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Abstract. The class of logic programs covered by the original definition
of a stable model has the property that all stable models of a program
in this class are minimal. In the course of research on answer set pro-
gramming, the concept of a stable model was extended to several new
programming constructs, and for some of these extensions the minimal-
ity property does not hold. We are interested in syntactic conditions on
a logic program that guarantee the minimality of its stable models. This
question is addressed here in the context of the general theory of stable
models of first-order sentences.

1 Introduction

A Prolog program with negation, viewed as a logical formula, usually has several
minimal Herbrand models, and only one of them may reflect the actual behavior
of Prolog. For instance, the propositional rule

p← not q ,

viewed as the formula
¬q → p (1)

written in logic programming notation, has two minimal models, {p} and {q}; the
first of them is the “intended” model. Early research on the semantics of nega-
tion as failure [Bidoit and Froidevaux, 1987, Gelfond, 1987, Apt et al., 1988,
Van Gelder, 1988, Van Gelder et al., 1988] was motivated by the need to dis-
tinguish between the intended model of a logic program and its other minimal
models.

The definition of a stable model proposed in [Gelfond and Lifschitz, 1988]
had a similar motivation. According to Theorem 1 from that paper, every stable
model of a logic program is minimal. The converse, for programs with negation,
is usually not true. One corollary to the fact that all stable models are minimal
is that the collection of stable models of a program is an antichain: one stable
model cannot be a subset of another.

In the course of research on answer set programming, the concept of a stable
model was extended to several new programming constructs, and for some of
these extensions the antichain property does not hold. Take, for instance, choice



rules, which play an important role in the language of lparse.1 The set of stable
models of the program consisting of the single choice rule

{p}

is {∅, {p}}. It is not an antichain. If we identify this choice rule with the formula

p ∨ ¬p, (2)

as proposed in [Ferraris, 2005], then we can say that the singleton {p} is a stable
but nonminimal model of (2).

The situation is similar for some cardinality constraints containing negation
as failure. The one-rule lparse program

p← {not p} 0

has the same stable models as the choice rule above, ∅ and {p}. According
to [Ferraris, 2005], this program can be identified with the formula

¬¬p→ p. (3)

The singleton {p} is a nonminimal stable model of (3).
Under what syntactic conditions on a logic program can we assert that every

stable model of the program is minimal? What is the essential difference, for
instance, between formula (1) on the one hand, and formulas (2) and (3) on the
other? In this note we address this question in the context of the general theory
of stable models proposed in [Ferraris et al., 2010]. The main definition of that
paper, reproduced in the next section, describes the “stable model operator”
SMp, where p is a tuple of predicate constants. This operator turns any first-
order sentence F into a conjunction of F with a second-order sentence. The
stable models of F relative to the given choice of “intensional” predicates p are
defined in [Ferraris et al., 2010] as models of SMp[F ] in the sense of classical
logic. The definition of SMp[F ] is very similar to the definition of the parallel
circumscription of p in F [McCarthy, 1986], which we will denote by CIRCp[F ].
The circumscription formula characterizes the models of F in which the extents
of the predicates p are minimal. Thus the question that we are interested in can
be stated as follows: Under what conditions is CIRCp[F ] entailed by SMp[F ]?

2 Review: Circumscription and Stable Models

This review follows [Ferraris et al., 2010]. We assume that, in the definition
of a formula, the propositional connectives ⊥ (falsity), ∧, ∨, → are chosen as
primitives, and ¬F is treated as an abbreviation for F → ⊥.

Notation: if p and q are predicate constants of the same arity then p ≤ q
stands for the formula ∀x(p(x) → q(x)), where x is a tuple of distinct object
1 See http://www.tcs.hut.fi/Software/smodels/lparse.ps for a description of the

language.



variables. If p and q are tuples p1, . . . , pn and q1, . . . , qn of predicate constants
then p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q) ∧ ¬(q ≤ p). In second-order logic, we apply the
same notation to tuples of predicate variables.

Let p be a list of distinct predicate constants.2 The circumscription operator
with the minimized predicates p, denoted by CIRCp, is defined as follows: for
any first-order sentence F , CIRCp[F ] is the second-order sentence

F ∧ ¬∃u((u < p) ∧ F (u)),

where u is a list of distinct predicate variables of the same length as p, and
F (u) is the formula obtained from F by substituting the variables u for the
constants p. Models of CIRCp[F ] will be called p-minimal models of F .

Let p be a list of distinct predicate constants p1, . . . , pn. The stable model
operator with the intensional predicates p, denoted by SMp, is defined as follows:
for any first-order sentence F , SMp[F ] is the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un, and F ∗(u) is defined
recursively:

– pi(t)∗ = ui(t) for any tuple t of terms;
– F ∗ = F for any atomic formula F that does not contain members of p;3

– (F ∧G)∗ = F ∗ ∧G∗;
– (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF )∗ = ∀xF ∗;
– (∃xF )∗ = ∃xF ∗.

Models of SMp[F ] will be called p-stable models of F .
It is clear that if F does not contain implication then F ∗(u) is identical to

F (u), SMp[F ] is identical to CIRCp[F ], and the class of p-stable models of F is
identical to the class of p-minimal models of F .

Example 1. If F is (1) then CIRCpq[F ] is

(¬q → p) ∧ ¬∃uv(((u, v) < (p, q)) ∧ (¬v → u))

(u, v are propositional variables). This formula is equivalent to

(p ∧ ¬q) ∨ (¬p ∧ q),
2 In this note, equality is not considered a predicate constant, so that it is not allowed

to be a member of p.
3 This includes the case when F is ⊥.



so that the pq-minimal models of (1) are {p} and {q}. To apply the operator
SMpq to formula (1) we need to remember that this formula is shorthand for

(q → ⊥)→ p.

So F ∗(u, v) is

(((v → ⊥) ∧ (q → ⊥))→ u) ∧ ((q → ⊥)→ p),

which can be abbreviated as

((¬v ∧ ¬q)→ u) ∧ (¬q → p).

Then SMpq[F ] is

(¬q → p) ∧ ¬∃uv(((u, v) < (p, q)) ∧ ((¬v ∧ ¬q)→ u) ∧ (¬q → p)).

This formula is equivalent to p ∧ ¬q, so that the only pq-stable model of (1)
is {p}.

Example 2. Let F be the formula

∀xy(p(x, y)→ q(x, y)) ∧ ∀xyz(q(x, y) ∧ q(y, z)→ q(x, z)).

Then CIRCq[F ] is the conjunction of F with the formula

¬∃u((u < q) ∧ ∀xy(p(x, y)→ u(x, y)) ∧ ∀xyz(u(x, y) ∧ u(y, z)→ u(x, z)))

(u is a binary predicate variable). This conjunction expresses that q is the transi-
tive closure of p. Furthermore, SMq[F ] is the conjunction of F with the formula

¬∃u((u < q) ∧ ∀xy(p(x, y)→ u(x, y))
∧ ∀xy(p(x, y)→ q(x, y))
∧ ∀xyz(u(x, y) ∧ u(y, z)→ u(x, z))
∧ ∀xyz(q(x, y) ∧ q(y, z)→ q(x, z))).

This conjunction is equivalent to CIRCq[F ], and consequently it expresses the
same relationship: q is the transitive closure of p.4

3 Critical Subformulas

Recall that an occurrence of a symbol in a formula is called strictly positive if
it does not belong to the antecedent of any implication.5

About an occurrence of a formula G in a first-order formula F we say that
it is critical if it is the antecedent of an implication G → H in F , and this
implication
4 Formula F in this example is a canonical theory in the sense of [Kim et al., 2009,

Section 4]. The fact that the stable models of this formula are identical to its minimal
models is a special case of Proposition 2 from that paper.

5 We do not add “and is not in a scope of a negation” because ¬F is treated here as
an abbreviation.



(i) is in the scope of a strictly positive ∨, or
(ii) is in the scope of a strictly positive ∃, or
(iii) belongs to the antecedents of at least two other implications.

Theorem 1. For any first-order sentence F and any list p of predicate con-
stants, if members of p do not occur in critical subformulas of F then every
p-stable model of F is p-minimal.

In other words, under the condition on critical subformulas above, SMp[F ]
entails CIRCp[F ].

For example, formula (1) has no critical subformulas, so that the condition
in the statement of the theorem holds in this case trivially. The same can be
said about the formula from Example 2.6 The second occurrence of p in (2) is
critical (recall that ¬p is shorthand for p → ⊥), as well as the first occurrence
of p in (3). Consequently neither (2) nor (3) is covered by our theorem, which
could be expected: each of these formulas has a nonminimal stable model.

Logic programs in the sense of [Gelfond and Lifschitz, 1988] are, from the
perspective of [Ferraris et al., 2010], conjunctions of the universal closures of
formulas of the form

L1 ∧ · · · ∧ Lm → A,

where L1, . . . , Lm (m ≥ 0) are literals, and A is an atom. These formulas do not
have critical subformulas. (Thus our Theorem 1 can be viewed as a generalization
of Theorem 1 from [Gelfond and Lifschitz, 1988].) The same can be said about
“disjunctive logic programs”—conjunctions of the universal closures of formulas
of the form

L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨An, (4)

where L1, . . . , Lm are literals, and A1, . . . , An are atoms (m,n ≥ 0).
Proposition 1 below gives an example of a formula without critical subformu-

las that is “very different” from disjunctive logic programs. Recall that first-order
formulas F and G are strongly equivalent to each other if, for any formula H, any
occurrence of F in H, and any list p of distinct predicate constants, SMp[H] is
equivalent to SMp[H ′], where H ′ is obtained from H by replacing the occurrence
of F by G [Ferraris et al., 2010, Section 5.2].

Proposition 1. No conjunction of propositional formulas of the form (4) is
strongly equivalent to (p→ q)→ q.

If we drop any of conditions (i)–(iii) from the definition of a critical sub-
formula then the assertion of the theorem will become incorrect. The need to
include condition (i) is illustrated by formula (2). Formula (3) shows that (iii)
is required. The need for (ii) follows from the following proposition:

6 More generally, the examination of the definition of a canonical theory from [Kim
et al., 2009] shows that our condition on critical subformulas holds for all canonical
theories.



Proposition 2. Formula

p(a) ∧ (q(a)→ p(b)) ∧ ∃x(p(x)→ q(x)) (5)

has a pq-stable model that is not pq-minimal.

4 Proofs

In Lemmas 1–4, F is a first-order formula, p is a tuple of distinct predicate
constants, and u is a tuple of distinct predicate variables of the same length
as p.

Lemma 1. If F does not contain members of p then F ∗(u) is equivalent to F .

Proof. Immediate by structural induction.

Lemma 2. If all occurrences of members of p in F are strictly positive then the
formula

(u ≤ p) ∧ F (u)→ F ∗(u)

is logically valid.

Proof. By structural induction. The only nontrivial case is when F has the form
G→ H; G does not contain members of p, and all occurrences of members of p
in H are strictly positive. By the induction hypothesis, the formula

(u ≤ p) ∧H(u)→ H∗(u) (6)

is logically valid. Assume (u ≤ p) ∧ F (u), that is,

(u ≤ p) ∧ (G→ H(u)). (7)

We need to derive F ∗(u), that is,

(G∗(u)→ H∗(u)) ∧ (G→ H).

In view of Lemma 1, this formula is equivalent to

G→ (H∗(u) ∧H).

Assume G. Then, by (7),
(u ≤ p) ∧H(u),

and, by (6), H∗(u). The formula

(u ≤ p) ∧H∗(u)→ H (8)

is logically valid [Ferraris et al., 2010, Lemma 5]. Consequently H follows as well.



Lemma 3. If no occurrence of any member of p in F belongs to the antecedent
of more than one implication then the formula

(u ≤ p) ∧ F ∗(u)→ F (u)

is logically valid.

Proof. By structural induction. The only nontrivial case is when F has the form
G → H; all occurrences of members of p in G are strictly positive, and no
occurrence of any member of p in H belongs to the antecedent of more than one
implication. By Lemma 2, the formula

(u ≤ p) ∧G(u)→ G∗(u) (9)

is logically valid. By the induction hypothesis, the formula

(u ≤ p) ∧H∗(u)→ H(u) (10)

is logically valid. Assume (u ≤ p) ∧ F ∗(u), that is,

(u ≤ p) ∧ (G∗(u)→ H∗(u)) ∧ (G→ H). (11)

Our goal is to prove G(u)→ H(u). From G(u), the first conjunctive term of (11),
and (9), G∗(u). Then, by the second conjunctive term of (11), H∗(u). Then H(u)
follows by (10).

Lemma 4. If members of p do not occur in critical subformulas of F then the
formula

u ≤ p ∧ F ∧ F (u)→ F ∗(u)

is logically valid.

Proof. By induction on F . There are three nontrivial cases: when F is G ∨H,
G → H, or ∃xG(x). If F is G ∨ H or ∃xG(x) then the antecedents of all im-
plications occurring in F are critical and consequently do not contain members
of p. Thus all occurrences of members of p in F are strictly positive, and the
assertion to be proved follows from Lemma 2. Let F be G → H. In formula G,
no occurrence of any member of p belongs to the antecedent of more than one
implication, because otherwise the antecedent of the innermost implication con-
taining that occurrence would be critical in F . By Lemma 3, it follows that the
formula

(u ≤ p) ∧G∗(u)→ G(u) (12)

is logically valid. By the induction hypothesis, the formula

u ≤ p ∧H ∧H(u)→ H∗(u) (13)

is logically valid. Assume
u ≤ p ∧ F ∧ F (u); (14)



our goal is to derive F ∗(u), that is,

(G∗(u)→ H∗(u)) ∧ F.

The second conjunctive term is immediate from (14). To prove the first conjunc-
tive term, assume G∗(u). Then, by the first conjunctive term of (14) and (12),
G(u). Consequently, by the third conjunctive term of (14), H(u). On the other
hand, the formula

(u ≤ p) ∧G∗(u)→ G

is logically valid [Ferraris et al., 2010, Lemma 5]; hence G, and, by the second
conjunctive term of (14), H. Then, by (13), H∗(u).

Proof of Theorem 1. Take a sentence F such that members of p do not occur
in critical subformulas of F . We need to show that SMp[F ] entails CIRCp[F ].
Assume that

F ∧ ¬∃u((u < p) ∧ F ∗(u)) (15)

but
(u < p) ∧ F (u).

Then, by Lemma 4, F ∗(u), which contradicts (15).

The proof of Proposition 1 below refers to reducts in the sense of [Ferraris,
2005]. It uses two facts about them. One is a characterization of strong equiva-
lence in terms of reducts:

Lemma 5. Propositional formulas F and G are strongly equivalent to each other
iff, for every set X of atoms, the reducts FX and GX are equivalent to each other
in the sense of classical logic.

This is part of the statement of Proposition 2 from [Ferraris, 2005].7

The second fact is a property of disjunctive logic programs:

Lemma 6. If Π is a conjunction of propositional formulas of form (4) then, for
any sets X, Y and Z of atoms such that X ⊆ Y ⊆ Z, if Z |= Π and X |= ΠY

then X |= ΠZ .

This observation is made in [Eiter et al., 2005] (and expressed there using
somewhat different terminology, in terms of SE-models instead of reducts).

Proof of Proposition 1. Let F stand for (p → q) → q, and assume that Π is
a conjunction of propositional formulas of form (4) that is strongly equivalent
to F . It is easy to check that {p, q} |= F and that

∅ |= F {p}, ∅ 6|= F {p,q}.

7 The definition of strong equivalence in [Ferraris, 2005] is somewhat different from the
definition given above, which is taken from [Ferraris et al., 2010]. But in application
to propositional formulas the two definitions are equivalent to each other, because, as
discussed in these papers, each definition is equivalent in this case to the provability
of F ↔ G in the logic of here-and-there.



It follows that {p, q} |= Π (because strongly equivalent formulas are classically
equivalent) and, by Lemma 5, that

∅ |= Π{p}, ∅ 6|= Π{p,q}.

But this is impossible by Lemma 6: take X = ∅, Y = {p}, and Z = {p, q}.

Proof of Proposition 2 (Hint). The Herbrand interpretation {p(a), p(b), q(a)} is
a pq-stable model of (5) that is not pq-minimal.

5 Conclusion

In this note, we gave a syntactic condition that ensures the minimality of all
stable models of a first-order sentence. The condition is expressed in terms of
critical subformulas. It shows that in the propositional case all possible excep-
tions to the general principle that stable models are minimal are similar to the
examples given in the introduction: they contain an implication in the scope of
a disjunction, as (2), or three implications nested within each other, as (3). In
the presence of variables, the restriction on disjunctions has to be extended to
existential quantifiers.

For the modification of the stable model semantics proposed in [Truszczyński,
2009], a syntactic condition that guarantees minimality is given in Section 3.3
of that paper.
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