

Theorem 1 follows from Theorem 2 in view of the following fact:

Lemma 1. For any causal theory T consisting of rules of forms (19) and (20),
MC[T ] is intuitionistically equivalent to Fer[T ].

In the proof of Theorem 2, Π stands for the conjunction of sentences (26) for
all rules (25) in T . Then Fer[T ] is Π ∧ CC . Formula SMpbp[Fer[T ]] is equivalent
to SMpbp[Π] ∧ CC , because CC has no strictly positive occurrences of inten-
sional predicates [Ferraris et al., 2010, Section 5.1]. Therefore the statement of
Theorem 2 is equivalent to the claim that CC entails

SMpbp[Π]↔ T. (27)



By υp, υp̂ we denote the lists of the predicate variables υp, υp̂ used in the
second-order formula SMpbp[Π] (see Section 3.2). If A is an atomic formula p(t),
where p ∈ p and t is a tuple of terms, then we will write υA for υp(t), and υÂ

for υp̂(t). By ∀̃objF we denote the formula ∀xF , where x is list of all free object
variables of F (“object-level universal closure”).

The expression H(υp, υp̂) stands for the conjunction of the implications

∀̃obj

G→ ∨
A∈Pos

((υÂ ∨A)→ υA) ∨
∨

A∈Neg

((υA ∨ ¬A)→ υÂ)


for all rules (25) in T . The role of this formula is determined by the following
lemma:

Lemma 2. Formula CC entails

SMpbp[Π]↔ Π ∧ ∀(υp)(υp̂)(((υp, υp̂) < (p, p̂))→ ¬H(υp, υp̂)).

For any formula F , by FΣ1 we denote the formula

F
(υp)(υbp)
(υp∧p)(¬υp∧¬p)

where υp∧p is understood as the list of predicate expressions4 λx(υp(x)∧p(x))
for all p ∈ p, and ¬υp ∧ ¬p is understood in a similar way.

Lemma 3. Formula ((υp, υp̂) < (p,¬p))Σ1 is equivalent to υp 6= p. Formula
H(υp, υp̂)Σ1 is equivalent to T †(υp).

The proof of the first part of this lemma is based on the fact that formula
(υp, υp̂) < (p,¬p) is equivalent to∨

p∈p
(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x(¬υp(x) ∧ ¬υp̂(x))).

The fact that CC entails the “only if” part of equivalence (27) follows from
Lemmas 2 and 3.

For any formula F , by FΣ2 we denote the formula

F υp(((υp,υbp)≤(p,¬p))∧¬υp∧¬υbp)↔¬p

where the subscript

(((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp ∧ ¬υp̂)↔ ¬p

is understood as the list of predicate expressions

λx((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp(x) ∧ ¬υp̂(x))↔ ¬p(x))

for all p ∈ p.

Lemma 4. Formula (υp 6= p)Σ2 is equivalent to (υp, p̂) < (p,¬p). The impli-
cation (υp, υp̂) ≤ (p,¬p)→ (T †(υp)Σ2 ↔ H(υp, υp̂)) is logically valid.

The fact that CC entails the “if” part of equivalence (27) follows from Lem-
mas 2 and 4.
4 See [Lifschitz, 1994, Section 3.1].



6 Conclusion

The definition of a stable model based on the operator SM, reviewed in Sec-
tion 3.2, is more general than the traditional defintion [Gelfond and Lifschitz,
1988] in several ways. It is more general syntactically, because it is applicable to
formulas containing quantifiers. It is more general semantically, in the sense that
it is applicable to non-Herbrand models. It also allows us to distinguish between
intensional and extensional predicates. Ferraris et al. [2010] argued that these
features can be useful in applications to knowledge representation. They showed
how to extend many familiar properties of stable models to the first-order case.
This line of work was continued in [Lee et al., 2008] and [Ferraris et al., 2009], and
the theorems presented in this paper belong to the same direction of research.

We expect that Theorem 2 will help us extend the theorem on synonymity
proved in [Lee et al., 2010] to first-order causal theories, and that it will help us
in this way to design a new implementation of modular action language MAD
[Erdoğan, 2008, Ren, 2009].

In application to causal theories with variables, the translations defined in
this paper often generate logic programs that are not safe and thus cannot be
processed by existing answer set solvers.5 For instance, the second rule of (23) is
unsafe, because the only occurrence of x in its body is in the scope of negation
as failure. It may be possible to find modifications of the McCain and Ferraris
translations that produce safe logic programs in practically important cases.

Another topic for future research is extending the translations to causal the-
ories with explainable object and function constants; such constants correspond
to non-Boolean fluents in action languages.

Acknowledgements

We are grateful to the anonymous referees for useful comments. This research
was partially supported by the National Science Foundation under grant IIS-
0712113.

References

[Erdoğan, 2008] Selim T. Erdoğan. A Library of General-Purpose Action Descrip-
tions6. PhD thesis, University of Texas at Austin, 2008.

[Ferraris et al., 2007] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new
perspective on stable models. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), pages 372–379, 2007.

[Ferraris et al., 2009] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, and Ravi Palla.
Symmetric splitting in the general theory of stable models. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 797–803, 2009.

[Ferraris et al., 2010] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable
models and circumscription7. Artificial Intelligence, 2010. To appear.

5 See Chapter 3 of the dlv manual, http://www.dbai.tuwien.ac.at/proj/dlv/man/.
6 http://www.cs.utexas.edu/users/tag/mad/erdogan-dissertation.pdf
7 http://peace.eas.asu.edu/joolee/papers/smcirc.pdf



[Ferraris, 2005] Paolo Ferraris. Answer sets for propositional theories. In Proceedings
of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), pages 119–131, 2005.

[Ferraris, 2007] Paolo Ferraris. A logic program characterization of causal theories.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
pages 366–371, 2007.

[Gebser et al., 2010] Martin Gebser, Torsten Grote, and Torsten Schaub. Coala: a
compiler from action languages to ASP. This volume, 2010.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Proceedings of International Logic Programming Conference and Symposium,
pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical nega-
tion in logic programs and disjunctive databases. New Generation Computing, 9:365–
385, 1991.

[Giunchiglia and Lifschitz, 1998] Enrico Giunchiglia and Vladimir Lifschitz. An action
language based on causal explanation: Preliminary report. In Proceedings of National
Conference on Artificial Intelligence (AAAI), pages 623–630. AAAI Press, 1998.

[Giunchiglia et al., 2004] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Nor-
man McCain, and Hudson Turner. Nonmonotonic causal theories. Artificial Intelli-
gence, 153(1–2):49–104, 2004.

[Lee et al., 2008] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Safe formulas in
the general theory of stable models (preliminary report). In Proceedings of Interna-
tional Conference on Logic Programming (ICLP), pages 672–676, 2008.

[Lee et al., 2010] Joohyung Lee, Yuliya Lierler, Vladimir Lifschitz, and Fangkai Yang.
Representing synonymity in causal logic and in logic programming8. In Proceedings
of International Workshop on Nonmonotonic Reasoning (NMR), 2010.

[Lifschitz and Ren, 2006] Vladimir Lifschitz and Wanwan Ren. A modular action de-
scription language. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pages 853–859, 2006.

[Lifschitz and Ren, 2007] Vladimir Lifschitz and Wanwan Ren. The semantics of vari-
ables in action descriptions. In Proceedings of National Conference on Artificial
Intelligence (AAAI), 2007.

[Lifschitz, 1994] Vladimir Lifschitz. Circumscription. In D.M. Gabbay, C.J. Hogger,
and J.A. Robinson, editors, Handbook of Logic in AI and Logic Programming, vol-
ume 3, pages 298–352. Oxford University Press, 1994.

[Lifschitz, 1997] Vladimir Lifschitz. On the logic of causal explanation. Artificial
Intelligence, 96:451–465, 1997.

[McCain and Turner, 1997] Norman McCain and Hudson Turner. Causal theories of
action and change. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pages 460–465, 1997.

[McCain, 1997] Norman McCain. Causality in Commonsense Reasoning about Ac-
tions9. PhD thesis, University of Texas at Austin, 1997.

[Ren, 2009] Wanwan Ren. A Modular Language for Describing Actions10. PhD thesis,
University of Texas at Austin, 2009.

8 http://userweb.cs.utexas.edu/users/vl/papers/syn.pdf
9 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz

10 http://www.cs.utexas.edu/users/rww6/dissertation.pdf


