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Abstract

We present a formalization of the blocks

world on the basis of the situation calculus

and circumscription, and investigate its

mathematical properties. The main theorem

describes the e�ect of the circumscription

which solves the frame problem in the

presence of rami�cations. The theorem is

quite general, in the sense that it is applicable

not only to the blocks world, but to a whole

class of domains involving situations and

actions. Its statement does not mention

anything speci�c for the domain of blocks.

Instead, it lists assumptions about purely

formal, mostly syntactic, properties of the

axiom set.

1 INTRODUCTION

In this paper we present a formalization of the

blocks world on the basis of the situation calculus

and circumscription, and investigate its mathematical

properties.

The formalization is not particularly original; it is

based on the approach of

[

Baker, 1989

]

1

, and is in

some ways similar to the formulation from Section

6 of

[

Baker and Ginsberg, 1989

]

. One di�erence is

that we use a more abstract formalization of states,

along the lines of

[

Lifschitz, 1990

]

, which allows us, for

1

This was the �rst successful application of circumscrip-

tion

[

McCarthy, 1986

]

to the frame problem for actions

with indirect e�ects (\rami�cations").

instance, to do without any speci�c assumptions about

the number of available blocks.

The main novelty here is a theorem, which describes

the e�ect of the circumscription used for solving the

frame problem in the presence of rami�cations, and

con�rms the adequacy of this solution. The theorem is

quite general, in the sense that it is applicable not only

to the blocks world, but to a whole class of domains

involving situations and actions. Its statement does

not mention anything speci�c for the domain of blocks.

Instead, it lists assumptions about purely formal,

mostly syntactic, properties of the axiom set. One

of the assumptions, for instance, is that the axiom

set includes a certain form of the commonsense law

of inertia.

Such \metatheoretical" investigation of commonsense

knowledge gives us not merely one successful

formalization of one particular domain, but a class

of successful formalizations. This approach has two

advantages.

First, any new commonsense domain that we want to

formalize may happen to have a formalization which

belongs to a class already familiar to us. Then the

con�rmation of the adequacy of this formalization will

come from a metatheorem proved earlier.

Second, databases of common sense, like any other

databases, will need to be updated, and it is crucial

that an update be allowed only when the designer of

the database has a clear understanding of the e�ect of

updates of that type. Hopefully, this can be achieved

by implementing the requirement that the updated

database belong to a class of theories whose properties

are well understood. The metalevel investigation of

formalizations of common sense will be instrumental

for solving this problem.

The main theorem, stated in Section 3 of this paper

and proved in Section 4, shows how these ideas

apply to circumscriptive theories of action. Prior to

discussing this theorem, we describe in Section 2 a

formalization of the blocks world which satis�es its



conditions and thus plays the role of a motivating

example. The version of the blocks world used in

this example is extremely simple; the only available

action is moving one block on top of another. But the

theorem covers more complex domains as well. We

discuss its possibilities and limitations in Sections 3.3

and 3.4; we show, in particular, that it is applicable to

the blocks world in which blocks have colors and can

be not only moved, but also painted.

2 THE BLOCKS WORLD

EXAMPLE

2.1 CIRCUMSCRIPTIVE THEORIES

The blocks world will be formalized as a circum-

scriptive theory, in the following sense of this term.

Consider a language of classical predicate calculus

with equality|one-sorted or many-sorted, �rst-order

or higher-order. A circumscriptive theory consists of

a �nite set � of sentences of this language, called the

axioms of the theory, and a �nite nonempty set � of

expressions of the form

circ P var Z

1

; : : : ; Z

n

; (1)

where P is a predicate constant, and Z

1

; : : : ; Z

n

are

predicate or function constants. These expressions

will be called the policy declarations of the theory

(because they determine its \circumscription policy").

A circumscriptive theory (�;�) represents the classical

axiomatic theory whose axioms are the sentences

2

CIRC

"

^

A2�

A;P ;Z

1

; : : : ; Z

n

#

(2)

for all declarations (1) from �. In particular, by a

model of (�;�) we mean a model of the formulas (2).

A theorem of (�;�) is a sentence which is true in all

its models.

The language of a circumscriptive theory can be many-

sorted and higher order. In most applications of

circumscription, higher order variables do not occur

in the axioms, and are only needed for forming the

circumscription formula. Baker (

[

Baker, 1989

]

, Section

5) noticed, however, that predicate variables are useful

for stating his \existence of situations" axioms, and we

follow this approach in Section 2.2.

Extending the de�nition of circumscription to the

case when some or all arguments of the circumscribed

predicate are higher order variables is straightforward.

2

CIRC[A;P ;Z] stands for the result of circumscribing

the predicate P in the sentence A with Z allowed to

vary

[

McCarthy, 1986

]

,

[

Lifschitz, 1985

]

,

[

Genesereth and

Nilsson, 1987

]

.

2.2 AXIOMS FOR SITUATIONS AND

FLUENTS

First we describe the part of the axiom set which

deals with situations and uents; axioms for actions

will be added in Section 2.3. This part of the

formalization uses variables of three sorts: for

blocks (x,y,z,x

1

,y

1

,z

1

,: : :), for situations (s,s

1

,: : :),

and for propositional uents (f ,f

1

,: : :). The formula

Holds(f; s) expresses that the value of f in the

situation s is true. The speci�c uents that are of

interest to us in this example will be represented using

the function constants On and Ontable. The terms

On(x; y) and Ontable(x) represent distinct uents for

di�erent values of x and y:

On(x

1

; y

1

) = On(x

2

; y

2

) � x

1

= x

2

^ y

1

= y

2

;

Ontable(x) = Ontable(y) � x = y;

On(x; y) 6= Ontable(z):

(3)

The uents On(x; y) and Ontable(x) play the role of

a \coordinate frame" in the space of situations, in

the sense that speci�c con�gurations of blocks can be

described by combinations of values of these \frame

uents"

[

McCarthy and Hayes, 1969

]

. For instance,

the con�guration in which all blocks are on the table

can be characterized by saying that the value of each

of the uents Ontable(x) is true.

3

By a \state" we understand a function assigning values

to all frame uents. When the frame uents are

propositional, a state is a truth-valued function on

the set of frame uents, and we will identify it with

the set of uents to which it assigns the value true.

Every situation de�nes a certain state|the set of all

frame uents that are true in this situation. But one

state may correspond to many di�erent situations. For

instance, two di�erent situations s

1

and s

2

may share

the property that all blocks are located on the table;

perhaps the di�erence between s

1

and s

2

is in the exact

locations of blocks, or these situations may correspond

to di�erent instants of time.

To formalize these ideas, we use the unary predicate

Frame, which singles out the frame uents.

4

It is

characterized by the postulates:

Frame(On(x; y));

Frame(Ontable(x)):

(4)

We will circumscribe it, to ensure that the frame

contains no uents other than these.

Since states are sets of frame uents, they can be

represented by unary predicates. We will use �,�

1

,: : :

as unary predicate variables whose argument is a uent

3

See

[

Lifschitz, 1990

]

for a detailed discussion of the

role of frames and of possible approaches to formalizing

this concept.

4

For a detailed discussion of this approach to

formalizing frames, see

[

Lifschitz, 1990

]

.



variable. We write IsState(�) for

8f [�(f) � Frame(f)];

and State[s] for

�f [Frame(f) ^Holds(f; s)]:

Obviously, the formula

8s IsState(State[s])

is universally valid.

Given a state �, we can ask whether there exist a

situation s such that State[s] = �. Many combinations

of values of frame uents are impossible to realize

physically, and even di�cult to imagine. A block

cannot be located in two places at once; a block

cannot be located on its own top; it is impossible

to build \circular" con�gurations, when, for instance,

x is located on top of y, y on top of z, and z

on top of x. However, we do not think of every

situation as necessarily realized at some point in the

actual course of events; consequently, there would

be nothing wrong with admitting \ideal" situations,

corresponding to physically impossible states. In fact,

postulating such \ideal" situations is useful, because

it allows us to guarantee the existence of a variety

of di�erent situations without going into the detailed

study of what is physically possible and what is not.

The formula

IsState(�) � 9s(� = State[s])

is a very strong \existence of situations" axiom; it

asserts that every state corresponds to at least one

situation, so that the frame uents are completely

independent. Alternatively, this assumption can be

stated in the Skolemized form:

IsState(�) � � = State[Sit(�)]: (5)

The function Sit maps a state into one of the

corresponding situations.

In our formalization of the blocks world, we do

not want to go quite this far in allowing \ideal"

situations. We will assume the constraints on possible

combinations of the values of frame uents, according

to which a block cannot be located in two places at

once:

Holds(On(x; y

1

); s) ^Holds(On(x; y

2

); s)

� y

1

= y

2

;

Holds(On(x; y); s) � :Holds(Ontable(x); s):

(6)

Then (5) needs to be replaced by the corresponding

\default":

IsState(�) ^ :Inconsistent(�) � � = State[Sit(�)];

(7)

where Inconsistent is the new predicate, which will be

circumscribed.

We expect that this circumscription will lead to

the conclusion that the constraints (6) represent all

existing dependencies between the values of frame

uents. One more assumption is needed in order to

make this work:

IsState(�

1

) ^ IsState(�

2

) ^ Sit(�

1

) = Sit(�

2

)

� �

1

= �

2

:

(8)

This axiom guarantees that the cardinality of the

universe of situations is su�ciently large.

To sum up, the axioms for situations and uents are

the universal closures of the formulas (3), (4) and (6){

(8).

2.3 AXIOMS FOR ACTIONS

Now we extend the language used in Section 2.2

by variables for actions a,a

1

,: : :. We also add the

binary function constant Result, whose arguments

are an action and a situation and whose value is

a situation, and the binary function constant Move,

whose arguments are blocks and whose value is an

action. Intuitively, the term Move(x; y) represents the

action of placing x on top of y. These terms represent

distinct actions for di�erent values of x and y:

Move(x

1

; y

1

) = Move(x

2

; y

2

) � x

1

= x

2

^ y

1

= y

2

:

(9)

We will use the atomic formula Possible(a; s) to

express that it is possible to carry out the action a

in the situation s. The following axiom describes the

e�ect of Move(x; y):

Possible(Move(x; y); s)

� Holds(On(x; y);Result(Move(x; y); s)):

(10)

A su�cient condition for the possibility of Move(x; y)

is given by the axiom:

:9zHolds(On(z; x); s)

^:9zHolds(On(z; y); s)

^x 6= y

� Possible(Move(x; y); s):

(11)

Finally, we include the following form of the

commonsense law of inertia:

Frame(f) ^ Possible(a; s) ^ :Noninertial(f; a; s)

� [Holds(f;Result(a; s)) � Holds(f; s)]:

(12)

Here Noninertial is a new predicate constant, which

will be circumscribed.

2.4 POLICY DECLARATIONS

By BW we denote the circumscriptive theory whose

axioms are the universal closures of the formulas (3),

(4) and (6){(12), and whose policy declarations are:

circ Frame var Inconsistent;Noninertial;

circ Inconsistent var Holds;Result;Possible;

Noninertial;

circ Noninertial var Result:

(13)



Notice that Inconsistent is varied when Frame is

circumscribed, but not the other way around; in

this sense, Frame is minimized at a higher priority

than Inconsistent. This is because we want to

think of the extent of the frame as already �xed

when we decide which states are consistent and

which are not. Furthermore, this circumscription

policy minimizes Noninertial at a lower priority than

the other two circumscribed predicates, because we

think of the structure of the space of situations as

already determined when the e�ects of actions are

described. Since the intention of the law of inertia is

to characterize the result of executing a, the function

Result is varied as Noninertial is circumscribed.

2.5 EFFECT OF THE

CIRCUMSCRIPTIONS

The main theorem, applied to the theory BW, will

show that the set of theorems of BW includes certain

complete characterizations (explicit de�nitions) of all

three circumscribed predicates.

The de�nition of Frame is quite simple:

Frame(f)

� 9xy[f = On(x; y)] _ 9x[f = Ontable(x)]:

This is indeed what we expected to get when we

postulated that all uents of the forms On(x; y) and

Ontable(x) belong to the frame, and circumscribed

Frame. Notice that this equivalence is the result of

circumscribing Frame relative to the conjunction F of

(the universal closures of) the axioms (4), so that it

can be written in the form

CIRC[F ;Frame]: (14)

To describe the e�ect of circumscribing the predicate

Inconsistent, we need the following notation: C

0

(�)

stands for

5

8xy

1

y

2

[�(On(x; y

1

)) ^ �(On(x; y

2

)) � y

1

= y

2

]

^8xy[�(On(x; y)) � :�(Ontable(x))]:

This formula expresses the constraint on the state

� similar to the constraint we have imposed on

situations: A block cannot be in two places at once.

The characterization of Inconsistent given by the

theory BW is:

Inconsistent(�) � IsState(�) ^ :C

0

(�): (15)

Thus the state is consistent unless it requires some

block to be in two places at once.

For determining the minimal extent of Noninertial, we

need the following notation: R

0

(a; f) stands for

9xy(a =Move(x; y) ^ f = On(x; y)):

5

The reason why we chose this particular symbol is

that it is convenient in the general framework of the main

theorem. The same can be said about the symbol R

0

introduced below.

This formula expresses that a \causes" f . By

A�ected(f; a; �) (\the uent f is a�ected by the action

a in the state �") we denote the formula

8�

1

[IsState(�

1

) ^ C

0

(�

1

)

^8f

1

(R

0

(a; f

1

) � �

1

(f

1

))

� :(�

1

(f) � �(f))]:

The antecedent of this conditional expresses that �

1

is

a consistent state that can occur after the execution of

a. Thus we say that f is a�ected by a in the state �

if the value of f in any such state �

1

is di�erent from

its value in �.

Using this notation, we can express the characteriza-

tion of Noninertial given by BW by the formula:

Noninertial(f; a; s) �

Frame(f) ^ Possible(a; s) ^A�ected(f; a; State[s]):

(16)

To illustrate the role of this conclusion, we will show

that it allows us to prove the \frame axiom"

Possible(Move(x

1

; y

1

); s) ^ x

1

6= x

2

� [Holds(On(x

2

; y

2

);Result(Move(x

1

; y

1

); s))

� Holds(On(x

2

; y

2

); s)]:

(17)

De�ne

About(f; x) � f = Ontable(x) _ 9y(f = On(x; y)):

The axioms of BW imply

IsState(�) ^ C

0

(�) ^ x

1

6= x

2

�

:A�ected(On(x

2

; y

2

);Move(x

1

; y

1

); �);

because, whenever IsState(�) ^ C

0

(�) ^ x

1

6= x

2

, we

can get a counterexample to

A�ected(On(x

2

; y

2

);Move(x

1

; y

1

); �)

by taking

�

1

= �f [(�(f) ^ :About(f; x

1

)) _ f = On(x

1

; y

1

)]:

Now, using (6), we conclude:

x

1

6= x

2

� :A�ected(On(x

2

; y

2

);Move(x

1

; y

1

); State[s]):

Then, by (16),

x

1

6= x

2

� :Noninertial(On(x

2

; y

2

);Move(x

1

; y

1

); s));

and the formula (17) follows from the law of inertia

(12).

Another \frame axiom,"

Possible(Move(x

1

; y

1

); s) ^ x

1

6= x

2

� [Holds(Ontable(x

2

);Result(Move(x

1

; y

1

); s))

� Holds(Ontable(x

2

); s)];

can be proved in a similar way.



3 MAIN THEOREM

Now we want to look at the formalization of the blocks

world described above from a more general point of

view.

3.1 SETTING THE STAGE FOR THE

MAIN THEOREM

We assume a many-sorted language L, containing ob-

ject variables for situations (s,s

1

,: : :), for propositional

uents (f ,f

1

,: : :), for actions (a,a

1

,a

2

,: : :), and possi-

bly object variables of other, domain-dependent sorts.

L may contain higher order variables. It is assumed to

contain variables �,�

1

,�

2

,: : : for properties of uents

(that is, unary predicates with a uent argument).

In the blocks world example, there is one domain-

dependent sort|blocks.

L is assumed to contain the following function and

predicate constants:

� the binary predicate Holds, whose arguments are

a uent and a situation,

� the unary predicate Frame, whose argument is a

uent,

� the unary predicate Inconsistent, whose argument

is a property of uents,

� the binary function Result, whose arguments are

an action and a situation, and whose value is a

situation,

� the binary predicate Possible, whose arguments

are an action and a situation,

� the ternary predicate Noninertial, whose argu-

ment are a uent, an action and a situation.

These constants will be called essential. Besides the

essential constants, L is assumed to contain the unary

function constant Sit, whose argument is a property of

uents, and whose value is a situation.

L may also contain other object, function and

predicate constants.

In the blocks world example, there are 3 additional

constants: the function constants On, Ontable and

Move.

Notice that the abbreviations IsState and State,

introduced in Section 2.2, can be used in any language

L satisfying these conditions.

By T we denote a circumscriptive theory in the

language L. The axiom set of T may contain any

sentences without essential constants|we will call

these axioms inessential|and it is assumed to contain

certain essential axioms, described below.

In the blocks world example, the inessential axioms

are the universal closures of (3) and (9).

There are 7 essential axioms:

1. F (\the axiom for Frame"), which is assumed to

contain no essential constants other than Frame.

In the blocks world example, F is the conjunction of

the universal closures of the formulas (4).

2. S (\the axiom for Sit") is the universal closure of

(7), that is,

8�:IsState(�) ^ :Inconsistent(�)

� � = State[Sit(�)]:

3. U (\the uniqueness axiom for Sit") is the universal

closure of (8), that is,

8�

1

�

2

:IsState(�

1

) ^ IsState(�

2

)

^Sit(�

1

) = Sit(�

2

)

� �

1

= �

2

:

4. C (\the domain constraint") is

8s:C

0

(State[s]);

where C

0

(�) is a formula containing no essential

constants and no free variables other than �.

In the blocks world example, C

0

(�) is selected as in

Section 2.5. Let us see what C is for this choice of

C

0

. The �rst conjunctive term of C is (the universal

closure of)

State[s](On(x; y

1

)) ^ State[s](On(x; y

2

)) � y

1

= y

2

;

that is,

Frame(On(x; y

1

))

^Holds(On(x; y

1

); s)

^Frame(On(x; y

2

))

^Holds(On(x; y

2

); s)

� y

1

= y

2

:

In the presence of (4), this is equivalent to the �rst

of the formulas (6). Similarly, the remaining part of

C gives the second of these formulas. Consequently,

including C in the axiom set is equivalent to including

(6).

5. R (\the axiom for Result") is

8afs:Possible(a; s) ^R

0

(a; f)

� Holds(f;Result(a; s));

where R

0

(a; f) is a formula containing no essential

constants and no free variables other than a and f .

In the blocks world example, R

0

(a; f) is de�ned as in

Section 2.5. In this case, R is equivalent to

8afsxy:Possible(a; s)

^a = Move(x; y)

^f = On(x; y)

� Holds(f;Result(a; s));

or

8sxy:Possible(Move(x; y); s)

� Holds(On(x; y);Result(Move(x; y); s));



which is the universal closure of (10).

6. P (\the axiom for Possible") is the formula

8as:P

0

(a; State[s]) � Possible(a; s);

where P

0

(a; �) is a formula containing no essential

constants and no free variables other than a and �.

In the blocks world example, P

0

(a; �) is

9xy:a = Move(x; y)

^:9z[�(On(z; x))]

^:9z[�(On(z; y))]

^x 6= y:

Then P is equivalent to

8asxy:a = Move(x; y)

^:9z[State[s](On(z; x))]

^:9z[State[s](On(z; y))]

^x 6= y

� Possible(a; s);

or

8sxy::9z[State[s](On(z; x))]

^:9z[State[s](On(z; y))]

^x 6= y

� Possible(Move(x; y); s):

In the presence of (4), this can be rewritten as

8sxy::9zHolds(On(z; x); s)

^:9zHolds(On(z; y); s)

^x 6= y

� Possible(Move(x; y); s);

which is the universal closure of (11).

7. I (\the commonsense law of inertia") is the

universal closure of (12), that is,

8fas:Frame(f)

^Possible(a; s)

^:Noninertial(f; a; s)

� [Holds(f;Result(a; s)) � Holds(f; s)]:

Finally, the circumscription policy of T is assumed to

be (13).

3.2 STATEMENT OF THE MAIN

THEOREM

The formulas (14){(16), used in Section 2.5 for

characterizing the extensions of the circumscribed

predicates, make sense not only in the language of

BW, but in any language L of the kind described in

Section 3.1. The main theorem asserts that, under

certain assumptions about C

0

(�) and R

0

(a; f), the

circumscriptions represented by the policy (13) have

exactly the same e�ect as adding the formulas (14){

(16) to the axioms of T .

The following two conditions have to be imposed on

C

0

(�) and R

0

(a; f):

Condition A. The inessential axioms of T and the

axiom F imply

R

0

(a; f) � Frame(f): (18)

Condition B. There exists a formula

Compatible(f

1

; f

2

);

containing no essential constants and no free variables

other than f

1

and f

2

, such that the inessential axioms

of T imply:

1. Compatible(f

1

; f

2

) � Compatible(f

2

; f

1

).

2. C

0

(�) �

8f

1

f

2

[�(f

1

) ^ �(f

2

) � Compatible(f

1

; f

2

)].

3. R

0

(a; f

1

) ^R

0

(a; f

2

) � Compatible(f

1

; f

2

).

Let us check that BW satis�es these conditions. For

this theory, (18) is

9xy(a =Move(x; y) ^ f = On(x; y)) � Frame(f);

which is a consequence of (4). We can take

Compatible(f

1

; f

2

)

� 8x[About(f

1

; x)^About(f

2

; x) � f

1

= f

2

]

(About is de�ned in Section 2.5.) Part 1 of Condition B

is obvious. To prove part 2, notice that its right-hand

side can be written in the form

8f

1

f

2

x[�(f

1

) ^ �(f

2

)

^About(f

1

; x)^About(f

2

; x)

� f

1

= f

2

];

or

8f

1

f

2

x[�(f

1

) ^ �(f

2

)

^f

1

= Ontable(x) ^ f

2

= Ontable(x)

� f

1

= f

2

]

^8f

1

f

2

xy[�(f

1

) ^ �(f

2

)

^f

1

= On(x; y) ^ f

2

= Ontable(x)

� f

1

= f

2

]

^8f

1

f

2

xy[�(f

1

) ^ �(f

2

)

^f

1

= Ontable(x) ^ f

2

= On(x; y)

� f

1

= f

2

]

^8f

1

f

2

xy

1

y

2

[�(f

1

) ^ �(f

2

)

^f

1

= On(x; y

1

) ^ f

2

= On(x; y

2

)

� f

1

= f

2

]:

The �rst conjunctive term is trivial. The second is

equivalent to

8xy[�(On(x; y)) ^ �(Ontable(x))

� On(x; y) = Ontable(x)]:

In the presence of (3), this is equivalent to

8xy[�(On(x; y)) � :�(Ontable(x))];

which is one half of C

0

(�). The third conjunctive

term is equivalent to the second. The fourth term is

equivalent to

8xy

1

y

2

[�(On(x; y

1

)) ^ �(On(x; y

2

))

� On(x; y

1

) = On(x; y

2

)]:



In the presence of (3), this is equivalent to

8xy

1

y

2

[�(On(x; y

1

)) ^ �(On(x; y

2

)) � y

1

= y

2

];

which gives the remaining half of C

0

(�). Finally, part

3 of Condition B is

9xy(a = Move(x; y)

^f

1

= On(x; y))

^9xy(a =Move(x; y) ^ f

2

= On(x; y))

� Compatible(f

1

; f

2

):

In the presence of (9), this is equivalent to the universal

closure of

a = Move(x; y) ^ f

1

= On(x; y) ^ f

2

= On(x; y)

� Compatible(f

1

; f

2

));

which immediately follows from the de�nition of

Compatible.

In the statement of the theorem, T is a circumscriptive

theory of the kind described in Section 3.1.

Theorem. If T satis�es Conditions A and B, then it

is equivalent to the conjunction of its axioms and the

formulas (14){(16).

3.3 DISCUSSION

We arrived at the class of theories described in Sections

3.1 and 3.2 by generalizing a single example|the

theory of the blocks world from Section 2. As a result,

all these theories share a number of \family traits,"

inherited from their ancestor. The blocks world

example has no initial situation or initial conditions;

accordingly, the assumptions of the main theorem

make it impossible to have initial conditions in the

axiom set. (Initial conditions contain the predicate

Holds, so that they cannot be included among the

inessential axioms. On the other hand, they do not

have any of the 7 forms that the essential axioms

are allowed to have.) The immediate e�ect of

Move(x; y) is to make a certain uent true, rather

than false; accordingly, the main theorem assumes

that the changes caused by all actions are \positive."

The blocks world example does not address the

quali�cation problem; accordingly, the circumscriptive

theories covered by the main theorem do not deal with

it either. There are other limitations.

It seems, however, that it will not be di�cult to

prove analogs and extensions of the main theorem that

overcome many of these limitations. We know, for

instance, that the approach used in the blocks world

example can handle initial conditions and temporal

projection; it should be possible then to describe initial

conditions in an abstract form, as one more kind of

\essential axioms," and prove the main theorem for

systems with such axioms. It may be possible to prove

similar theorems for some formalizations of action that

include continuous time and concurrency.

6

Moreover,

there can be many kinds of mathematical results

con�rming the adequacy of formalizations; results

about the extents of the circumscribed predicates, as

in the main theorem, represent only one of them.

Assuming that the initial conditions provide the

values of all frame uents in the initial situation, we

may be able to prove, for instance, that T decides

every instance of the temporal projection problem.

Hopefully, the main theorem can serve as a starting

point for developing the theory of action along the lines

of this metamathematical approach.

3.4 PAINTING BLOCKS

To illustrate the possibilities of the metamathematical

approach, we will apply the main theorem to an

extension of the blocks world example in which blocks

can be not only moved, but also painted. We will

see that, with small amount of additional work, we

can use the main theorem to determine the e�ect of

circumscription in the enhanced theory.

The theory BW is extended as follows. Variables

for colors c; c

1

; : : : are added to the language, along

with the binary predicate Color, whose arguments are

a block and a color, and the binary function Paint,

whose arguments are a block and a color also, and

whose value is an action. The new axioms are:

Color(x

1

; c

1

) = Color(x

2

; c

2

) � x

1

= x

2

^ c

1

= c

2

;

Color(x; c) 6= On(y; z);

Color(x; c) 6= Ontable(y);

(19)

Frame(Color(x; c)); (20)

Holds(Color(x; c

1

); s) ^Holds(Color(x; c

2

); s)

� c

1

= c

2

;

(21)

Paint(x

1

; c

1

) = Paint(x

2

; c

2

) � x

1

= x

2

^ c

1

= c

2

;

Paint(x; c) 6= Move(y; z);

(22)

Possible(Paint(x; c); s)

� Holds(Color(x; c);Result(Paint(x; c); s));

(23)

Possible(Paint(x; c); s): (24)

The extended theory satis�es the conditions of the

main theorem, if the additional axioms are treated in

the following way. Formulas (19) and (22) are included

in the set of inessential axioms. The universal closure

of (20) is appended to F as another conjunctive term.

The axiom (21) is replaced by adding

8xc

1

c

2

[�(Color(x; c

1

)) ^ �(Color(x; c

2

)) � c

1

= c

2

]

to C

0

(�). Instead of including (23), we disjunctively

append

9xc(a = Paint(x; c) ^ f = Color(x; c))

6

We argue in

[

Gelfond et al., 1991

]

that these ideas

can be conveniently expressed in the language of the

situation calculus, so that its attractive syntax should

not be necessarily tied to the primitive ontology of action

accepted in this paper.



to R

0

(a; f). Finally, instead of including (24), we

disjunctively append

9xc(a = Paint(x; c))

to P

0

(a; �).

The characterization of Noninertial given by the main

theorem will allow us to prove, for instance, that

moving blocks does not change their colors, and

painting blocks does not change their locations.

4 PROOF OF THE MAIN

THEOREM

The theorem follows from three lemmas, given in

Section 4.3{4.5. Sections 4.1 and 4.2 contain some

preliminary results.

4.1 A LEMMA ABOUT

CIRCUMSCRIPTION

We will need the following general property of circum-

scription CIRC[A(P;Z);P ;Z], which generalizes The-

orem 6.4 from

[

Genesereth and Nilsson, 1987

]

.

Lemma 1. Let E be a predicate expression without

parameters, containing neither P nor Z. If the

sentences

A(P;Z) � 9zA(E; z) (25)

and

A(P;Z) � E � P (26)

are universally valid, then so is the sentence

CIRC[A(P;Z);P ;Z]� A(P;Z) ^ P = E: (27)

Proof. To prove (27) left to right, assume

CIRC[A(P;Z);P ;Z], that is,

A(P;Z) ^ :9pz[A(p; z)^ p < P ]:

From the �rst conjunctive term we conclude, using

(26), that E � P , and, using (25), that 9zA(E; z).

From the second conjunctive term,

:9z[A(E; z)^E < P ]:

The last two formulas imply :(E < P ). In

combination with E � P , this gives P = E. Right

to left: assume

A(P;Z) ^ P = E: (28)

Since (26) is universally valid, so is

8pz[A(p; z) � E � p] (29)

(constants in a universally valid formula can be

replaced by universally quanti�ed variables). Assume

A(p; z) ^ p < P . Then, by (29), E � p < P , contrary

to the second term of (28). This contradiction proves

the second term of the circumscription in (27).

By essentially the same argument we can prove the

relativized form of Lemma1: For any set � of sentences

containing neither P nor Z, if � implies (25) and (26)

(that is, if these sentences are true in every model of

�), then � implies (27).

4.2 THE FUNCTION �

In the remaining part of Section 4, T is a theory

satisfying Conditions A and B. By A we denote

the conjunction of all axioms of T , and by A

0

the

conjunction of the inessential axioms, so that

A � A

0

^ F ^ S ^ U ^ C ^R ^ P ^ I:

De�ne the function � by:

�[a; �] = �f:[�(f) _R

0

(a; f)]

^8f

1

[R

0

(a; f

1

) � Compatible(f; f

1

)]:

Intuitively, this is the counterpart of the function

Result which works on states instead of situations.

The following two lemmas summarize the properties

of � used in the proof of the theorem.

Lemma 2. A

0

and F imply

IsState(�) � IsState(�[a; �]); (30)

C

0

(�) � C

0

(�[a; �]); (31)

and

R

0

(a; f) � �[a; �](f): (32)

Proof. The fact that A

0

and F imply (30) follows

from Condition A. To prove (31), assume A

0

and

C

0

(�). Then, according to part 2 of Condition B,

8f

1

f

2

[�(f

1

) ^ �(f

2

) � Compatible(f

1

; f

2

)]: (33)

We need to prove C

0

(�[a; �]), that is,

8f

1

f

2

[�[a; �](f

1

) ^ �[a; �](f

2

) � Compatible(f

1

; f

2

)]:

Assume �[a; �](f

1

) and �[a; �](f

2

). Then, by the

de�nition of �,

�(f

1

) _R

0

(a; f

1

); (34)

R

0

(a; f

2

) � Compatible(f

1

; f

2

); (35)

�(f

2

) _R

0

(a; f

2

); (36)

R

0

(a; f

1

) � Compatible(f

2

; f

1

): (37)

Our goal is to derive Compatible(f

1

; f

2

). If �(f

1

)

and �(f

2

), then this conclusion follows by (33). If

not, then, by (34) and (36), R

0

(a; f

1

) or R

0

(a; f

2

).

In the �rst case, use (37) and part 1 of Condition

B.< In the second case, use (35). Formula (31) is

proved. To prove (32), assume R

0

(a; f). According

to the de�nition of �, we need only to check that

R

0

(a; f

1

) � Compatible(f; f

1

); this follows from part

3 of Condition B.

Lemma 3. A

0

, F and C imply

IsState(�[a; State[s]])^ C

0

(�[a; State[s]]): (38)

Proof: (38) follows from (30), (31) and C.



4.3 THE EFFECT OF CIRCUMSCRIBING

Frame

Lemma 4. The circumscription

CIRC[A;Frame; Inconsistent;Noninertial] (39)

is equivalent to the conjunction of A and (14).

Proof. By Proposition 2 from

[

Lifschitz, 1985

]

,

CIRC[A;Frame; Inconsistent;Noninertial]

� A ^CIRC[(9Inconsistent;Noninertial:A);

Frame]

� A ^CIRC[A

0

^ F ^ (9Inconsistent:S)

^U ^ C ^R ^ P ^ (9Noninertial:I);Frame]

� A ^CIRC[A

0

^ F ^ U ^ C ^R ^ P ;Frame]:

The formulas A

0

, R and P do not contain Frame.

Both occurrences of Frame in U (as parts of IsState[�

1

]

and IsState[�

2

]) are negative. According to part 2 of

Condition B, C is equivalent, in the presence of A

0

,

to a formula not containing Frame. Consequently, the

conjunction A

0

^U^C^R^P is equivalent to a formula

negative relative to Frame. By the lemma from Section

4 of

[

Lifschitz, 1987

]

, it follows that

CIRC[A

0

^ F ^ U ^ C ^R ^P ;Frame]

� CIRC[F ;Frame] ^A

0

^ U ^R ^ C ^ P:

Hence

CIRC[A;Frame; Inconsistent;Noninertial]

� A ^ CIRC[F ;Frame]:

4.4 THE EFFECT OF CIRCUMSCRIBING

Inconsistent

Lemma 5. The circumscription

CIRC[A; Inconsistent;Holds;Result;

Possible;Noninertial]

(40)

is equivalent to the conjunction of A and (16).

Proof. Notice �rst that (40) is equivalent to

A ^ CIRC[9Possible;Noninertial:A;

Inconsistent;Holds;Result]

(apply Proposition 2 from

[

Lifschitz, 1985

]

to both

circumscriptions). The formula

9Possible;Noninertial:A

can be simpli�ed as follows:

9Possible;Noninertial:A

� A

0

^ F ^ S ^U ^C ^ (9Possible:R ^ P )

^(9Noninertial:I)

� A

0

^ F ^ S ^U ^C ^ (9Possible:R ^ P )

� A

0

^ F ^ S ^U ^C ^R

�

;

where R

�

stands for

P

0

(a; State[s]) ^R

0

(a; f) � Holds(f;Result(a; s)):

It follows that (40) is equivalent to

A ^ CIRC[A

0

^ F ^ S ^U ^C ^R

�

;

Inconsistent;Holds;Result]:

We will compute this circumscription using Lemma 1,

with the expression

��[IsState(�) ^ :C

0

(�)]

as E. We need to prove

A

0

^ F ^ S(Inconsistent;Holds) ^ U

^C(Holds) ^R

�

(Holds;Result)

� 9holds; result[A

0

^ F ^ S(E; holds)

^U ^C(holds) ^R

�

(holds; result)]

and

A

0

^ F ^ S(Inconsistent;Holds) ^ U

^C(Holds) ^R

�

(Holds;Result)

� E � Inconsistent:

In other words, assuming

A

0

^ F ^ S(Inconsistent;Holds) ^ U

^C(Holds) ^R

�

(Holds;Result);

we need to select holds and result, and prove:

S(E; holds);

C(holds);

R

�

(holds; result);

E � Inconsistent:

The predicate holds is de�ned by cases, depending on

whether or not there is a � satisfying the condition

IsState(�) ^ C

0

(�) ^ s = Sit(�) (41)

holds(f; s) �

�

�(f); if � satis�es (41),

false; if there is no such �.

The correctness of this de�nition follows from the fact

that, by U , there can be at most one � satisfying (41).

The function result is de�ned by

result(a; s) = Sit(�[a; State[s]]):

The formula S(E; holds), that is,

IsState(�) ^ :[IsState[�]^ :C

0

(�)]

� � = �f [Frame(f) ^ holds(f; Sit(�))];

is propositionally equivalent to

IsState(�) ^ C

0

(�)

� � = �f [Frame(f) ^ holds(f; Sit(�))]:

Assume IsState(�) and C

0

(�). Then, using the

de�nition of holds, we compute:

�f [Frame(f) ^ holds(f; Sit(�))]

= �f [Frame(f) ^ �(f)]

= �f:�(f) = �:

The formula C(holds) can be written as

C

0

(�f [Frame(f) ^ holds(f; s)]):



If � is such that IsState(�) ^C

0

(�)^ s = Sit(�), then,

according to the de�nition of holds, holds(f; s) � �(f),

so that C(holds) is equivalent to

C

0

(�f [Frame(f) ^ �(f)]):

Since IsState(�), this is the same as C

0

(�). On the

other hand, if there is no � satisfying the condition

IsState(�)^C

0

(�)^s = Sit(�), then C(holds) becomes

C

0

(�f:false), which follows from part 2 of Condition B.

The formula R

�

(holds; result) can be written as

P

0

(a; �f(Frame(f) ^ holds(f; s)))

^R

0

(a; f) � holds(f; result(a; s)):

We can actually prove the stronger formula

R

0

(a; f) � holds(f; result(a; s));

that is,

R

0

(a; f) � holds(f; Sit(�[a; State[s]])):

Using (38) and the de�nition of holds, this can be

further rewritten as

R

0

(a; f) � �[a; State[s]](f);

which follows from (32).

Finally, E � Inconsistent stands for

IsState(�) ^ :C

0

(�) � Inconsistent(�):

Assume IsState(�) and :Inconsistent(�). It follows

then from S that � = State[s] for some s. Then

C

0

(State[s]) follows from C.

4.5 THE EFFECT OF CIRCUMSCRIBING

Noninertial

Lemma 6. Assuming (15), the circumscription

CIRC[A;Noninertial;Result] (42)

is equivalent to the conjunction of A and (16).

Proof. We will use the relativized form of Lemma 1,

with (15) as � and the expression

�fas[Frame(f) ^ Possible(a; s)

^A�ected(f; a; State[s])]

as E. We need to prove that (15) implies

A(Noninertial;Result) � 9resultA(E; result)

and

A(Noninertial;Result) � E � Noninertial:

Assume A(Noninertial;Result), and de�ne result as in

the proof of Lemma 5. Since the only parts of A that

contain Noninertial or Result are R and I, we need

only to prove:

R(result);

I(E;Result);

E � Noninertial:

The following relationship between result and � will be

used in the proof:

State[result(a; s)] = �[a; State[s]]: (43)

To prove this, notice that (38) and (15) imply

:Inconsistent(�[a; State[s]]). Using (38) and S, we

conclude that the right-hand side of (43) equals

State[Sit(�[a; State[s]])]. By the de�nition of result,

this is the same as the right-hand side of (43).

The formula R(result) is

Possible(a; s) ^R

0

(a; f) � Holds(f; result(a; s)):

We will prove a stronger formula:

R

0

(a; f) � Holds(f; result(a; s)):

Assume R

0

(a; f). Then, by (32), �[a; State[s]](f).

It follows by (43) that State[result(a; s)](f), and

consequently Holds(f; result(a; s)).

The formula I(E; holds) is

Frame(f) ^Possible(a; s) ^ :E(f; a; s)

� [Holds(f; result(a; s) � Holds(f; s)];

which is propositionally equivalent to

Frame(f)

^Possible(a; s)

^:A�ected(f; a; State[s])

� [Holds(f; result(a; s)) � Holds(f; s)]:

Assume that Frame(f) and Possible(a; s), but

:[Holds(f; result(a; s)) � Holds(f; s)]: (44)

Using (43), we can rewrite this in the form

:f�[a; State[s]](f) � State[s](f)g;

which, by the de�nition of �, is the same as

:ff[(State[s](f) _R

0

(a; f)]

^8f

1

[R

0

(a; f

1

) � Compatible(f; f

1

)]g

� State[s](f)g:

(45)

Our goal is to prove

A�ected(f; a; State[s]);

that is,

IsState(�

1

) ^C

0

(�

1

) ^ [�

1

(f) � State[s](f)]

� 9f

1

[R

0

(a; f

1

) ^ :�

1

(f

1

)]:

(46)

Assume IsState(�

1

), C

0

(�

1

) and

�

1

(f) � State[s](f):

Using the last equivalence �

1

(f) � State[s](f), we can

rewrite (45) in the form

:ff[(�

1

(f) _R

0

(a; f)]

^8f

1

[R

0

(a; f

1

) � Compatible(f; f

1

)]g � �

1

(f)g:

(47)



Case 1: R

0

(a; f). Then, by part 3 of Condition B,

8f

1

[R

0

(a; f

1

) � Compatible(f; f

1

)];

so that the left-hand side of the equivalence in (47)

is true, and (47) implies :�

1

(f). We see that the

consequent of (46) is true for f

1

= f . Case 2:

:R

0

(a; f). Then (47) can be rewritten as

:ff(�

1

(f) ^ 8f

1

[R

0

(a; f

1

) � Compatible(f; f

1

)]g

� �

1

(f)g:

This is only possible when �

1

(f) and

:8f

1

[R

0

(a; f

1

) � Compatible(f; f

1

)]:

Take f

1

such that R

0

(a; f

1

) and :Compatible(f; f

1

).

By part 2 of Condition B,

�

1

(f) ^ �

1

(f

1

) � Compatible(f; f

1

):

Consequently, :�

1

(f

1

), which again proves the

consequent of (46).

It remains to show that E � Noninertial, that is,

Frame(f) ^ Possible(a; s) ^A�ected(f; a; State[s])

� Noninertial(f; a; s):

We will assume Frame(f), Possible(a; s) and

:Noninertial(f; a; s);

and prove

:A�ected(f; a; State[s]);

that is,

9�

1

[IsState(�

1

) ^ C

0

(�

1

) ^ (�

1

(f) � State[s](f)

^:9f

1

[R

0

(a; f

1

) ^ :�

1

(f

1

)]]:

By I,

Holds(f;Result(a; s)) � Holds(f; s): (48)

Let us check that �

1

= State[Result(a; s)] has

all required properties. Clearly, IsState(�

1

); C

implies C

0

(�

1

); (48) implies �

1

(f) � State[s](f).

Let f

1

be such that R

0

(a; f

1

). Then, by R,

Holds(f

1

;Result(a; s)), that is, �

1

(f

1

).
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