
Lloyd-Topor Completion and General Stable Models

Vladimir Lifschitz and Fangkai Yang

Department of Computer Science
The University of Texas at Austin

{vl,fkyang}@cs.utexas.edu

Abstract. We investigate the relationship between the generalization of program
completion defined in 1984 by Lloyd and Topor and the generalization of the
stable model semantics introduced recently by Ferrariset al. The main theorem
can be used to characterize, in some cases, the general stable models of a logic
program by a first-order formula. The proof uses Truszczynski’sstable model
semantics of infinitary propositional formulas.

1 Introduction

The theorem by François Fages [1] describing a case when thestable model semantics
is equivalent to program completion is one of the most important results in the theory of
stable models. It was generalized in [2–4], it has led to the invention of loop formulas
[5], and it has had a significant impact on the design of answerset solvers.

The general stable model semantics defined in [6] characterizes the stable models of
a first-order sentenceF as arbitrary models of a certain second-order sentence, denoted
by SM[F];1 logic programs are viewed there as first-order sentences written in “logic
programming notation.” In this note we define an extension ofFages’ theorem that can
be used as a tool for transforming SM[F], in some cases, into an equivalent first-order
formula. That extension refers to the version of program completion introduced by John
Lloyd and Rodney Topor in [7]. Their definition allows the body of a rule to contain
propositional connectives and quantifiers.

Earlier work in this direction is reported in [6] and [8]. These papers do not men-
tion completion in the sense of Lloyd and Topor explicitly. Instead, they discuss ways
to convert a logic program to “Clark normal form” by stronglyequivalent transforma-
tions [9, 10] and completing programs in this normal form by replacing implications
with equivalences. But this is essentially what Lloyd-Topor completion does.

The following examples illustrate some of the issues involved. LetF be the program

p(a),
q(b),
p(x) ← q(x),

(1)

1 To be precise, the definition of SM in that paper requires that a set of “intensional predicates”
be specified. In the examples below, we assume that all predicate symbols occurring inF are
intensional.

2 Vladimir Lifschitz and Fangkai Yang

or, in other words, the sentence

p(a) ∧ q(b) ∧ ∀x(q(x) → p(x)).

The Clark normal form of (1) is tight in the sense of [6], and Theorem 11 from that
paper shows that SM[F] in this case is equivalent to the conjunction of the completed
definitions ofp andq:

∀x(p(x) ↔ x = a ∨ q(x)),
∀x(q(x) ↔ x = b).

(2)

Let nowF be the program
p(x) ← q(x),
q(a) ← p(b).

(3)

This program is not tight in the sense of [6], so that the above-mentioned theorem is not
applicable. In fact, SM[F] is stronger in this case than the conjunction of the completed
definitions

∀x(p(x) ↔ q(x)),
∀x(q(x) ↔ x = a ∧ p(b)).

(4)

A counterexample is provided by any interpretation that treats each of the symbolsp, q

as a singleton such that its element is equal to botha andb. Such a (non-Herbrand)
interpretation satisfies (4), but it is not a stable model of (3). (In stable models of (3)
bothp andq are empty.)

Program (3) is, however, atomic-tight in the sense of [8, Section 5.1.1]. Corollary 5
from that paper allows us to conclude that the equivalence between SM[F] and (4) is
entailed by the unique name assumptiona 6= b. It follows that the result of applying SM
to the program obtained from (4) by adding the constraint

← a = b

is equivalent to the conjunction of the completion sentences (4) witha 6= b. This exam-
ple illustrates the role of a property more general than the logical equivalence between
SM[F] and the completion ofF : it may be useful to know when the equivalence be-
tween these two formulas is entailed by a certain set of assumptions. This information
may be relevant if we are interested in a logic program obtained fromF by adding
constraints.

The result of applying SM to the program

p(a)← p(b),
q(c)← q(d),

← a = b,

← c = d

(5)

is equivalent to the conjunction of the formulas

∀x(p(x) ↔ x = a ∧ p(b)),
∀x(q(x) ↔ x = c ∧ q(d)),

a 6= b,

c 6= d.

(6)

Lloyd-Topor Completion and General Stable Models 3

This claim cannot be justified, however, by a reference to Corollary 5 from [8]. The pro-
gram in this example is atomic-tight, but it does not containconstraints corresponding
to some of the unique name axioms, for instancea 6= c. We will show how our claim
follows from the main theorem stated below.

We will discuss also an example illustrating limitations ofearlier work that is related
to describing dynamic domains in answer set programming (ASP). The program in that
example is not atomic-tight because of rules expressing thecommonsense law of inertia.
We will show nevertheless that the process of completion canbe used to characterize
its stable models by a first-order formula.

The class of tight programs is defined in [6] in terms of predicate dependency
graphs; that definition is reproduced in Section 3 below. Thedefinition of an atomic-
tight program in [8] refers to more informative “first-orderdependency graphs.” Our
approach is based on an alternative solution to the problem of making predicate depen-
dency graphs more informative, “rule dependency graphs.”

After reviewing some background material in Sections 2 and 3, we define rule de-
pendency graphs in Section 4, and state the main theorem and give examples of its use
in Sections 5 and 6. Section 7 reviews Truszczynski’s theoryof stable models of infini-
tary propositional formulas, which is used in the proof of the main theorem, and then
the proof is presented in Section 8 and in the appendix.

2 Review: Operator SM, Lloyd-Topor Programs, and Completion

In this paper, aformula is a first-order formula that may contain the propositional con-
nectives⊥ (logical falsity),∧,∨, and→, and the quantifiers∀, ∃. We treat¬F as an ab-
breviation forF → ⊥; ⊤ stands for⊥ → ⊥; F ↔ G stands for(F → G)∧ (G → F).

For any first-order sentenceF and any tuplep of distinct predicate constants (other
than equality) SMp[F] is the conjunction ofF with a second-order ”stability condi-
tion”; see [6, Section 2] for details. The members ofp are calledintensional, and the
other predicate constants areextensional. We will drop the subscript in the symbol
SMp whenp is the list of all predicate symbols occurring inF . For any sentenceF , a
p-stable(or simplystable) modelof F is an interpretation of the underlying signature
that satisfies SMp[F].

A Lloyd-Topor programis a finite set of rules of the form

p(t) ← G, (7)

wheret is a tuple of terms, andG is a formula. We will identify a program with the
sentence obtained by conjoining the formulas

∀̃(G → p(t))

for all its rules (7). (̃∀F stands for the universal closure ofF .)
Let Π be a Lloyd-Topor program, andp a predicate constant (other than equality).

Let
p(ti) ← Gi (i = 1, 2, . . .) (8)

4 Vladimir Lifschitz and Fangkai Yang

be all rules ofΠ that containp in the head. Thedefinition ofp in Π is the rule

p(x) ←
∨

i

∃yi(x = ti ∧ Gi), (9)

wherex is a list of distinct variables not appearing in any of the rules (8), andyi is the
list of free variables of (8).2 Thecompleted definition ofp in Π is the formula

∀x

(
p(x) ↔

∨

i

∃yi(x = ti ∧ Gi)

)
. (10)

For instance, the completed definitions ofp andq in program (1) are the formulas

∀x1(p(x1) ↔ x1 = a ∨ ∃x(x1 = x ∧ q(x))),
∀x1(q(x1) ↔ x1 = b),

which can be equivalently rewritten as (2).
By Comp[Π] we denote the conjunction of the completed definitions of allpredicate

constantsp in Π. This sentence is similar to the completion ofΠ in the sense of [7,
Section 2], except that it does not include Clark equality axioms.

3 Review: Tight Programs

We will review now the definition of tightness from [6, Section 7.3]. In application to
a Lloyd-Topor programΠ, when all predicate constants occurring inΠ are treated as
intensional, that definition can be stated as follows.

An occurrence of an expression in a first-order formula isnegatedif it belongs to a
subformula of the form¬F (that is,F → ⊥), andnonnegatedotherwise. Thepredicate
dependency graph ofΠ is the directed graph that has

– all predicate constants occurring inΠ as its vertices, and
– an edge fromp to q wheneverΠ contains a rule (7) withp in the head such that its

bodyG has a positive3 nonnegated occurrence ofq.

We say thatΠ is tight if the predicate dependency graph ofΠ is acyclic.
For example, the predicate dependency graph of program (1) has a single edge,

from p to q. The predicate dependency graph of program (3) has two edges, from p to q

and fromq to p. The predicate dependency graph of the program

p(a, b)
q(x, y) ← p(y, x) ∧ ¬p(x, y)

(11)

2 By x = ti we denote the conjunction of the equalities between members of the tuplex and the
corresponding members of the tupleti.

3 Recall that an occurrence of an expression in a first-order formula iscalled positive if the
number of implications containing that occurrence in the antecedent is even, andnegative
otherwise.

Lloyd-Topor Completion and General Stable Models 5

has a single edge, fromq to p (because one of the occurrences ofp in the body of the
second rule is nonnegated). The predicate dependency graphof the program

p(x) ← q(x),
q(x) ← r(x),
r(x) ← s(x)

(12)

has 3 edges:
p −→ q −→ r −→ s.

Programs (1), (11) and (12) are tight; program (3) is not.

Proposition 1. If a Lloyd-Topor programΠ is tight thenSM[Π] is equivalent to
Comp[Π].

This is an easy corollary to the theorem from [6] mentioned inthe introduction.
Indeed, consider the setΠ ′ of the definitions (9) of all predicate constantsp in Π. It can
be viewed as a formula in Clark normal form in the sense of [6, Section 6.1]. It is tight,
because it has the same predicate dependency graph asΠ. By Theorem 11 from [6],
SM[Π ′] is equivalent to the completion ofΠ ′ in the sense of [6, Section 6.1], which is
identical to Comp[Π]. It remains to observe thatΠ is intuitionistically equivalent toΠ ′,
so that SM[Π] is equivalent to SM[Π ′] [6, Section 5.1].

4 Rule Dependency Graph

We are interested in conditions on a Lloyd-Topor programΠ ensuring that the equiva-
lence

SM[Π] ↔ Comp[Π]

is entailed by a given set of assumptionsΓ . Proposition 1 gives a solution for the special
case whenΓ is empty. The following definition will help us answer the more general
question.

Therule dependency graphof a Lloyd-Topor programΠ is the directed graph that
has

– rules ofΠ, with variables (both free and bound) renamed arbitrarily,as its vertices,
and

– an edge from a rulep(t) ← G to a rulep′(t′) ← G′, labeled by an atomic formula
p′(s), if p′(s) has a positive nonnegated occurrence inG.

Unlike the predicate dependency graph, the rule dependencygraph of a program
is usually infinite. For example, the rule dependency graph of program (11) has the
verticesp(a, b) and

q(x1, y1) ← p(y1, x1) ∧ ¬p(x1, y1) (13)

for arbitrary pairs of distinct variablesx1, y1. It has an edge from each vertex (13) to
p(a, b), labeledp(y1, x1). The rule dependency graph of program (12) has edges of two
kinds:

6 Vladimir Lifschitz and Fangkai Yang

– from p(x1) ← q(x1) to q(x2) ← r(x2), labeledq(x1), and

– from q(x1) ← r(x1) to r(x2) ← s(x2), labeledr(x1)

for arbitrary variablesx1, x2.

The rule dependency graph of a program is “dual” to its predicate dependency
graph, in the following sense. The vertices of the predicatedependency graph are pred-
icate symbols, and the presence of an edge fromp to q is determined by the existence
of a rule that contains certain occurrences ofp andq. The vertices of the rule depen-
dency graph are rules, and the presence of an edge fromR1 to R2 is determined by the
existence of a predicate symbol with certain occurrences inR1 andR2.

There is a simple characterization of tightness in terms of rule dependency graphs:

Proposition 2. A Lloyd-Topor programΠ is tight iff there existsn such that the rule
dependency graph ofΠ has no paths of lengthn.

Proof. Assume thatΠ is tight, and letn be the number of predicate symbols occurring
in Π. Then the rule dependency graph ofΠ has no paths of lengthn+1. Indeed, assume
that such a path exists:

R0

p1(. . .)
→ R1

p2(. . .)
→ R2

p3(. . .)
→ · · ·

pn+1(. . .)
→ Rn+1.

Each of the rulesRi (1 ≤ i ≤ n) containspi in the head and a positive nonnegated
occurrence ofpi+1 in the body. Consequently the predicate dependency graph ofΠ

has an edge frompi to pi+1, so thatp1, . . . , pn+1 is a path in that graph; contradiction.
Now assume thatΠ is not tight. Then there is an infinite pathp1, p2, . . . in the predicate
dependency graph ofΠ. Let Ri be a rule ofΠ that haspi in the head and a positive
nonnegated occurrence ofpi+1 in the body. Then the rule dependency graph ofΠ has
an infinite path of the form

R1

p2(. . .)
→ R2

p3(. . .)
→ · · · .

The main theorem, stated in the next section, refers to finitepaths in the rule de-
pendency graph of a programΠ that satisfy an additional condition: the rules at their
vertices have no common variables (neither free nor bound).Such paths will be called
chains.

Corollary 1. A Lloyd-Topor programΠ is tight iff there existsn such thatΠ has no
chains of lengthn.

Indeed, any finite path in the rule dependency graph ofΠ can be converted into a
chain of the same length by renaming variables.

Lloyd-Topor Completion and General Stable Models 7

5 Main Theorem

Let C be a chain
p0(t

0) ← Body0
↓p1(s

1)
p1(t

1) ← Body1
↓p2(s

2)
.

↓pn(sn)
pn(tn) ← Body

n

(14)

in a Lloyd-Topor programΠ. The correspondingchain formulaFC is the conjunction

n∧

i=1

si = ti ∧
n∧

i=0

Body
i
.

For instance, ifC is the chain

q(x1, y1) ← p(y1, x1) ∧ ¬p(x1, y1)

↓p(y1, x1)
p(a, b)

in program (11) thenFC is

y1 = a ∧ x1 = b ∧ p(y1, x1) ∧ ¬p(x1, y1).

Let Γ be a set of sentences. About a Lloyd-Topor programΠ we will say that it
is tight relative toΓ , or Γ -tight, if there exists a positive integern such that, for every
chainC in Π of lengthn,

Γ, Comp[Π] |= ∀̃¬FC .

Main Theorem. If a Lloyd-Topor programΠ is Γ -tight then

Γ |= SM[Π] ↔ Comp[Π].

Corollary 1 shows that every tight program is triviallyΓ -tight even whenΓ is
empty. Consequently the main theorem can be viewed as a generalization of Propo-
sition 1.

Tightness in the sense of Section 3 is a syntactic condition that is easy to verify;
Γ -tightness is not. Nevertheless, the main theorem is usefulbecause it may allow us
to reduce the problem of characterizing the stable models ofa program by a first-order
formula to verifying an entailment in first-order logic.

Here are some examples. In each case, to verifyΓ -tightness we taken = 1. We will
check the entailment in the definition ofΓ -tightness by deriving a contradiction from
(some subset of) the assumptionsΓ , Comp[Π], andFC .

8 Vladimir Lifschitz and Fangkai Yang

Example 1.The one-rule program

p(a) ← p(x) ∧ x 6= a

is tight relative to∅. Indeed, any chain of length 1 has the form

p(a) ← p(x1) ∧ x1 6= a

↓p(x1)
p(a) ← p(x2) ∧ x2 6= a.

The corresponding chain formula

x1 = a ∧ p(x1) ∧ x1 6= a ∧ p(x2) ∧ x2 6= a.

is contradictory.
Thus the stable models of this program are described by its completion, even though

the program is not tight (and not even atomic-tight).

Example 2.Let Π be the program consisting of the first 2 rules of (5):

p(a) ← p(b),
q(c) ← q(d).

To justify the claim about (5) made in the introduction, we will check thatΠ is tight
relative to{a 6= b, c 6= d}. There are two chains of length 1:

p(a) ← p(b)

↓p(b)
p(a) ← p(b)

and
q(c) ← q(d)

↓q(d)
q(c) ← q(d).

The corresponding chain formulas are

b = a ∧ p(b) ∧ p(b)

and
d = c ∧ q(d) ∧ q(d).

Each of them contradictsΓ .

Example 3. Let us check that program (3) is tight relative to{a 6= b}. Its chains of
length 1 are

p(x1) ← q(x1)

↓q(x1)
q(a) ← p(b)

Lloyd-Topor Completion and General Stable Models 9

and
q(a) ← p(b)

↓q(b)
p(x1) ← q(x1)

for an arbitrary variablex1. The corresponding chain formulas include the conjunctive
term p(b). Using the completion (4) of the program, we deriveb = a, which contra-
dictsΓ .

6 A Larger Example

Programs found in actual applications of ASP usually involve constructs that are not
allowed in Lloyd-Topor programs, such as choice rules and constraints. Choice rules
have the form

{p(t)} ← G.

We view this expression as shorthand for the sentence

∀̃(G → p(t) ∨ ¬p(t)).

A constraint← G is shorthand for the sentence∀̃¬G. Such sentences do not correspond
to any rules in the sense of Section 2.

Nevertheless, the main theorem stated above can sometimes help us characterize
the stable models of a “realistic” program by a first-order formula. In this section we
discuss an example of this kind.

The logic programM described below encodes commonsense knowledge about
moving objects from one location to another. Its signature consists of

– the object constantŝ0, . . . , k̂, wherek is a fixed nonnegative integer;
– the unary predicate constantsobject, place, andstep; they correspond to the three

types of individuals under consideration;
– the binary predicate constantnext; it describes the temporal order of steps;
– the ternary predicate constantsat andmove; they represent the fluents and actions

that we are interested in.

The predicate constantsstep, next, andat are intensional; the other three are not. (The
fact that some predicates are extensional is the first sign that M is not a Lloyd-Topor
program.) The program consists of the following rules:

(i) the facts
step(0̂), step(1̂), . . . step(k̂);

next(0̂, 1̂), next(1̂, 2̂), . . . , next(k̂−1, k̂);

(ii) the unique name constraints

← î = ĵ (1 ≤ i < j ≤ k);

10 Vladimir Lifschitz and Fangkai Yang

(iii) the constraints describing the arguments ofat andmove:

← at(x, y, z) ∧ ¬(object(x) ∧ place(y) ∧ step(z))

and
← move(x, y, z) ∧ ¬(object(x) ∧ place(y) ∧ step(z));

(iv) the uniqueness of location constraint

← at(x, y1, z) ∧ at(x, y2, z) ∧ y1 6= y2;

(v) the existence of location constraint

← object(x) ∧ step(z) ∧ ¬∃y at(x, y, z);

(vi) the rule expressing the effect of moving an object:

at(x, y, u) ← move(x, y, z) ∧ next(z, u);

(vii) the choice rule expressing that initially an object can be anywhere:

{at(x, y, 0)} ← object(x) ∧ place(y);

(viii) the choice rule expressing the commonsense law of inertia:4

{at(x, y, u)} ← at(x, y, z) ∧ next(z, u).

ProgramM is not atomic-tight, so that methods of [8] are not directly applicable
to it. Nevertheless, we can describe the stable models of this program without the use
of second-order quantifiers. In the statement of the proposition below,p stands for the
list of intensional predicatesstep, nextandat, andH is the conjunction of the universal
closures of the formulas

î 6= ĵ (1 ≤ i < j ≤ k),
at(x, y, z) → object(x) ∧ place(y) ∧ step(z),
move(x, y, z) → object(x) ∧ place(y) ∧ step(z),
at(x, y1, z) ∧ at(x, y2, z) → y1 = y2,

object(x) ∧ step(z) → ∃y at(x, y, z).

Proposition 3. SMp[M] is equivalent to the conjunction ofH with the universal clo-
sures of the formulas

step(z) ↔
k∨

i=0

z = î, (15)

next(z, u) ↔
k−1∨

i=0

(z = î ∧ u = î+1), (16)

at(x, y, î+1) ↔ (move(x, y, î) ∨ (at(x, y, î) ∧ ¬∃w move(x,w, î)))
(i = 0, . . . , k − 1).

(17)

4 This representation of inertia follows the example of [11, Figure 1].

Lloyd-Topor Completion and General Stable Models 11

Recall that the effect of adding a constraint to a logic program is to eliminate its
stable models that violate that constraint [6, Theorem 3]. An interpretation satisfiesH
iff it does not violate any of the constraints (ii)–(v). So the statement of Proposition 3
can be summarized as follows: the contribution of rules (i) and (vi)–(viii), under the
stable model semantics, amounts to providing explicit definitions forstepandnext, and
“successor state formulas” forat.

The proof of Proposition 3 refers to the Lloyd-Topor programΠ consisting of
rules (i), (vi),

(vii ′) at(x, y, 0) ← object(x) ∧ place(y) ∧ ¬¬at(x, y, 0),
(viii ′) at(x, y, u) ← at(x, y, z) ∧ next(z, u) ∧ ¬¬at(x, y, t2),

and
object(x)← ¬¬object(x),
place(y)← ¬¬place(y),

move(x, y, z)← ¬¬move(x, y, z).
(18)

It is easy to see that SMp[M] is equivalent to SM[Π] ∧ H. Indeed, consider the pro-
gramM ′ obtained fromM by adding rules (18). These rules are strongly equivalent to
the choice rules

{object(x)}, {place(y)}, {move(x, y, z)}.

Consequently SMp[M] is equivalent to SM[M ′] [6, Theorem 2]. It remains to notice
that (vii) is strongly equivalent to (vii′), and (viii) is strongly equivalent to (viii′).

Furthermore—and this is the key step in the proof of Proposition 3—the second-
order formula SM[Π] ∧ H is equivalent to the first-order formula Comp[Π] ∧ H, in
view of our main theorem and the following fact:

Lemma 1. ProgramΠ is H-tight.

To derive Proposition 3 from the lemma, we only need to observe that (15) and (16)
are the completed definitions ofstepandnext in Π, and that the completed definition
of at can be transformed into (17) under assumptions (15), (16), andH.

Proof of Lemma 1.Consider a chain inΠ of lengthk + 2:

R0

p1(. . .)
→ R1

p2(. . .)
→ · · ·

pk+1(. . .)
→ Rk+1

pk+2(. . .)
→ Rk+2. (19)

EachRi is obtained from one of the rules (i), (vi), (vii′), (viii ′), (18) by renaming
variables. Eachpi occurs in the head ofRi and has a positive nonnegated occurrence
in Ri−1. Since there are no nonnegated predicate symbols in the bodies of rules (i)
and (18), we conclude thatR0, . . . , Rk+1 are obtained from other rules ofΠ, that is,
from (vi), (vii ′), and (viii′). Since the predicate constant in the head of each of these
three rules isat, each ofp1, . . . , pk+1 is the symbolat. Since there are no nonnegated

12 Vladimir Lifschitz and Fangkai Yang

occurrences ofat in the bodies of (vi) and (vii′), we conclude thatR0, . . . , Rk are ob-
tained by renaming variables in (viii′). This means that chain (18) has the form

at(x0, y0, u0) ← at(x0, y0, z0) ∧ next(z0, u0) ∧ ¬¬at(x0, y0, u0)

↓at(x0, y0, z0)
at(x1, y1, u1) ← at(x1, y1, z1) ∧ next(z1, u1) ∧ ¬¬at(x1, y1, u1)

↓at(x1, y1, z1)
. . .

↓at(xk−1, yk−1, zk−1)
at(xk, yk, uk) ← at(xk, yk, zk) ∧ next(zk, uk) ∧ ¬¬at(xk, yk, uk)

↓at(xk, yk, zk)
Rk+1

↓ · · ·
Rk+2.

The corresponding chain formula contains the conjunctive terms

z0 = u1, z1 = u2, . . . , zk−1 = uk

and
next(z0, u0), next(z1, u1), . . . , next(zk, uk).

From these formulas we derive

next(u1, u0), next(u2, u1), . . . , next(uk+1, uk), (20)

whereuk+1 stands forzk. Using the completed definition ofnext, we conclude:

ui = 0̂ ∨ · · · ∨ ui = k̂ (0 ≤ i ≤ k + 1).

Consider the case when
ui = ĵi (0 ≤ i ≤ k + 1)

for some numbersj0, . . . , jk+1 ∈ {0, . . . , k}. There exists at least one subscripti such
thatji 6= ji+1 + 1, because otherwise we would have

j0 = j1 + 1 = j2 + 2 = · · · = jk+1 + k + 1,

which is impossible becausej0, jk+1 ∈ {0, . . . , k}. By the choice ofi, from the com-
pleted definition ofnextand the unique name assumption (included inH) we can derive
¬next(ĵi+1, ĵi). Consequently¬next(ui+1, ui), which contradicts (20).

7 Review: Stable Models of Infinitary Formulas

Our proof of the main theorem employs the method proposed (for a different purpose)
by Miroslaw Truszczynski [12], and in this section we reviewsome of the definitions
and results of that paper. The stable model semantics of propositional formulas due to
Paolo Ferraris [13] is extended there to formulas with infinitely long conjunctions and
disjunctions, and that generalization is related to the operator SM.

LetA be a set of propositional atoms. The setsF0,F1, . . . are defined as follows:

Lloyd-Topor Completion and General Stable Models 13

– F0 = A ∪ {⊥};
– Fi+1 consists of expressionsH∨ andH∧, for all subsetsH of F0 ∪ . . . ∪ Fi, and

of expressionsF → G, whereF,G ∈ F0 ∪ . . . ∪ Fi.

An infinitary formula(overA) is an element of
⋃∞

i=0
Fi.

A (propositional) interpretationis a subset ofA. The satisfaction relation between
an interpretation and an infinitary formula is defined in a natural way. The definition of
the reductF I of a formulaF relative to an interpretationI proposed in [13] is extended
to infinitary formulas as follows:

– ⊥I = ⊥.
– ForA ∈ A, AI = ⊥ if I 6|= A; otherwiseAI = A.
– (H∧)I = ⊥ if I 6|= H∧; otherwise(H∧)I = {GI : G ∈ H}∧.
– (H∨)I = ⊥ if I 6|= H∨; otherwise(H∨)I = {GI : G ∈ H}∨.
– (G → H)I = ⊥ if I 6|= G → H; otherwise(G → H)I = GI → HI .

(Note that according to this definitionF I is ⊥ wheneverI 6|= F .) An interpretationI
is astable modelof an infinitary formulaF if I is a minimal model ofF I . An interpre-
tationI satisfiesF I iff it satisfiesF [12, Proposition 1], so that stable models ofF are
models ofF .

Infinitary formulas are used to encode first-order sentencesas follows. For any inter-
pretationI in the sense of first-order logic, letA be the set of ground atoms formed from
the predicate constants of the underlying signature and the“names”ξ∗ of elementsξ
of the universe|I| of I—new objects constants that are in a 1–1 correspondence with
elements of|I|. By Ir we denote the set of atoms fromA that are satisfied byI. In the
definition below,tI stands for the value assigned to the ground termt by the interpre-
tationI. Thegroundingof a first-order sentenceF relative toI (symbolically,gr

I
(F))

is the infinitary formula overA constructed as follows:

– gr
I
(⊥) = ⊥.

– gr
I
(p(t1, . . . , tk)) = p((tI1)

∗, . . . , (tI
k
)∗).

– gr
I
(t1 = t2) = ⊤, if tI1 = tI2, and⊥ otherwise.

– If F = G ∨ H, gr
I
(F) = gr

I
(G) ∨ gr

I
(H) (the case of∧ is analogous).

– If F = G → H, gr
I
(F) = gr

I
(G) → gr

I
(H).

– If F = ∃xG(x), gr
I
(F) = {gr

I
(G(u∗)) : u ∈ |I|}∨.

– If F = ∀xG(x), gr
I
(F) = {gr

I
(G(u∗)) : u ∈ |I|}∧.

It is easy to check thatgr
I

is a faithful translation in the following sense:I satisfies a
first-order sentenceF iff Ir satisfiesgr

I
(F).

This transformation is also faithful in the sense of the stable model semantics:I
satisfies SM[F] iff Ir is a stable model ofgr

I
(F) [12, Theorem 5]. This is why infinitary

formulas can be used for proving properties of the operator SM.

8 Plan of the Proof

In the statement of the main theorem, the implication left-to-right

SM[Π] → Comp[Π]

14 Vladimir Lifschitz and Fangkai Yang

is logically valid for any Lloyd-Topor programΠ. This fact follows from [6, Theo-
rem 11] by the argument used in the proof of Proposition 1 above. To prove the theorem
in the other direction, we need to establish the following:

If a Lloyd-Topor programΠ is Γ -tight,
and an interpretationI satisfies bothΓ andComp[Π],

thenI satisfiesSM[Π].
(21)

This assertion follows from three lemmas, stated in this section and proved in the
appendix. The first of them expresses a Fages-style propertyof infinitary formulas sim-
ilar to Theorem 1 from [3]. It deals withinfinitary programs—conjunctions of (possibly
infinitely many) implicationsG → A with A ∈ A. Such an implication will be called
an (infinitary) rule with theheadA andbodyG, and we will write it asA ← G. For
instance, ifΠ is a Lloyd-Topor program then, for any interpretationI, gr

I
(Π) is an

infinitary program. We say that an interpretationI is supportedby an infinitary pro-
gramΠ if each atomA ∈ I is the head of a ruleA ← G of Π such thatI |= G. The
lemma shows that under some condition the stable models of aninfinitary programΠ

can be characterized as the models that are supported byΠ.
The condition refers to the set ofpositive nonnegated atomsof an infinitary formula.

This set, denoted by Pnn(F), and the set ofnegative nonnegated atomsof F , denoted
by Nnn(F), are defined recursively, as follows:

– Pnn(⊥) = ∅.
– ForA ∈ A, Pnn(A) = {A}.
– Pnn(H∧) = Pnn(H∨) =

⋃
H∈H Pnn(H).

– Pnn(G → H) =

{
∅ if H = ⊥,

Nnn(G) ∪ Pnn(H) otherwise.

– Nnn(⊥) = ∅,
– ForA ∈ A, Nnn(A) = ∅.
– Nnn(H∧) = Nnn(H∨) =

⋃
H∈H Nnn(H).

– Nnn(G → H) =

{
∅ if H = ⊥,

Pnn(G) ∪ Nnn(H) otherwise.

Let Π be an infinitary program, andI a propositional interpretation. About atoms
A,A′ ∈ I we say thatA′ is aparent ofA relative toΠ andI if Π has a ruleA ← G

with the headA such thatI |= G andA′ is a positive nonnegated atom ofG. We say
thatΠ is tight onI if there is no infinite sequenceA0, A1, . . . of elements ofI such that
for everyi, Ai+1 is a parent ofAi relative toF andI.

Lemma 2. For any modelI of an infinitary programΠ such thatΠ is tight onI, I is
stable iffI is supported byΠ.

The next lemma relates theΓ -tightness condition from the statement of the main
theorem to tightness on an interpretation defined above.

Lemma 3. If a Lloyd-Topor programΠ is Γ -tight, and an interpretationI satisfies
bothΓ andComp[Π], then gr

I
(Π) is tight onIr.

Lloyd-Topor Completion and General Stable Models 15

Finally, models of Comp[Π] can be characterized in terms of satisfaction and sup-
portedness.

Lemma 4. For any Lloyd-Topor programΠ, an interpretationI satisfiesComp[Π]
iff Ir satisfies gr

I
(Π) and is supported by gr

I
(Π).

To derive assertion (21) from these lemmas, assume thatΠ is aΓ -tight Lloyd-Topor
program, and thatI is an interpretation satisfying bothΓ and Comp[Π]. By Lemma 3,
gr

I
(Π) is tight onIr. By Lemma 4,Ir satisfiesgr

I
(Π) and is supported bygr

I
(Π).

By Lemma 2, it follows thatIr is a stable model ofgr
I
(Π). By Theorem 5 from [12],

quoted at the end of Section 7, it follows thatI satisfies SM[Π].

9 Conclusion

We proposed a new method for representing SM[F] in the language of first-order logic.
It is more general than the approach of [6]. Its relationshipwith the ideas of [8] re-
quires further study. This method allows us, in particular,to prove the equivalence of
some ASP descriptions of dynamic domains to axiomatizations based on successor state
axioms.

The use of the stable model semantics of infinitary formulas [12] in the proof of
the main theorem illustrates the potential of that semantics as a tool for the study of the
operator SM.

Acknowledgements

We are grateful to Joohyung Lee and to the anonymous refereesfor useful comments.

Appendix: Proofs of Lemmas 2–4

Proof of Lemma 2

In this section,Π is an arbitrary infinitary program. For any modelI of Π, the reductΠI

consists of (i) the rulesA ← GI for all rulesA ← G of Π such thatA ∈ I, and (ii) tau-
tologies⊥ ← ⊥. We will disregard these tautologies and think ofΠI as a program.

Lemma A. A modelI of Π is supported byΠ iff it is supported byΠI .

Proof. A modelI of Π is supported byΠI iff for every atomA ∈ I there exists a rule
A ← G in Π such thatI |= GI . By Proposition 1 from [12],I |= GI iff I |= G.

Lemma B. Any stable model ofΠ is supported byΠ.

Proof. By Lemma A, it is sufficient to check that any stable modelI of Π is supported
by ΠI . Take an atomA ∈ I. SinceI is a stable model ofΠ, I is minimal among the
models ofΠI . ThereforeI \ {A} does not satisfyΠI , that is to say, for some rule
A′ ← G of Π such that

A′ ∈ I, (22)

16 Vladimir Lifschitz and Fangkai Yang

I \ {A} does not satisfy the corresponding ruleA′ ← GI of ΠI . Then

I \ {A} |= GI (23)

and
A′ 6∈ I \ {A}. (24)

From (23),I |= G (because otherwiseGI would be⊥), and consequentlyI |= GI .
From (22) and (24),A′ = A. ThusA′ ← GI is a rule ofΠI such that its head isA and
its body is satisfied byI.

Lemma C. For any infinitary formulaF and any interpretationI,

Pnn(F I) ⊆ Pnn(F), Nnn(F I) ⊆ Nnn(F).

Proof: Straightforward, by strong induction on the rank ofF (defined as the value ofi
for whichF ∈ Fi).

Lemma D. For any modelI of Π, if Π is tight onI then so isΠI .

Proof. Assume thatΠI is not tight onI, and letA0, A1, . . . be an infinite sequence of
elements ofI such thatAi+1 is a parent ofAi relative toΠI andI. Consider the rule
of ΠI justifying this property. That rule has the formA ← GI for some ruleA ← G

of Π such thatA ∈ I, and it satisfies the following conditions:

A = Ai, I |= GI , Ai+1 ∈ I ∩ Pnn(GI).

ThenI |= G and, in view of Lemma C,

Ai+1 ∈ I ∩ Pnn(GI) ⊆ I ∩ Pnn(G).

Consequently, for everyi, Ai+1 is a parent ofAi relative toI andΠ, contrary to the
assumption thatΠ is tight onI.

The statement of the following lemma refers to the set ofstrictly positive atomsof
an infinitary formulaF , denoted by SPos(F), which is defined as follows:

– SPos(⊥) = ∅.
– ForA ∈ A, SPos(A) = {A}.
– SPos(H∧) =

⋃
H∈H SPos(H).

– SPos(H∨) =
⋃

H∈H SPos(H).
– SPos(G → H) = SPos(H).

Lemma E. For any infinitary formulaF , SPos(F) ⊆ Pnn(F).

Proof: Straightforward, by induction on the rank ofF .

Lemma F. Let I be a model of an infinitary formulaF . If F can be represented in the
formGI for some infinitary formulaG then any interpretationJ such that

I ∩ SPos(F) ⊆ J

Lloyd-Topor Completion and General Stable Models 17

is a model ofF as well.

Proof. By induction on the rank ofG we can show that ifI |= GI (or, equivalently,
I |= G) andI ∩SPos(GI) ⊆ J thenJ |= GI . Consider the more difficult case whenG

has the formH1 → H2. SinceI |= G, andGI is HI
1 → HI

2 . We can distinguish
between two subcases: (i)I 6|= H1 and (ii) I |= H2. In the first case,HI

1 is ⊥, so that
GI is tautological, and the assertionJ |= GI is trivial. Assume now thatI |= H2. Since

I ∩ SPos(GI) = I ∩ SPos(HI

2) ⊆ J,

we can conclude from the induction hypothesis thatJ |= HI
2 . ConsequentlyJ |= GI .

Proof of Lemma 2. The only if part is immediate from Lemma B. LetI be a supported
model ofΠ such thatΠ is tight onI. To prove the stability ofI, we need to show that
no proper subset ofI satisfiesΠI . Take a proper subsetJ of I. There is an atomA in
I \ J that has no parent inI \ J relative toΠI andI. Indeed, if every atom inI \ J has
a parent relative toΠI andI that belongs toI \ J then there exists an infinite sequence
A0, A1, . . . of elements ofI \ J such thatAi+1 is a parent ofAi, so thatΠI is not tight
on I; this is impossible by Lemma D. Consider such an atomA. By Lemma A,I is
supported byΠI . It follows that there is a ruleA ← F in ΠI such thatI |= F . By the
definition of the parent relation, all elements ofI ∩ Pnn(F) are parents ofA relative to
ΠI andI. By the choice ofA, no parent ofA relative toΠI andI belongs toI \ J .
ConsequentlyI ∩ Pnn(F) is disjoint fromI \ J , so that

I ∩ Pnn(F) ⊆ J.

In view of Lemma E, it follows that

I ∩ SPos(F) ⊆ J.

SinceA ← F is a rule ofΠI , F has the formGI for some formulaG. By Lemma F, it
follows thatJ |= F . SinceA ∈ I \ J , we conclude thatJ does not satisfyA ← F and
therefore is not a model ofΠI .

Proof of Lemma 3

Lemma 3 relates theΓ -tightness of a Lloyd-Topor programΠ (defined in Section 5) to
the tightness ofgr

I
(Π) on Ir in the sense of Section 8. As a preliminary step, we will

describe a relationship between positive nonnegated atomic subformulas of a first-order
formulaF , referred to in the definition of the rule dependency graph, and the positive
nonnegated atoms of the infinitary formulagr

I
(F).

In the following lemma,I is an interpretation in the sense of first-order logic, andF

is a first-order sentence that may contain the namesξ∗ of elementsξ of the universe ofI.
If u is a tupleξ1, . . . , ξk of elements of the universe thenu∗ stands for the corresponding
tuple of namesξ∗1 , . . . , ξ∗

k
. If t is a tuplet1, . . . , tk of ground terms thengr

I
(t) stands

for the tuple(tI1)
∗, . . . , (tI

k
)∗ of the names of their values.

Lemma G. For any ground atom of the formp(u∗),

18 Vladimir Lifschitz and Fangkai Yang

(i) if p(u∗) ∈ Pnn(gr
I
(F)) thenu∗ has the form gr

I
(t(v∗)) for some tuplet(x) of

terms such thatp(t(x)) has a positive nonnegated occurrence inF , and some tu-
plev of elements of the universe;

(ii) if p(u∗) ∈ Nnn(gr
I
(F)) thenu∗ has the form gr

I
(t(v∗)) for some tuplet(x) of

terms such thatp(t(x)) has a negative nonnegated occurrence inF , and some tu-
plev of elements of the universe.

Proof. The proof is by induction on the size ofF . We will consider three cases: whenF

atomic, whenF is an implication, and whenF begins with the universal quantifier.
If F is an atomic formula that does not containp then gr(F) does not contain

atoms of the formp(u∗), and assertions (i) and (ii) are trivial. Assume thatF is p(t),
so thatgr

I
(p(t)) = p(gr

I
(t)), Pnn(gr

I
(F)) = {p(gr

I
(t))}, and Nnn(gr

I
(F)) = ∅. If

p(u∗) ∈ Pnn(gr
I
(F)) thenu∗ = gr

I
(t); p(u∗) ∈ Nnn(gr

I
(F)) is impossible.

If F is G → H thengr
I
(F) is gr

I
(G) → gr

I
(H). Assume thatgr

I
(H) is different

from⊥ (otherwise both Pnn(gr
I
(F)) and Nnn(gr

I
(F)) are empty). Then

Pnn(gr
I
(F)) = Nnn(gr

I
(G)) ∪ Pnn(gr

I
(H)),

Nnn(gr
I
(F)) = Pnn(gr

I
(G)) ∪ Nnn(gr

I
(H)).

To prove (i), assume thatp(u∗) ∈ Pnn(gr
I
(F)). Then

p(u∗) ∈ Nnn(gr
I
(G)) or p(u∗) ∈ Pnn(gr

I
(H).

By the induction hypothesis, it follows thatu∗ has the formgr
I
(t(v∗)) for some tuple

t(x) of terms such thatp(t(x)) has a negative nonnegated occurrence inG or a positive
nonnegated occurrence inH. Sincegr

I
(H) is not⊥, H is not⊥ either. Consequenltly

p(t(x)) has a positive nonnegated occurrence inG → H. The proof of (ii) is similar.
If F is ∀zG(z) then

gr
I
(F) = {gr

I
(G(w∗)) : w ∈ |I|}∧.

To prove (i), assume thatp(u∗) ∈ Pnn(gr
I
(F)). Since

Pnn(gr
I
(F)) =

⋃

w∈|I|

Pnn(gr
I
(G(w∗))),

p(u∗) ∈ Pnn(gr
I
(G(w∗))) for somew ∈ |I|. By the induction hypothesis, it follows

thatu∗ has the formgr
I
(t(v∗)) for some tuplet(x) of terms such that, for somew ∈ |I|,

p(t(x)) has a positive nonnegated occurrence inG(w∗). Without loss of generality we
can assume that every member ofx occurs int(x). Case 1:z is not a member ofx.
Let p(t′(x, z)) be the part ofG(z) from which the occurrence ofp(t(x)) in G(w∗) is
obtained by substitutingw∗ for z. This part has a positive nonnegated occurrence in
G(z), and consequently inF (z). On the other hand,t(x) is t′(x, w∗), so thatt(v∗) is
t′(v∗, w∗), and

u∗ = gr
I
(t(v∗)) = gr

I
(t′(v∗, w∗)).

Case 2:z is a member ofx. Thenp(t(x)) containsz, which is only possible if all
occurrences ofz in the part ofF (z) from which the occurrence ofp(t(x)) is obtained

Lloyd-Topor Completion and General Stable Models 19

by substitution are bound. Then that part ofF (z) is not affected by the substitution and
equalsp(t(x)). Thusp(t(x)) has a positive nonnegated occurrence inF (z), andu∗ is
gr

I
(t(v∗)). The proof of part (ii) is similar.

Proof of Lemma 3. Assume thatΠ is Γ -tight, that an interpretationI satisfies both
Comp[Π] andΓ , and thatgr

I
(Π) is not tight onIr. Then there exists an infinite se-

quenceA0, A1, . . . of atoms such that eachAi+1 is a parent ofAi relative togr
I
(Π)

andIr. In other words, there exist rules

pi(gr
I
(ti(c∗i))) ← gr

I
(Gi(c∗i)) (i = 0, 1, . . .)

of gr
I
(Π), obtained by grounding from rules

pi(ti(xi)) ← Gi(xi) (25)

of Π, such thatAi is pi(gr
I
(ti(c∗

i
))),

Ir |= gr
I
(Gi(c∗i)), (26)

andAi+1 ∈ Pnn(gr
I
(Gi(c∗i))). Atom Ai+1 can be written aspi+1(u∗), whereu∗ is

gr
I
(ti+1(c∗

i+1)). By Lemma G,

gr
I
(ti+1(c∗i+1)) is gr

I
(si+1(d∗

i)) (27)

for some atompi+1(si+1(zi)) that has a positive nonnegated occurrence inGi(c∗i), and
some tupledi of elements of the universe. That occurrence ofpi+1(si+1(zi)) is the
result of substitutingc∗

i
for xi in some atompi+1(r i+1(xi, zi)) that has a positive non-

negated occurrence inGi(xi), so thatsi+1(zi) is r i+1(c∗
i
, zi). From (27) we conclude

that

gr
I
(ti+1(c∗i+1)) is gr

I
(r i+1(c∗i , d∗

i)). (28)

SinceΠ is Γ -tight andI satisfies Comp[Π] andΓ , there existsn such that, for
every chainC in Π of lengthn, I |= ∀̃¬FC . Consider rules (25) fori = 0, . . . , n. Let

pi(ti(x̂i)) ← Ĝi(x̂i) (29)

be those rules with variables renamed so that different rules have no common vari-
ables. (FormulâGi(x̂i) is the result of renaming bound variables inGi(x̂i).) Then
pi+1(r i+1(x̂i, ẑi)) has a positive nonnegated occurrence in̂Gi(x̂i), for some tupleẑi

20 Vladimir Lifschitz and Fangkai Yang

of variables. LetC be the chain

p0(t0(x̂0)) ← Ĝ0(x̂0)

↓p1(r1(x̂0, ẑ0))

p1(t1(x̂1)) ← Ĝ1(x̂1)

↓p2(r2(x̂1, ẑ1))

p2(t2(x̂2)) ← Ĝ2(x̂2)

↓p3(r3(x̂2, ẑ2))
· · ·

↓pn(rn(x̂n−1, ẑn−1))

pn(tn(x̂n)) ← Ĝn(x̂n).

The corresponding chain formulaFC is

n−1∧

i=0

ti+1(x̂i+1) = r i+1(x̂i, ẑi) ∧
n∧

i=0

Ĝi(x̂i).

Since interpretationI satisfies̃∀¬FC , it satisfies also

¬

(
n−1∧

i=0

ti+1(ĉ∗
i+1

) = r i+1(ĉ∗
i
, d̂∗

i) ∧
n∧

i=0

Ĝi(ĉ∗i)

)
,

so thatIr satisfies

¬

(
n−1∧

i=0

gr
I
(ti+1(ĉ∗

i+1
) = r i+1(ĉ∗

i
, d̂∗

i)) ∧
n∧

i=0

gr
I
(Ĝi(ĉ∗i))

)
.

In view of (28), each of the formulasgr
I
(ti+1(ĉ∗

i+1
) = r i+1(ĉ∗

i
, d̂∗

i)) is ⊤, so thatIr

satisfies

¬

(
n∧

i=0

gr
I
(Ĝi(ĉ∗i))

)
.

This is impossible by (26).

Proof of Lemma 4

Recall that the rules of a Lloyd-Topor programΠ have the form

p(t(y)) ← G(y)

Lloyd-Topor Completion and General Stable Models 21

(with all free variables of the rule explictly shown), and that the rules of the infinitary
programgr

I
(Π) have the form

p(gr
I
(t(v∗))) ← gr

I
(G(v∗)) (30)

for all tuplesv of elements of|I|. For any Lloyd-Topor programΠ, Comp[Π] is equiv-
alent to the conjunction ofΠ with the universal closures of the definitions (9) of all
predicate constantsp. To prove Lemma 4, we need to check that the condition: for allp,

I |= ∀x

(
p(x) →

∨

i

∃yi(x = ti(yi)) ∧ Gi(yi)

)
, (31)

is equivalent to the assertion thatgr
I
(Π) is supported byIr. Note first that (31) is

equivalent to the condition:

Ir |=

{
gr

I

(
p(u∗) →

∨

i

∃yi(u∗ = ti(yi) ∧ Gi(yi))

)
: u ∈ |I|k

}∧

,

wherek is the arity ofp. The conjunctive termsgr
I
(· · ·) can be written as

p(u∗) →
∨

i

{
gr

I
(u∗ = ti(v∗)) ∧ gr

I
(Gi(v∗))) : v ∈ |I|li

}∨
,

whereli is the length of the tupleyi. Therefore (31) is equivalent to following condition:
for everyu ∈ |I|k such thatp(u∗) ∈ Ir,

there existi andv such thatu∗ is gr
I
(ti(v∗)), andIr |= gr

I
(Gi(v∗)). (32)

Condition (32) is equivalent to saying thatp(u∗) is the head of one of the rules (30)
whose body is satisfied byIr.

References

1. Fages, F.: Consistency of Clark’s completion and existence of stablemodels. Journal of
Methods of Logic in Computer Science1 (1994) 51–60

2. Lifschitz, V.: Foundations of logic programming. In Brewka, G., ed.: Principles of Knowl-
edge Representation. CSLI Publications (1996) 69–128

3. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming
3 (2003) 499–518

4. Lin, F., Zhao, J.: On tight logic programs and yet another translationfrom normal logic pro-
grams to propositional logic. In: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI). (2003) 853–864

5. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic programby SAT solvers.
Artificial Intelligence157(2004) 115–137

6. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence
175(2011) 236–263

7. Lloyd, J., Topor, R.: Making Prolog more expressive. Journalof Logic Programming1
(1984) 225–240

22 Vladimir Lifschitz and Fangkai Yang

8. Lee, J., Meng, Y.: First-order stable model semantics and first-order loop formulas. Journal
of Artificial Inteligence Research (JAIR)42 (2011) 125–180

9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logicprograms. ACM Transac-
tions on Computational Logic2 (2001) 526–541

10. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic
programs with variables. In: Procedings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR). (2007) 188–200

11. Bartholomew, M., Lee, J.: Stable models of formulas with intensionalfunctions. In: Proceed-
ings of International Conference on Principles of Knowledge Representation and Reasoning
(KR). (2012)

12. Truszczýnski, M.: Connecting first-order ASP and the logic FO(ID) through reducts. In:
Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir Lifschitz. Springer
(2012)

13. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005) 119–131

