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Abstract. We investigate the relationship between the generalization of program
completion defined in 1984 by Lloyd and Topor and the generalization of the
stable model semantics introduced recently by Feretra. The main theorem
can be used to characterize, in some cases, the general stable niclkigio
program by a first-order formula. The proof uses Truszczynsitéble model
semantics of infinitary propositional formulas.

1 Introduction

The theorem by Francois Fages [1] describing a case whestahe model semantics
is equivalent to program completion is one of the most imgourtesults in the theory of
stable models. It was generalized in [2—4], it has led to tiverition of loop formulas
[5], and it has had a significant impact on the design of anseesolvers.

The general stable model semantics defined in [6] charaetetine stable models of
a first-order sentencl as arbitrary models of a certain second-order sentencetetn
by SM[F];* logic programs are viewed there as first-order sentencetewiin “logic
programming notation.” In this note we define an extensioRarfes’ theorem that can
be used as a tool for transforming $M), in some cases, into an equivalent first-order
formula. That extension refers to the version of programmetion introduced by John
Lloyd and Rodney Topor in [7]. Their definition allows the lyoof a rule to contain
propositional connectives and quantifiers.

Earlier work in this direction is reported in [6] and [8]. Td&papers do not men-
tion completion in the sense of Lloyd and Topor explicitlysiead, they discuss ways
to convert a logic program to “Clark normal form” by strongiguivalent transforma-
tions [9, 10] and completing programs in this normal form bplacing implications
with equivalences. But this is essentially what Lloyd-Topompletion does.

The following examples illustrate some of the issues iredhLetF' be the program

p(a),
q(b),
p(z) « q(z),

1)

! To be precise, the definition of SM in that paper requires that a set of§iteal predicates”
be specified. In the examples below, we assume that all predicate syodoarring inF' are
intensional.
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or, in other words, the sentence

p(a) Aq(b) AVa(g(z) — p(x)).

The Clark normal form of (1) is tight in the sense of [6], andedrem 11 from that
paper shows that SNT| in this case is equivalent to the conjunction of the complete
definitions ofp andgq:
Vm(p(l‘) —r=aV Q(‘T))v )
Va(q(x) < x =1D).
Let now F' be the program
p(x) — q(z),
ala) — p(b). ®
This program is not tight in the sense of [6], so that the abuoeationed theorem is not
applicable. In fact, SNF] is stronger in this case than the conjunction of the comglete
definitions
Va(p(x) < q(a)), @
Va(q(z) < x = a Ap(b)).
A counterexample is provided by any interpretation thats@ach of the symbojs ¢
as a singleton such that its element is equal to lao#imd b. Such a (non-Herbrand)
interpretation satisfies (4), but it is not a stable model3f (In stable models of (3)
bothp andq are empty.)

Program (3) is, however, atomic-tight in the sense of [81i8r&.1.1]. Corollary 5
from that paper allows us to conclude that the equivalentgdsn SMF] and (4) is
entailed by the unique name assumptio# b. It follows that the result of applying SM
to the program obtained from (4) by adding the constraint

—a=b

is equivalent to the conjunction of the completion senter{dgwitha # b. This exam-
ple illustrates the role of a property more general thanahiechl equivalence between
SM[F] and the completion of: it may be useful to know when the equivalence be-
tween these two formulas is entailed by a certain set of aggons. This information
may be relevant if we are interested in a logic program okthiftom F' by adding
constraints.

The result of applying SM to the program

e
T ey (5)
—c=d

is equivalent to the conjunction of the formulas

Va(p(r) <>z = a Ap(b)),
Vr(q(z) < z = cAq(d)),
a # b,

c#d.

(6)
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This claim cannot be justified, however, by a reference t@{any 5 from [8]. The pro-
gram in this example is atomic-tight, but it does not containstraints corresponding
to some of the unique name axioms, for instancg c. We will show how our claim
follows from the main theorem stated below.

We will discuss also an example illustrating limitationsaflier work that is related
to describing dynamic domains in answer set programmindjA%he program in that
example is not atomic-tight because of rules expressingdh@nonsense law of inertia.
We will show nevertheless that the process of completionbsansed to characterize
its stable models by a first-order formula.

The class of tight programs is defined in [6] in terms of praticdependency
graphs; that definition is reproduced in Section 3 below. dé&#nition of an atomic-
tight program in [8] refers to more informative “first-orddependency graphs.” Our
approach is based on an alternative solution to the probfenmaking predicate depen-
dency graphs more informative, “rule dependency graphs.”

After reviewing some background material in Sections 2 ande8define rule de-
pendency graphs in Section 4, and state the main theoremanedx@mples of its use
in Sections 5 and 6. Section 7 reviews Truszczynski's thebsfable models of infini-
tary propositional formulas, which is used in the proof & thain theorem, and then
the proof is presented in Section 8 and in the appendix.

2 Review: Operator SM, Lloyd-Topor Programs, and Completion

In this paper, dormulais a first-order formula that may contain the propositiorai-c
nectivesl (logical falsity),A, v, and—, and the quantifierg, 3. We treat-F" as an ab-
breviation forF — L; T stands forlL — L; F' < G stands fofF' — G) A (G — F).

For any first-order sentendeé and any tuple of distinct predicate constants (other
than equality) SM[F] is the conjunction off’ with a second-order "stability condi-
tion”; see [6, Section 2] for details. The membersadre calledntensiona) and the
other predicate constants aggtensional We will drop the subscript in the symbol
SM, whenp is the list of all predicate symbols occurring 1 For any sentencg’, a
p-stable(or simply stable modelof F' is an interpretation of the underlying signature
that satisfies SM[F].

A Lloyd-Topor programis a finite set of rules of the form

p(t) — G, (7)

wheret is a tuple of terms, and; is a formula. We will identify a program with the
sentence obtained by conjoining the formulas

V(G — p(t))

for all its rules (7). \(7F stands for the universal closure Bf)
Let IT be a Lloyd-Topor program, anga predicate constant (other than equality).
Let

p(th) — Gy (i=1,2,...) (8)
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be all rules oflI that contairp in the head. Théefinition ofp in IT is the rule

p(¥) = \/ ' (x=t'AGy), ©)

wherex is a list of distinct variables not appearing in any of theesu(8), and/’ is the
list of free variables of (8. The completed definition qf in IT is the formula

VX (p(x) . \/ Jyi(x =t A G,-)) . (10)

For instance, the completed definitiongpadindg in program (1) are the formulas

Vai(p(z1) < 1 = aV Iz(z1 =z A q(x))),
Vai(gq(zy) < 1 =),

which can be equivalently rewritten as (2).

By Comg 7] we denote the conjunction of the completed definitions gii@ticate
constant® in II. This sentence is similar to the completion@fin the sense of [7,
Section 2], except that it does not include Clark equalitpas.

3 Review: Tight Programs

We will review now the definition of tightness from [6, Secti@.3]. In application to
a Lloyd-Topor programl, when all predicate constants occurring/inare treated as
intensional, that definition can be stated as follows.

An occurrence of an expression in a first-order formulaggatedf it belongs to a
subformula of the formn F' (that is,F* — 1), andnonnegatedtherwise. Theredicate
dependency graph df is the directed graph that has

— all predicate constants occurringihas its vertices, and
— an edge fronp to ¢ wheneverlI contains a rule (7) withy in the head such that its
body G has a positivénonnegated occurrence @f

We say thaf/ is tightif the predicate dependency graphléfis acyclic.

For example, the predicate dependency graph of programad )atsingle edge,
from p to ¢q. The predicate dependency graph of program (3) has two gfiigesp to ¢
and fromgq to p. The predicate dependency graph of the program

p(a;b)
q(z,y) — py,x) A —p(z,y) (11)

2 By x = t* we denote the conjunction of the equalities between members of thextaptbthe
corresponding members of the tupie

3 Recall that an occurrence of an expression in a first-order formutalied positiveif the
number of implications containing that occurrence in the antecedent is ane negative
otherwise.
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has a single edge, fromto p (because one of the occurrencedn the body of the
second rule is nonnegated). The predicate dependency gfépd program

p(x) «— q(x),
q(z) — r(z), (12)
r(z) < s(z)

has 3 edges:

p — q — T — 8.
Programs (1), (11) and (12) are tight; program (3) is not.

Proposition 1. If a Lloyd-Topor program/I is tight thenSM[/I] is equivalent to
Comg!I].

This is an easy corollary to the theorem from [6] mentionedhia introduction.
Indeed, consider the s&t’ of the definitions (9) of all predicate constapti® /7. It can
be viewed as a formula in Clark normal form in the sense of §ti6n 6.1]. Itis tight,
because it has the same predicate dependency grafih Bg Theorem 11 from [6],
SM[II'] is equivalent to the completion @1’ in the sense of [6, Section 6.1], which is
identical to Comfi7]. It remains to observe thaf is intuitionistically equivalent td7’,
so that SMIT] is equivalent to SNIT’] [6, Section 5.1].

4 Rule Dependency Graph

We are interested in conditions on a Lloyd-Topor progddnensuring that the equiva-
lence
SM[II] + ComgII]

is entailed by a given set of assumptidnsProposition 1 gives a solution for the special
case whenl” is empty. The following definition will help us answer the reageneral
question.

Therule dependency grapbf a Lloyd-Topor progranm( is the directed graph that
has

— rules of I, with variables (both free and bound) renamed arbitraayits vertices,
and

— an edge from a rulg(t) «— G to arulep’(t’) — G, labeled by an atomic formula
p'(s), if p'(s) has a positive nonnegated occurrencé&’in

Unlike the predicate dependency graph, the rule dependgragph of a program
is usually infinite. For example, the rule dependency grapprogram (11) has the
verticesp(a, b) and

q(w1,y1) < p(y1, 1) A =p(T1,91) (13)
for arbitrary pairs of distinct variables,, y;. It has an edge from each vertex (13) to

p(a,b), labeledp(y;, z1). The rule dependency graph of program (12) has edges of two
kinds:
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— from p(x1) «— q(z1) to ¢(z2) «— r(z2), labeledg(z;), and
— from gq(z1) < r(z1) tor(z2) «— s(z2), labeledr(z;)

for arbitrary variables:q, xs.

The rule dependency graph of a program is “dual” to its preeiaclependency
graph, in the following sense. The vertices of the predidafendency graph are pred-
icate symbols, and the presence of an edge fsdmg is determined by the existence
of a rule that contains certain occurrenceg@fndq. The vertices of the rule depen-
dency graph are rules, and the presence of an edgeArota R is determined by the
existence of a predicate symbol with certain occurrencés, iand Rs.

There is a simple characterization of tightness in termsilefdependency graphs:

Proposition 2. A Lloyd-Topor programi{ is tight iff there exists: such that the rule
dependency graph df has no paths of length.

Proof. Assume thaf7 is tight, and let be the number of predicate symbols occurring
in I1. Then the rule dependency graph/éhas no paths of lengti+-1. Indeed, assume
that such a path exists:

n+1-

Each of the rules?; (1 < ¢ < n) containsp; in the head and a positive nonnegated
occurrence of; ;1 in the body. Consequently the predicate dependency gragh of
has an edge from; to p;11, So thatpy, ..., p,+1 IS @ path in that graph; contradiction.
Now assume thall is not tight. Then there is an infinite path, ps, . . . in the predicate
dependency graph dfi. Let R; be a rule ofI] that hasp; in the head and a positive
nonnegated occurrence pf, ; in the body. Then the rule dependency graplilohas
an infinite path of the form

The main theorem, stated in the next section, refers to fpatas in the rule de-
pendency graph of a program that satisfy an additional condition: the rules at their
vertices have no common variables (neither free nor boBwbh paths will be called
chains

Corollary 1. A Lloyd-Topor programi/ is tight iff there exists: such that/l has no
chains of length.

Indeed, any finite path in the rule dependency grapiVafan be converted into a
chain of the same length by renaming variables.
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5 Main Theorem

Let C be a chain
po(tY) «— Body,
Ipi(sh)
p1(t!) «— Body,
1p2(s?) (14)

lpn (Sn)

pn(t™) < Body,
in a Lloyd-Topor prograni!. The correspondinghain formulaF is the conjunction

n

/n\si:ti A /\ Body,.

=1 =0
For instance, it is the chain

q(x1,y1) < pyr,z1) A =p(z1,91)

p(ylv Il)
p(a,b)

in program (11) therk is
y1 =aAz =bAp(y, 1) A-p(ar, y1).

Let I" be a set of sentences. About a Lloyd-Topor progédmve will say that it
is tight relative tol’, or I'-tight, if there exists a positive integersuch that, for every
chainC' in IT of lengthn,

I',ComdIl] = V—Fe.
Main Theorem. If a Lloyd-Topor programi{ is I'-tight then

I = SMIT] < Comg].

Corollary 1 shows that every tight program is trivially-tight even whenl” is
empty. Consequently the main theorem can be viewed as aaiigation of Propo-
sition 1.

Tightness in the sense of Section 3 is a syntactic conditiahis easy to verify;
I'-tightness is not. Nevertheless, the main theorem is usefthuse it may allow us
to reduce the problem of characterizing the stable modedsppbgram by a first-order
formula to verifying an entailment in first-order logic.

Here are some examples. In each case, to véhfightness we take = 1. We will
check the entailment in the definition #Ftightness by deriving a contradiction from
(some subset of) the assumptidnsComgI7], andFc.
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Example 1.The one-rule program

pla) —pa) Az #a
is tight relative td). Indeed, any chain of length 1 has the form
p(a) < p(z1) Aoy #a

lp(xl)

p(a) — p(x2) A a2 # a.

The corresponding chain formula

21 =aAp(x1) ANxy # aAp(as) Axe # a.

is contradictory.
Thus the stable models of this program are described byiitplaiion, even though
the program is not tight (and not even atomic-tight).

Example 2.Let IT be the program consisting of the first 2 rules of (5):
p(a) < p(b),
q(c) — q(d).
To justify the claim about (5) made in the introduction, wdl wheck that/T is tight

relative to{a # b, ¢ # d}. There are two chains of length 1:

pla) — p(b)
L)
pa) — p(b)

and

The corresponding chain formulas are
b=aAp(b) Ap(b)

and
d=cANq(d) Aq(d).

Each of them contradicts.

Example 3. Let us check that program (3) is tight relative {fo # b}. Its chains of
length 1 are

p(z1) < q(71)
l)Q(xl)

q(a) < p(b)



Lloyd-Topor Completion and General Stable Models 9

and
q(a) < p(b)
La®)

p(z1) < q(71)

for an arbitrary variable:;. The corresponding chain formulas include the conjunctive
term p(b). Using the completion (4) of the program, we derive= a, which contra-
dicts 1.

6 A Larger Example

Programs found in actual applications of ASP usually ingatenstructs that are not
allowed in Lloyd-Topor programs, such as choice rules antstraints. Choice rules
have the form

{p()} < G.

We view this expression as shorthand for the sentence

V(G — p(t) Vv —=p(t)).

A constraint— G is shorthand for the senten¢eG. Such sentences do not correspond
to any rules in the sense of Section 2.

Nevertheless, the main theorem stated above can sometelesid characterize
the stable models of a “realistic” program by a first-ordanfaola. In this section we
discuss an example of this kind.

The logic programM described below encodes commonsense knowledge about
moving objects from one location to another. Its signatamscsts of

— the object constanﬁ; e ,E, wherek is a fixed nonnegative integer;

— the unary predicate constartbject place andstep they correspond to the three
types of individuals under consideration;

— the binary predicate constaméxt it describes the temporal order of steps;

— the ternary predicate constamtisandmove they represent the fluents and actions
that we are interested in.

The predicate constangsep next andat are intensional; the other three are not. (The
fact that some predicates are extensional is the first s@nithis not a Lloyd-Topor
program.) The program consists of the following rules:

(i) the facts
stef0), stef(1), ... stefk);
next(0,1), nex(1,2), ..., nex(k—1,k);

(i) the unique name constraints

—i=7 (1<i<j<k)
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(iii) the constraints describing the argumentabndmove
«— at(x,y, z) A ~(objec{x) A placgy) A stedz))
and
— movézx, y, z) A ~(objeci(z) A placgy) A stef{z));
(iv) the unigueness of location constraint
— at(z,y1,2) A at(z,y2,2) Ay1 # yo;
(v) the existence of location constraint
— objeci{(z) A stefz) A =Ty at(x, y, 2);
(vi) the rule expressing the effect of moving an object:
at(xz,y,u) — movézx,y, z) A nex{(z, u);
(vii) the choice rule expressing that initially an objechdze anywhere:
{at(z,y,0)} < objec{x) A placqy);
(viii) the choice rule expressing the commonsense law afiaé
{at(z,y,u)} «— at(x,y, z) A next{(z,u).

ProgramM is not atomic-tight, so that methods of [8] are not directhplicable
to it. Nevertheless, we can describe the stable models ®ptioigram without the use
of second-order quantifiers. In the statement of the prépadbelow,p stands for the
list of intensional predicatestep nextandat, andH is the conjunction of the universal
closures of the formulas

P4 (1<i<j<k),
at(x,y, z) — objec{x) A placey) A stefz),
movez, y, z) — objec(x) A placgy) A stef{z),

at(.’E, Y1, Z) A at(w7y27 Z) — Y1 = Y2,
objeci{z) A stez) — Jy at(z, y, 2).

Proposition 3. SM,[M] is equivalent to the conjunction éf with the universal clo-
sures of the formulas

k
stef(z) < \/ z =1, (15)
1=0
k—1 N _
nexi(z,u) < \/(z=i/\u=i—|—1)7 (16)
1=0

-~

at(x,y,H/\l) — (movéz,y,7) V (at(z,y, 1) A =Jw move(z, w,i)))

(i=0,....k—1). (A7)

* This representation of inertia follows the example of [11, Figure 1].
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Recall that the effect of adding a constraint to a logic paogtis to eliminate its
stable models that violate that constraint [6, Theorem B8]imterpretation satisfied
iff it does not violate any of the constraints (ii)—(v). Seethtatement of Proposition 3
can be summarized as follows: the contribution of rules iJ &vi)—(viii), under the
stable model semantics, amounts to providing explicit dedims for stepandnext and
“successor state formulas” fat.

The proof of Proposition 3 refers to the Lloyd-Topor progrdiconsisting of
rules (i), (vi),

(vii’) at(z,y,0) < objec{x) A placgy) A ——at(z,y, 0),
(viii’) at(x,y,u) «— at(x,y, z) A nex{(z,u) A -—at(z, y, t2),

and
object(z) — ——objectz),
place(y) — ——place(y), (18)
movéz,y, z) «— ——movéz, y, z).

It is easy to see that SMM] is equivalent to SNIZ] A H. Indeed, consider the pro-
gram M’ obtained fromM by adding rules (18). These rules are strongly equivalent to
the choice rules

{objec(z)}, {placey)}, {movez,y, z)}.

Consequently SM[M] is equivalent to SNIM'] [6, Theorem 2]. It remains to notice
that (vii) is strongly equivalent to (Vii, and (viii) is strongly equivalent to (vii).

Furthermore—and this is the key step in the proof of Propmsi—the second-
order formula SMIZI] A H is equivalent to the first-order formula Cofip A H, in
view of our main theorem and the following fact:

Lemma 1. ProgramI] is H-tight.

To derive Proposition 3 from the lemma, we only need to olestrat (15) and (16)
are the completed definitions sfepandnextin 17, and that the completed definition
of at can be transformed into (17) under assumptions (15), (b6)/&a

Proof of Lemma 1. Consider a chain id/ of lengthk + 2:

Ry Do) popaC) penn(e) poopera(e) g

Each R; is obtained from one of the rules (i), (vi), (Yii (viii’), (18) by renaming
variables. Eaclp; occurs in the head aR; and has a positive nonnegated occurrence
in R;_;. Since there are no nonnegated predicate symbols in thedodirules (i)

and (18), we conclude tha,, ..., Rx., are obtained from other rules @éf, that is,

from (vi), (vii’), and (viii). Since the predicate constant in the head of each of these
three rules ist, each ofpy, ..., pry1 IS the symboht. Since there are no nonnegated
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occurrences ot in the bodies of (vi) and (Vi), we conclude thaRy, ..., Ry are ob-
tained by renaming variables in (V)i This means that chain (18) has the form

at(:r07 Yo, UO) — at(x07 Yo, ZO) A nex(’z()v UO) A _‘_\at(xo, Yo, UO)

lat($o71/0720)
at(z1,y1,u1) « at(x,y1, 21) Anext(zi,uy) A —-—at(zy, y1,u1)

\Lat(xlvylvzl)

lat(xk—l,yk—l,zk—ﬂ
at(zg, Yr, ur) «— al(Tr, Yr, 2x) A NEXLzy, ug) A ~—at(xy, yr, ur)

lat(zy, yx, 2¢)
Ryt

Ry o.
The corresponding chain formula contains the conjuncévens
20 = UL, %1 = UQ,y...,26—1 = Uk
and
nex{(zo, ug), Next(zy, uy), ..., Next{zx, ux).
From these formulas we derive

nexi{uy, ug), Nex{us, u1),. .., NeX uk41,uk), (20)

whereuy11 stands forz,. Using the completed definition oext we conclude:

w=0V--Vu=k (0<i<k+1).
Consider the case when R
for some numbergy, ..., jx+1 € {0, ..., k}. There exists at least one subsciigtich
thatj; # 7,41 + 1, because otherwise we would have

Jo=n+l=ja+2==jip1+k+1,

which is impossible becaugg, ji+1 € {0,...,k}. By the choice of, from the com-
pleted definition ohextand the unique name assumption (includeé/nwe can derive

~

—nex{j;+1, j;)- Consequently-nex{u;1, u;), which contradicts (20).

7 Review: Stable Models of Infinitary Formulas

Our proof of the main theorem employs the method proposeda(thfferent purpose)
by Miroslaw Truszczynski [12], and in this section we revisame of the definitions
and results of that paper. The stable model semantics obpitigmal formulas due to
Paolo Ferraris [13] is extended there to formulas with itdigilong conjunctions and
disjunctions, and that generalization is related to theatpe SM.

Let A be a set of propositional atoms. The séts 71, ... are defined as follows:
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- Fo=AU {L};
— Fiy+1 consists of expressiortg” and+”, for all subset${ of 7y U ... U F;, and
of expressiong” — G, whereF,G € FoU...UF;.

An infinitary formula(over A) is an element of J;~ , F;.

A (propositional) interpretations a subset ofA. The satisfaction relation between
an interpretation and an infinitary formula is defined in airatway. The definition of
the reductF'’ of a formulaF relative to an interpretatioh proposed in [13] is extended
to infinitary formulas as follows:

- 1=,

— ForA e A, AT = 1 if I £ A; otherwiseA! = A.

— (M = Lif I} H"; otherwise(HM)! = {GT : G € H}".

— (V)T = Lif T}~ HY; otherwise(H")! = {GT : G € H}".

- (G — H)l = Lif I £ G — H;otherwise(G — H)! = GI — H.

(Note that according to this definitioRi is | wheneverl [~ F.) An interpretation/
is astable modebf an infinitary formulaF if I is a minimal model of*”. An interpre-
tation I satisfiesF'! iff it satisfies F' [12, Proposition 1], so that stable modelsfofre
models ofF'.

Infinitary formulas are used to encode first-order senteasésllows. For any inter-
pretation/ in the sense of first-order logic, let be the set of ground atoms formed from
the predicate constants of the underlying signature andndmmes”<* of elementst
of the universdI| of I—new objects constants that are in a 1-1 correspondence with
elements ofI|. By I” we denote the set of atoms frashthat are satisfied by. In the
definition below,t! stands for the value assigned to the ground teby the interpre-
tation I. Thegroundingof a first-order sentenck relative toI (symbolically,gr;(F))
is the infinitary formula over constructed as follows:

—or;(L)= L.

— gy (plty, 1)) = (D). (t])").

gr;(t; = tz) = T,if t{ =1, and L otherwise.

If F =GV H,gr,(F)=gr;(G)Vgr;(H) (the case of\ is analogous).
If F=G— H,gr;(F)=9r;(G) — gr;(H).

If F=3z2G(z),gr;(F) ={gr;(G(u*)) : wel|I|}V.

If F=VzG(z),gr;(F) ={ar;(G(u*)) : u e |I]}".

It is easy to check thagr; is a faithful translation in the following sensé:satisfies a
first-order sentenceg' iff I satisfiegyr;(F').

This transformation is also faithful in the sense of the Istabodel semanticst
satisfies SNIF] iff I" is a stable model ajr,; (F) [12, Theorem 5]. This is why infinitary
formulas can be used for proving properties of the operathr S

8 Plan of the Proof

In the statement of the main theorem, the implication leftight

SM[II] — ComgII]
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is logically valid for any Lloyd-Topor prograni. This fact follows from [6, Theo-
rem 11] by the argument used in the proof of Proposition 1 abd prove the theorem
in the other direction, we need to establish the following:

If a Lloyd-Topor prograny{ is I'-tight,
and an interpretatiorf satisfies botl” andComgI7], (21)
then! satisfiesSM[IT].

This assertion follows from three lemmas, stated in thisise@nd proved in the
appendix. The first of them expresses a Fages-style progfdrtfinitary formulas sim-
ilar to Theorem 1 from [3]. It deals witimfinitary programs—conjunctions of (possibly
infinitely many) implicationsz — A with A € A. Such an implication will be called
an (infinitary) rule with the head A andbody G, and we will write it asA < G. For
instance, ifII is a Lloyd-Topor program then, for any interpretatibngr;(I7) is an
infinitary program. We say that an interpretatiris supportedoy an infinitary pro-
gram] if each atomA € I is the head of a rulel < G of II such that/ |= G. The
lemma shows that under some condition the stable models iofiaitary programil
can be characterized as the models that are supportéd by

The condition refers to the set pbsitive nonnegated atorn$an infinitary formula.
This set, denoted by POf), and the set ofiegative nonnegated atorn§ F', denoted
by Nnn(F"), are defined recursively, as follows:

— Pnn(L) = 0.
— ForA e A, Pnn(A) = {A}.
— Pnn(H”) = P(HY) = Uy ey PRR(H).

[0 if H= 1,
— PG — H) = { Nnn(G) U Pnn(H) otherwise.
— Nnn(L) =0,
— ForA € A,Nnn(4) = 0.
— Nnn(H") = Nnn(HY) = Uy ey NNN(H).

_Jo if H=1,
- Nnn(G — H) = { Pnn(G) UNnn(H) otherwise.

Let IT be an infinitary program, anfla propositional interpretation. About atoms
A, A’ € T we say thatd’ is aparent ofA relative toIl and [ if IT has aruled «— G
with the headA such that/ = G and A’ is a positive nonnegated atom Gf We say
that /7 istight on[ if there is no infinite sequencéy, A4, . . . of elements of such that
for everyi, A;,1 is a parent of4; relative toF’ and!.

Lemma 2. For any modell of an infinitary programi/7 such that/7 is tight onI, I is
stable iffI is supported byT.

The next lemma relates thé-tightness condition from the statement of the main
theorem to tightness on an interpretation defined above.

Lemma 3. If a Lloyd-Topor program/T is I'-tight, and an interpretation/ satisfies
bothI" andComg 1], then g, (I7) is tight onI".
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Finally, models of ComdI] can be characterized in terms of satisfaction and sup-
portedness.

Lemma 4. For any Lloyd-Topor programiI, an interpretation/ satisfiesComgII]
iff I™ satisfies gf(I1) and is supported by g{IT).

To derive assertion (21) from these lemmas, assumdihaal -tight Lloyd-Topor
program, and thaf is an interpretation satisfying boffi and Comj/7]. By Lemma 3,
gr;(II) is tight onI". By Lemma 4,/ satisfiesgr;(IT) and is supported bgr, (I7).
By Lemma 2, it follows thaf " is a stable model ofr;(IT). By Theorem 5 from [12],
quoted at the end of Section 7, it follows thHasatisfies SNIT].

9 Conclusion

We proposed a new method for representing BMn the language of first-order logic.
It is more general than the approach of [6]. Its relationshkith the ideas of [8] re-
quires further study. This method allows us, in particularprove the equivalence of
some ASP descriptions of dynamic domains to axiomatizati@sed on successor state
axioms.

The use of the stable model semantics of infinitary formul&j [n the proof of
the main theorem illustrates the potential of that semaratica tool for the study of the
operator SM.
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Appendix: Proofs of Lemmas 2—4

Proof of Lemma 2

In this section/T is an arbitrary infinitary program. For any modedf I, the reduct7’
consists of (i) the ruleg < G for all rulesA « G of IT such thatd € I, and (i) tau-
tologiesL «— L. We will disregard these tautologies and thinkidf as a program.

Lemma A. A modell of IT is supported byT iff it is supported byT’.

Proof. A modelI of IT is supported by’ iff for every atomA ¢ I there exists a rule
A « Gin II such thatl = G'. By Proposition 1 from [12]] = G iff I = G.

Lemma B. Any stable model off is supported byT.

Proof. By Lemma A, it is sufficient to check that any stable mofef I7 is supported
by IT'. Take an atomd € I. Sincel is a stable model off, I is minimal among the
models of I77. Thereforel \ {A} does not satisfyi7!, that is to say, for some rule
A’ — G of IT such that

Alel, (22)
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I'\ {A} does not satisfy the corresponding rlle«— G of I77. Then

IN{A} G (23)
and
A" g I\ {A}. (24)

From (23),I = G (because otherwis@! would be 1), and consequently = G'.
From (22) and (24)A’ = A. ThusA’ « G' is a rule ofII’ such that its head id4 and
its body is satisfied by.

Lemma C. For any infinitary formulaF’ and any interpretatior,
Pnn(F?) C Pnn(F), Nnn(F!) C Nnn(F).
Proof: Straightforward, by strong induction on the rankfof{defined as the value of
for which F' € F;).
Lemma D. For any modell of I7, if IT is tight onI then so islT’.

Proof. Assume thafI’ is not tight onZ, and let4,, 41, . .. be an infinite sequence of
elements off such that4,,  is a parent of4; relative tolI! andI. Consider the rule
of 11! justifying this property. That rule has the form — G’ for some ruled — G
of IT such thatd € I, and it satisfies the following conditions:

A= Ai7 I ': GI, AiJrl eln Pnr(GI)
ThenI = G and, in view of Lemma C,
Ai € INPANGY) C INPANG).

Consequently, for every, A;,; is a parent of4; relative tol and I, contrary to the
assumption thaif is tight onI.

The statement of the following lemma refers to the sedta€tly positive atomef
an infinitary formulaF’, denoted by SP@$"), which is defined as follows:

— SPog1) = 0.

— ForA € A, SPogA) = {A}.
— SPo$H") = Uy SPOSH).
— SPogH") = ey SPOSH).
— SPo$G — H) = SPo$H).

Lemma E. For any infinitary formulaF’, SPogF) C Pnn(F).
Proof: Straightforward, by induction on the rank &t

Lemma F. Let I be a model of an infinitary formul&’. If F' can be represented in the
form G' for some infinitary formula then any interpretation’ such that

INSPo$F) C J
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is a model off" as well.

Proof. By induction on the rank of we can show that if = G (or, equivalently,
I = G)andI NSPogGY) C JthenJ = GY. Consider the more difficult case whéh
has the formH; — H,. Sincel = G, andG! is H{ — HI. We can distinguish
between two subcases: (i)l H, and (ii) I = Ho. In the first caseH? is L, so that
G is tautological, and the assertign= G is trivial. Assume now thaf = H,. Since

INSPo$G’) = INSPogHS) C J,

we can conclude from the induction hypothesis that HZ. Consequently = G'.

Proof of Lemma 2. The only if part isimmediate from Lemma B. Lébe a supported
model of IT such thati] is tight onI. To prove the stability of , we need to show that
no proper subset aof satisfies/7’. Take a proper subsétof I. There is an ator in
I\ J that has no parent ih\ .J relative tolI’ and]. Indeed, if every atom it \ .J has
a parent relative té/’ and! that belongs td \ .J then there exists an infinite sequence
Ag, Ay, ... of elements of \ J such that4,,  is a parent of4;, so that/T? is not tight
on I; this is impossible by Lemma D. Consider such an atdnBy Lemma A, is
supported byi77. It follows that there is a rulel «— F in IT7 such thatl |= F. By the
definition of the parent relation, all elementsiafi PnnF') are parents ofl relative to
IT" and . By the choice of4, no parent ofA relative toI77 and I belongs tol \ .J.
Consequently N Pnn(F) is disjoint from! \ J, so that

INPN(F) C J.
In view of Lemma E, it follows that
INSPogF) C J.

SinceA — Fisarule offI’, I has the fornG’ for some formulai. By Lemma F, it
follows that.J |= F'. SinceA € I\ J, we conclude thaf does not satisfd — F and
therefore is not a model dff .

Proof of Lemma 3

Lemma 3 relates th€-tightness of a Lloyd-Topor progratid (defined in Section 5) to
the tightness ofjr;(II) on I” in the sense of Section 8. As a preliminary step, we will
describe a relationship between positive nonnegated atsuhiformulas of a first-order
formula F', referred to in the definition of the rule dependency graph, the positive
nonnegated atoms of the infinitary formue, (F').

In the following lemma/ is an interpretation in the sense of first-order logic, &nhd
is a first-order sentence that may contain the naghe$elementg of the universe of .

If uisatupley, ..., & of elements of the universe thah stands for the corresponding
tuple of namesgy,...,&;. If tis atuplety, ..., of ground terms thegr;(t) stands
for the tuple(t!)*, ..., (t])* of the names of their values.

Lemma G. For any ground atom of the form(u*),
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(i) if p(u*) € Pnngr;(F)) thenu* has the form gf(t(v*)) for some tuple(x) of
terms such thap(t(x)) has a positive nonnegated occurrencefinand some tu-
plev of elements of the universe;

(i) if p(u*) € Nnn(gr;(F)) thenu* has the form gy(t(v*)) for some tuple(x) of
terms such thap(t(x)) has a negative nonnegated occurrencdinand some tu-
plev of elements of the universe.

Proof. The proof is by induction on the size 6. We will consider three cases: whéh
atomic, whenF' is an implication, and whef" begins with the universal quantifier.

If ' is an atomic formula that does not contairthen gr(F') does not contain
atoms of the fornp(u*), and assertions (i) and (ii) are trivial. Assume tfats p(t),
so thatgr, (p(t)) = p(gr, (1)), Pnr(gr,(F)) = {p(gr, (1))}, and Nnrigr, (F)) = 0. If
p(u*) € Pnn(gr;(F')) thenu* = gr,(t); p(u*) € Nnn(gr;(F)) is impossible.

If F'isG — H thengr;(F)isgr;(G) — ar;(H). Assume thayr;(H) is different
from L (otherwise both Pr(yr;(F')) and Nnrigr,(F')) are empty). Then

PANgr, (F)) = Nnn(gr, (G)) U PnNgr, (H)),
Nnn(gr, (F)) = Pnngr, (G)) UNnn(gr, (H)).

To prove (i), assume tha{u*) € Pnn(gr;(F)). Then

p(u®) € Nnn(gr(G)) or p(u®) € Pnn(gr;(H).

By the induction hypothesis, it follows that has the forngr, (t(v*)) for some tuple
t(x) of terms such that(t(x)) has a negative nonnegated occurrena@ or a positive
nonnegated occurrence H. Sincegr;(H) is not_L, H is not_L either. Consequenitly
p(t(x)) has a positive nonnegated occurrencé&in- H. The proof of (ii) is similar.

If FisVzG(z) then

gr,(F) = {gr,(G(w")) : we [I[}".

To prove (i), assume tha{u*) € Pnn(gr;(F)). Since

Pargr, (F)) = |J Prrar, (G(w")),

we|I|

p(u*) € Pnn(gr;(G(w*))) for somew € |I|. By the induction hypothesis, it follows
thatu* has the formgr, (t(v*)) for some tuple(x) of terms such that, for some € |I|,
p(t(x)) has a positive nonnegated occurrencé{mv*). Without loss of generality we
can assume that every memberxobccurs int(x). Case 1:z is not a member ok.
Let p(t'(x, z)) be the part of5(z) from which the occurrence of(t(x)) in G(w*) is
obtained by substituting)* for z. This part has a positive nonnegated occurrence in
G(z), and consequently if'(z). On the other hand,(x) is ¢’ (x, w*), so thatt(v*) is
t'(v*, w*), and

U™ =gr,(¢(v)) = gr, (t'(v",w")).

Case 2:z is a member ok. Thenp(t(x)) containsz, which is only possible if all
occurrences of in the part of F'(z) from which the occurrence gf(t(x)) is obtained
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by substitution are bound. Then that partfdfz) is not affected by the substitution and
equalsp(t(x)). Thusp(t(x)) has a positive nonnegated occurrencé’ir), andu* is
gr;(t(v*)). The proof of part (i) is similar.

Proof of Lemma 3. Assume thatl] is I'-tight, that an interpretatioi satisfies both
ComgII] and ', and thatgr,(IT) is not tight onI". Then there exists an infinite se-
quencedy, 44, ... of atoms such that each;, is a parent of4; relative togr; (1)
and!". In other words, there exist rules

pi(gry(t'(c)))) < ar(Gi(c)))  (i=0,1,...)
of gr, (IT), obtained by grounding from rules
pi(t'(x"))  Gi(X') (25)
of I7, such thatd, is p; (gr, (t'(c}))),
I" = gr, (Gi(c))), (26)

and 4,1 € Pnngr (Gi(c7))). Atom A, can be written ag;1(u*), whereu* is
or (t'(c;,,)). By LemmaG,

gr (t(cl4)) is gr, (sT(d))) 27)

for some atonp, 1 (s"*1(z)) that has a positive nonnegated occurrendgii(c; ), and
some tupled; of elements of the universe. That occurrencengf, (s1(z)) is the
result of substituting; for x* in some atonp; 1 (r**!(x?,z")) that has a positive non-
negated occurrence i; (x?), so thats ™1 (z') is ri*1(ct, z'). From (27) we conclude
that

gr (t71(cl)) is gr, (T (c;, df)). (28)

Since Il is I'-tight andI satisfies ComfgI] and I, there exists: such that, for
every chainC'in I of lengthn, I = V—Fc. Consider rules (25) for=0,...,n. Let

~

pi(ti(xi)) — Gi(x7) (29)

be those rules with variables renamed so that differensrbéve no common vari-
ables. (FormulaG;(x*) is the result of renaming bound variables @ (x*).) Then

pir1(r'ti(xt, zt)) has a positive nonnegated occurrenc@mxi), for some tuplezt
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of variables. LeCC be the chain

—_—

Lpr(rn et 20 1))
P (X)) — G (X,
The corresponding chain formulg: is

n—1 n
A\ ) = (a2 A A Glx),
i=0

=0

Since interpretatiod satisfies/—F, it satisfies also

1
<n/\ t+(cr ) = riti(c, dh) A /\G (c) >

so that/" satisfies

(/\ ar, (t (e, ) =t cj,df /\ ar, (G, >

1=0 1=0

—

In view of (28), each of the formulagr; (t'+1(c;,,) = rit!(c;,d;)) is T, so that/”
satisfies
- ( A gn@(c%») :
1=0
This is impossible by (26).

Proof of Lemma 4

Recall that the rules of a Lloyd-Topor progrdthhave the form

p(t(y)) < G(y)
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(with all free variables of the rule explictly shown), andithhe rules of the infinitary
programgr ;(II) have the form

p(gr(t(v))) < gr;(G(v)) (30)

for all tuplesv of elements ofI|. For any Lloyd-Topor programZ, ComgII] is equiv-
alent to the conjunction ofl with the universal closures of the definitions (9) of all
predicate constanis To prove Lemma 4, we need to check that the condition: fgs,all

I |=vx (p(X) — \/ ' (x =t'(y")) A Gi(yi)> , (31)

is equivalent to the assertion thgit;(I7) is supported by". Note first that (31) is
equivalent to the condition:

A
I' = {grl (p(U*) = VI =ty)A Gi<yi))> tue III’“} ;
wherek is the arity ofp. The conjunctive termgr; (- - - ) can be written as

p(u) = \/{or,(u* =t (v)) Agri(Gi(v)))  ve I},

2

wherel; is the length of the tuplg?. Therefore (31) is equivalent to following condition:
for everyu € |I|* such thap(u*) € I",

there exist andv such thau* is gr;(t'(v*)), andI” = gr;(G;(v*)).  (32)

Condition (32) is equivalent to saying thafu*) is the head of one of the rules (30)
whose body is satisfied k.
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