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Abstract. Research on the input language of the ASP grounder gringo
uses a translation that converts rules in that language into first-order
formulas. That translation often transforms short rules into formulas
that are syntactically complex. In this note we identify a class of rules
that can be transformed into formulas in a simpler, more natural way.
The new translation contributes to our understanding of the relationship
between the language of gringo and first-order languages.

1 Introduction

The semantics of some rules in the input language of the ASP grounder gringo
[1, 2] can be characterized in terms of a translation into the language of first-
order logic [3, Section 6]. The transformation τ∗, defined in that paper, produces
formulas with two sorts—with “program variables” for arbitrary precomputed
terms and “integer variables” for numerals. This transformation can be used, for
instance, to characterize strong equivalence between gringo programs in terms
of a similar condition on first-order formulas [3, Proposition 4]. It is used also in
the design of the proof assistant anthem [5].

The formulas produced by τ∗ may be quite complicated, even in application
to short rules, which makes it difficult to use them for reasoning about programs.
For example, the result of applying τ∗ to the rule

q(X + 1)← p(X) (1)

is

∀X(∃Z(Z = X∧p(Z))→ ∀Z1(∃IJ(Z1 = I+J∧I = X∧J = 1)→ q(Z1))). (2)

(In formulas, we use X, Y , Z as program variables, and I, J , K, L, M , N as
integer variables; 1 is the numeral representing the number 1.)

Fortunately, complicated formulas produced by τ∗ are often equivalent to
much simpler formulas. In this note, equivalence of formulas is understood as
equivalence in intuitionistic logic (see Section 3 for details). The use of intuition-
istically acceptable simplifications in this context is essential because such sim-
plifications do not affect the class of stable models [4]. For example, formula (2)
is equivalent to

∀X(p(X)→ ∀Z1IJ(Z1 = I + J ∧ I = X ∧ J = 1→ q(Z1))).



It can be further rewritten as

∀X(p(X)→ ∀IJ(I = X ∧ J = 1→ q(I + J)))

and then as
∀I(p(I)→ q(I + 1)). (3)

Formula (3) is not only short but also natural as a representation of rule (1),
in the sense that its syntactic form is similar to the syntactic form of the rule.
If our intention is to study properties of a program containing rule (1) using a
representation of this rule in a first-order language, then representing it by a
simple formula, such as (3), instead of (2) will make our work easier. This is
particularly important if we plan to reason “manually,” without the assistance
of automated reasoning tools.

The goal of this paper is to identify a subset of the domain of τ∗ for which
transforming a rule into a formula can be performed “in a natural way.” The
new translation ν produces, whenever it is defined, a sentence equivalent to the
result of applying τ∗. For example, in application to rule (1) the translation ν
gives formula (3).

In the next section we describe a class of rules that can be transformed into
formulas in a natural way. After a review of the syntax of formulas in Section 3,
the translation ν is defined in Sections 4 and 5, and its equivalence to τ∗ is
proved in Sections 6 and 7. The note is concluded by a discussion of the analogy
between regular rules and first-order formulas.

2 Regular Rules

The translation ν is defined on the class of rules that we call “regular.”
Recall that in the definition of the syntax of rules, program terms, or p-terms

for short, are defined as expressions formed from numerals, symbolic constants,
program variables, and the symbols inf and sup using the binary function sym-
bols

+ − × / \ ..

[3, Section 2]. (We call them p-terms to distinguish them from “f-terms” that
are allowed in formulas; see Section 3 below.) About a p-term we say that it is
a regular term of the first kind if

– it contains no function symbols other than +, −, ×, and
– symbolic constants and the symbols inf, sup do not occur in it in the scope

of function symbols.

A regular term of the second kind is a p-term of the form t1 .. t2, where t1 and t2
are regular terms of the first kind that contain neither symbolic constants nor
the symbols inf, sup.

Rules are defined as expressions of the form

H ← B1 ∧ · · · ∧Bn (4)

(n ≥ 0), where



– the head H is either an atom (then (4) is a basic rule), or an atom in braces
(then (4) is a choice rule), or empty (then (4) is a constraint), and

– each member Bi of the body is a literal or a comparison

[3, Section 2]; see that paper for a complete definition of the syntax of rules. We
say that a rule (4) is regular if it satisfies the following conditions:

1. Every p-term occurring in it is regular (of the first or second kind).
2. If Bi is a literal then it does not contain terms of the second kind.
3. If Bi is a comparison that contains a term of the second kind then Bi has the

form t1 = t2 .. t3, where t1 is a term of the first kind different from symbolic
constants and from the symbols inf, sup.

Condition 1 eliminates, for instance, rules containing any of the terms

X/Y, 5× (X .. Y ), london + 5, london .. 5.

Condition 2 eliminates, for instance, rules containing the atom p(1 .. 5) in the
body. Condition 3 eliminates, for instance, rules containing any of the compar-
isons

X < 1 .. 5, X .. Y = 1 .. 5, london = 1 .. X.

Some of these “irregular” constructs exemplify differences between the lan-
guage of gringo and conventional mathematical notation. In a mathematical
formula, for instance, the arguments of + are expected to represent objects for
which addition has been defined. But including london+5 in a gringo program
is not considered an error (although the output of gringo will include the infor-
mational message info: operation undefined). The expression X .. Y = 1 .. 5
in the body of a gringo rule expresses that the interval {X, . . . , Y } contains
at least one number between 1 and 5; a mathematician would not use the equal
sign to say that two sets have a common element.

The comparison X = 1 .. 5, which is allowed in the body a regular rule,
expresses that the value of X is one of the numbers 1, . . . , 5, and this use of
the equal sign does not look natural either. We will return to this example in
Section 8.

3 F-terms and Formulas

The language of f-terms and formulas is a two-sorted first-order language, with
program variables (the same that occur in rules, see Section 2) and integer
variables [5, Section 3]. The second sort is a subsort of the first. The signature
of the language consists of

– numerals, symbolic constants and the symbols inf, sup as object constants;
an object constant is assigned the sort integer iff it is a numeral;

– the symbols +, − and × as binary function constants; their arguments and
values have the sort integer ;



– pairs p/n, where p is a symbolic constant and n is a nonnegative integer, as
n-ary predicate constants, and the comparison symbols (the same that occur
in comparisons) as predicate binary predicate constants.

An atomic formula (p/n)(t1, . . . , tn) can be abbreviated as p(t1, . . . , tn). An
atomic formula ≺ (t1, t2), where ≺ is a comparison symbol, can be written
as t1 ≺ t2. Formulas are formed from atomic formulas using the propositional
connectives

⊥ (“false”), ∧, ∨, →
and the quantifiers ∀, ∃ as usual in first-order languages.

We use > as shorthand for ⊥ → ⊥, ¬F as shorthand for F → ⊥, and F ↔ G
as shorthand for (F → G) ∧ (G→ F ).

By Int we denote the formal system of intuitionistic logic with equality for the
language described above. The natural deduction version of Int can be obtained
from the standard natural deduction formulation of classical first-order logic [6,
Sections 1.2.1, 1.2.2] by removing the law of the excluded middle from the list of
axioms. The ∀-elimination rule of Int sanctions eliminating a universal quantifier
that binds a program variable by substituting an f-term of either sort. When a
quantifier binding an integer variable is eliminated, the f-term substituted for it is
required to be of the sort integer. The ∃-introduction rule is similar. For instance,
the formula ∃X(I = X) can be proved in Int by applying ∃-introduction to
I = I, but the formula ∃I(I = X) is not provable. (This formula expresses that
the value of X is a numeral.)

We say that formulas F and G are equivalent to each other if the formula
F ↔ G is provable in Int .

4 Natural Translation, Part 1

According to Condition 3 in the definition of a regular rule (Section 2), the left-
hand side of a comparison in such a rule is a regular term of the first kind. If the
right-hand side is of the first kind as well then we say that the comparison is of
the first kind ; otherwise it has the form t1 = t2 .. t3, and we call it a comparison
of the second kind.

Applying the translation ν to a regular rule (4) involves substituting integer
variables for the variables that occur in that rule at least once in the scope of a
function symbol or in a comparison of the second kind. Make the list X1, . . . , Xm

of all such variables, and choose m distinct integer variables I1, . . . , Im. For
any tuple t of regular terms of the first kind that occur in (4), the result of
substituting I1, . . . , Im for X1, . . . , Xm in t is a tuple of f-terms. The operator
that performs this substitution will be denoted by p2f (“p-terms to f-terms”).
For instance, in the case of rule (1), p2f(X + 1) is I + 1.

Prior to defining the translation ν we will define the auxiliary transforma-
tion ν′, which will be used to translate the head H and the members B1, . . . , Bn

of the body of the rule. The definition of ν′ is particularly simple if we restrict
attention to the case when the head of the rule does not contain terms of the
second kind:



– If t is a tuple of regular terms of the first kind then
• ν′(p(t)) is p(p2f(t)),
• ν′(not p(t)) is ¬p(p2f(t)),
• ν′(not not p(t)) is ¬¬p(p2f(t)),
• ν′({p(t)}) is p(p2f(t)) ∨ ¬p(p2f(t)).

– The result of applying ν′ to the empty string is ⊥.
– If t1 ≺ t2 is a comparison of the first kind then ν′(t1 ≺ t2) is p2f(t1) ≺ p2f(t2).
– ν′(t1 = t2 .. t3) is p2f(t2) ≤ p2f(t1) ≤ p2f(t3).

(We use t1 ≤ t2 ≤ t3 as shorthand for t1 ≤ t2 ∧ t2 ≤ t3.) This definition is
extended to the general case in the next section.

The result of applying the translation ν to rule (4) is defined as the sentence

∀̂(ν′(B1) ∧ · · · ∧ ν′(Bn)→ ν′(H)). (5)

(We write ∀̂F for the universal closure of a formula F .)
One example of applying ν is given in the introduction: ν turns rule (1) into

formula (3). If (4) is the rule

← p(X,Y, Z) ∧X < Y ∧ Y = 1 .. Z

then the substitution p2f replaces Y , Z by I1, I2; the result of applying ν is

∀XI1I2¬(p(X, I1, I2) ∧X < I1 ∧ 1 ≤ I1 ≤ I2).

5 Natural Translation, Part 2

Now we turn to the general case, when the head of rule (4) can contain terms
of the second kind. As in the previous section, we start by making the list
X1, . . . , Xm of variables that occur in the rule at least once in the scope of
a function symbol or in a comparison of the second kind, and choose distinct
integer variables I1, . . . , Im. The result of applying ν′ to an atom of the form

p(t1 .. t
′
1, t2 .. t

′
2, . . .)

is the formula

∀N1N2 · · · (p2f(t1) ≤ N1 ≤ p2f(t′1) ∧ p2f(t2) ≤ N2 ≤ p2f(t′2) ∧ · · · →
p(N1, N2, . . .)),

where N1, N2, . . . are distinct integer variables different from I1, . . . , Im. For
example, the translation ν turns the rule

q(1 .. X, 1 .. Y )← p(X,Y, Z)

into the formula

∀I1I2Z(p(I1, I2, Z)→ ∀N1N2(1 ≤ N1 ≤ I1 ∧ 1 ≤ N2 ≤ I2 → q(N1, N2))).



To make ν′ applicable to arbitrary atoms allowed in the head of a regular rule
we should take into account the fact that such an atom can include arguments
of both kinds, in any order. If t is the tuple

t1, t1 .. t
′
1, t2, . . . , tk−1, tk−1 .. t

′
k−1, tk,

where k > 1 and t1, . . . , tk are tuples of regular terms of the first kind, then we
define:

– ν′(p(t)) is

∀N1 · · ·Nk−1(
∧k−1

i=1 (p2f(ti) ≤ Ni ≤ p2f(t′i)) →
p(p2f(t1), N1,p2f(t2), . . . ,p2f(tk−1), Nk−1,p2f(tk))),

(6)

– ν′({p(t)}) is

∀N1 · · ·Nk−1(
∧k−1

i=1 (p2f(ti) ≤ Ni ≤ p2f(t′i)) →
p(p2f(t1), N1,p2f(t2), . . . ,p2f(tk−1), Nk−1,p2f(tk)))∨
¬p(p2f(t1), N1,p2f(t2), . . . ,p2f(tk−1), Nk−1,p2f(tk))).

(7)

For example, if (4) is the rule

{q(1 .. X, Y )} ← p(X,Y )

then the result of applying ν is

∀IY (p(I, Y )→ ∀N(1 ≤ N ≤ I → q(N,Y ) ∨ ¬q(N,Y ))).

It is clear that every variable occurring in sentence (5) corresponding to
rule (4) is either a program variable from (4) different from X1, . . . , Xm, or
one of the integer variables I1, . . . , Im, or one of the integer variables Ni in the
consequent ν′(H) of (5).

Theorem For any regular rule R, the formula ν(R) is equivalent to τ∗(R).

6 Review: Definition of τ ∗

We reproduce here the definition of τ∗ [3, Section 6] referenced in the proof of the
theorem in the next section. The definition makes use of the formulas val t(Z),
where t is a term and Z is a variable that does not occur in t. The definition of
val t(Z) is recursive and includes the following clauses:

– if t is a numeral, a symbolic constant, a program variable, inf, or sup then
val t(Z) is Z = t;

– if t is t1 + t2 then val t(Z) is

∃IJ(Z = I + J ∧ val t1(I) ∧ val t2(J)),

and similarly for t1 − t2 and t1 × t2;



– if t is t1 .. t2 then val t(Z) is

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ≤ J ∧ Z = K).

(The other clauses are not required for calculating val t(Z) when t is regular.) A
conjunction of the form

val t1(Z1) ∧ · · · ∧ val tk(Zk)

can be written as
val t1,...,tk(Z1, . . . , Zk).

The auxiliary translation τB is defined as follows:

– τB(p(t)) is ∃Z(val t(Z) ∧ p(Z)), where Z is a tuple of distinct program vari-
ables that do not occur in t;

– τB(not p(t)) is ∃Z(val t(Z) ∧ ¬p(Z));
– τB(not not p(t)) is ∃Z(val t(Z) ∧ ¬¬p(Z));
– τB(t1 ≺ t2) is ∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2).

Then the result of applying τ∗ to rule (4) is defined as the formula

∀̂(τB(B1) ∧ · · · ∧ τB(Bn)→ H∗), (8)

where H∗ stands for

∀Z(val t(Z)→ p(Z)), if H is p(t);
∀Z(val t(Z)→ p(Z) ∨ ¬p(Z)), if H is {p(t});

⊥, if H is empty.

7 Proof of the Theorem

Consider a regular rule (4), and let C be the conjunction

I1 = X1 ∧ · · · ∧ Im = Xm,

where X1, . . . , Xm, I1, . . . , Im are as in the definition of p2f (Section 5). A con-
junction of the form t1 = t′1 ∧ · · · ∧ tm = t′m can be also written as (t1, . . . , tm) =
(t′1, . . . , t

′
m).

Lemma 1. For any tuple t of regular terms of the first kind that occur in
rule (4), the formulas

(i) C → ∀Z(valt(Z)↔ Z = p2f(t)),
(ii) C → (ν′(p(t))↔ ∀Z(valt(Z)→ p(Z))),

(iii) C → (ν′(p(t))↔ τB(p(t))),
(iv) C → (ν′(not p(t))↔ τB(not p(t))),
(v) C → (ν′(not not p(t))↔ τB(not not p(t)))

are provable in Int.



Proof (i) It is sufficient to consider the case when t is a single term t, so that
the formula to be proved is

C → ∀Z(val t(Z)↔ Z = p2f(t)). (9)

The proof is by induction on t. Case 1: t is one of the variables Xk (1 ≤ k ≤ m).
Then the consequent of (9) is ∀Z(Z = Xk ↔ Z = Ik), and the antecedent C
contains the conjunctive term Xk = Ik. Case 2: t is a variable different from
X1, . . . , Xm, or a numeral, or a symbolic constant, or one of the symbols inf,
sup. Then the consequent is ∀Z(Z = t ↔ Z = t). Case 3: t contains a function
symbol. Assume, for instance, that t is t1+t2. Then p2f(t) is p2f(t1)+p2f(t2); this
term and its subterms p2f(t1), p2f(t2) are of the sort integer. By the induction
hypothesis, under the assumption C,

val t1+t2(Z) = ∃IJ(Z = I + J ∧ val t1(I) ∧ val t2(J))
↔ ∃IJ(Z = I + J ∧ I = p2f(t1) ∧ J = p2f(t2))
↔ ∃IJ(Z = p2f(t1) + p2f(t2) ∧ I = p2f(t1) ∧ J = p2f(t2))
↔ Z = p2f(t) ∧ ∃I(I = p2f(t1)) ∧ ∃J(J = p2f(t2)).

Since p2f(t1) and p2f(t2) are of the sort integer, the last two conjunctive terms
are provable in Int and can be dropped.

(ii) By (i), under the assumption C,

∀Z(val t(Z)→ p(Z))↔ ∀Z(Z = p2f(t)→ p(Z))↔ p(p2f(t)) = ν′(p(t)).

(iii) By (i), under the assumption C,

τB(p(t)) = ∃Z(val t(Z)∧p(Z))↔ ∃Z(Z = p2f(t)∧p(Z))↔ p(p2f(t)) = ν′(p(t)).

(iv), (v): Similar to (iii).

Lemma 2. For any regular terms t1, t2, of the first kind that occur in rule (4),
the formula

C → (ν′(t1 ≺ t2)↔ τB(t1 ≺ t2))

is provable in Int.

Proof By Lemma 1(i), under the assumption C,

τB(t1 ≺ t2) = ∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2)
↔ ∃Z1Z2(Z1 = p2f(t1) ∧ Z2 = p2f(t2) ∧ Z1 ≺ Z2)
↔ p2f(t1) ≺ p2f(t2)
= ν′(t1 ≺ t2).

Lemma 3. For any regular term t1 .. t2 that occurs in rule (4), the formula

C → (valt1 .. t2(Z)↔ ∃K(p2f(t1) ≤ K ≤ p2f(t2) ∧ Z = K))

is provable in Int.



Proof Since t1 .. t2 is regular, t1 and t2 contain neither symbolic constants
nor the symbols inf, sup. Since t1 .. t2 occurs in rule (4), all variables occurring
in t1, t2 belong to the list X1, . . . , Xm. It follows that the f-terms p2f(t1) and
p2f(t2) are of the sort integer. By Lemma 1(i), under the assumption C,

val t1 .. t2(Z) = ∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ≤ J ∧ Z = K)
↔ ∃IJK(I = p2f(t1) ∧ J = p2f(t2) ∧ I ≤ K ≤ J ∧ Z = K)
↔ ∃IJK(I = p2f(t1) ∧ J = p2f(t2)∧

p2f(t1) ≤ K ≤ p2f(t2) ∧ Z = K)
↔ ∃I(I = p2f(t1)) ∧ ∃J(J = p2f(t2))∧

∃K(p2f(t1) ≤ K ≤ p2f(t2) ∧ Z = K).

Since p2f(t1) and p2f(t2) are of the sort integer, the first two conjunctive terms
are provable in Int and can be dropped.

Lemma 4. If a comparison t1 = t2 .. t3 occurs in rule (4) then the formula

C → (ν′(t1 = t2 .. t3)↔ τB(t1 = t2 .. t3))

is provable in Int.

Proof By Lemma 1(i) and Lemma 3, under the assumption C,

τB(t1 = t2 .. t3) = ∃Z1Z2(val t1,t2 .. t3(Z1, Z2) ∧ Z1 = Z2)
↔ ∃Z1Z2(Z1 = p2f(t1) ∧ val t2 .. t3(Z2) ∧ Z1 = Z2)
↔ val t2 .. t3(p2f(t1))
↔ ∃K(p2f(t2) ≤ K ≤ p2f(t3) ∧ p2f(t1) = K)
↔ p2f(t2) ≤ p2f(t1) ≤ p2f(t3)
= ν′(t1 = t2 .. t3).

Lemma 5. For any tuple t of regular terms that occur in rule (4), the formulas

(i) C → (ν′(p(t))↔ ∀Z(valt(Z)→ p(Z))),
(ii) C → (ν′({p(t)})↔ ∀Z(valt(Z)→ p(Z) ∨ ¬p(Z))

are provable in Int.

Proof (i) If all members of the tuple t are of the first kind then the assertion
holds by Lemma 1(ii). Otherwise, t can be represented in the form

t1, t1 .. t
′
1, t2, . . . , tk−1, tk−1 .. t

′
k−1, tk,

where k > 1 and t1, . . . , tk are tuples of terms of the first kind. Assume C; we
need to derive the equivalence between ν′(p(t)) and

∀Z(valt(Z)→ p(Z)).

The last formula can be written as

∀Z1Z1Z2 · · ·Zk−1Zk−1Zk(val t1(Z1) ∧ val t1 .. t′1
(Z1)∧

val t2(Z2) ∧ · · · ∧ val tk−1
(Zk−1)∧

val tk−1 .. t′
k−1

(Zk−1) ∧ val tk(Zk)

→ p(Z1, Z1,Z2, . . . ,Zk−1, Zk−1,Zk)).



By Lemma 1(i), under the assumption C it is equivalent to

∀Z1Z1Z2 · · ·Zk−1Zk−1Zk(Z1 = p2f(t1) ∧ val t1 .. t′1
(Z1)∧

Z2 = p2f(t2) ∧ · · · ∧ Zk−1 = p2f(tk−1)∧
val tk−1 .. t′

k−1
(Zk−1) ∧ Zk = p2f(tk)

→ p(Z1, Z1,Z2, . . . ,Zk−1, Zk−1,Zk))

and can be further rewritten as

∀Z1 · · ·Zk−1(val t1 .. t′1
(Z1) ∧ · · · ∧ val tk−1 .. t′

k−1
(Zk−1)

→ p(p2f(t1), Z1,p2f(t2), . . . ,p2f(tk−1), Zk−1,p2f(tk))).

By Lemma 4, under the assumption C this formula is equivalent to

∀Z1 · · ·Zk−1(∃K(p2f(t1) ≤ K ≤ p2f(t′1) ∧ Z1 = K) ∧ · · · ∧
∃K(p2f(tk−1) ≤ K ≤ p2f(t′k−1) ∧ Zk−1 = K)
→ p(p2f(t1), Z1,p2f(t2), . . . ,p2f(tk−1), Zk−1,p2f(tk)))

and can be further rewritten as

∀Z1 · · ·Zk−1N1 · · ·Nk−1(p2f(t1) ≤ N1 ≤ p2f(t′1) ∧ Z1 = N1 ∧ · · · ∧
p2f(tk−1) ≤ Nk−1 ≤ p2f(t′k−1) ∧ Zk−1 = Nk−1

→ p(p2f(t1), Z1,p2f(t2), . . . ,p2f(tk−1), Zk−1,p2f(tk))).

This formula is equivalent to (6).
The proof of part (ii) is similar.

Lemma 6. If a regular term t contains a function symbol then, for every vari-
able X occurring in t, the formula

∀X(∃Z valt(Z)→ ∃I(I = X))

is provable in Int.

Proof By induction on t. Consider, for instance, the case when t has the form
t1 + t2. Then the antecedent of the implication to be proved is

∃ZIJ(Z = I + J ∧ val t1(I) ∧ val t2(J)).

Assume, for instance, that the part of t containing X is t1. The formula above
implies ∃I val t1(I). If t1 is X then the last formula is ∃I(I = X), which is the
consequent of the formula to be proved. Otherwise t1 contains a function symbol,
and ∃I(I = X) follows by the induction hypothesis. If t is t1− t2 t1× t2 or t1 .. t2
then reasoning is similar.

Lemma 7. If a conjunctive term Bi of the body of rule (4) is a literal or a
comparison of the first kind then, for every variable X that occurs in Bi at least
once in the scope of a function symbol, the formula τB(Bi) → ∃I(I = X) is
provable in Int.



Proof Case 1: Bi is an atom p(t). Then τB(Bi) is ∃Z(val t(Z) ∧ p(Z)), which
implies ∃Z val t(Z) and further ∃Z val t(Z), where t is the component of the
tuple t that contains X in the scope of a function symbol; ∃I(I = X) follows by
Lemma 6. Case 2: Bi is a literal of the form not p(t) or not not p(t). Similar to
Case 1. Case 3: Bi is a comparison t1 ≺ t2. Then τB(Bi) is

∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2),

which implies ∃Zj val tj (Zj), where tj is the part of the comparison that con-
tains X in the scope of a function symbol; ∃I(I = X) follows by Lemma 6.

Lemma 8. For any regular term t and any variable X occurring in t, the for-
mula

∀X(∃N valt(N)→ ∃I(I = X))

is provable in Int.

Proof By induction on t. Case 1: t is X. Then the antecedent ∃N valt(N) of
the implication to be proved is ∃N(N = X), which is equivalent to its consequent
∃I(I = X). Case 2: t has the form t1 + t2, so that the antecedent is

∃NIJ(N = I + J ∧ val t1(I) ∧ val t2(J)).

Assume, for instance, that the part of t containing X is t1. The formula above
implies ∃I val t1(I). By the induction hypothesis, ∃I(I = X) follows. Case 3: t
has the form t1 − t2, t1 × t2 or t1 .. t2. Similar to Case 2.

Lemma 9. If a conjunctive term Bi of the body of rule (4) is a comparison
of the second kind then, for every variable X that occurs in Bi, the formula
τB(Bi)→ ∃I(I = X) is provable in Int.

Proof The antecedent τB(Bi) of the formula to be proved is

∃Z1Z2(val t1,t2 .. t3(Z1, Z2) ∧ Z1 = Z2),

which is equivalent to
∃Z val t1,t2 .. t3(Z,Z). (10)

Case 1: X occurs in t1. Formula (10) can be rewritten as

∃Z(val t1(Z) ∧ ∃IJK(val t2(I) ∧ val t3(J) ∧ I ≤ K ≤ J ∧ Z = K)).

Consequently it implies ∃K val t1(K), and ∃I(I = X) follows by Lemma 8.
Case 2: X occurs in t2 .. t3. Formula (10) implies ∃Z val t2 .. t3(Z), and ∃I(I = X)
follows by Lemma 6.

Proof of the Theorem We need to show that formulas (5) and (8) are
equivalent to each other. Consider all variables from the set {X1, . . . , Xm} that
occur in the head H of rule (4) in the scope of a function symbol. Let these
variables be X1, . . . , Xk; then each of the remaining variables Xk+1, . . . , Xm



occurs in the body of the rule in the scope of a function symbol or in a comparison
of the second kind.

We will show first that the consequent H∗ of (8) is equivalent to

∃I(I = Xi)→ H∗ (1 ≤ i ≤ k). (11)

If H is an atom p(t) then formula (11) is

∃I(I = Xi)→ ∀Z(val t(Z)→ p(Z)),

and it is equivalent to

∀Z(∃I(I = Xi) ∧ val t(Z)→ p(Z))). (12)

Lemma 6 shows that the conjunction in the antecedent is equivalent to its second
conjunctive term val t(Z), so that formula (12) is equivalent to H∗. If H is {p(t)}
then reasoning is similar. If H is empty then k = 0, and there is nothing to prove.

It follows that H∗ is equivalent to

∃I(I = X1)→ (∃I(I = X2)→ . . . (∃I(I = Xk)→ H∗) . . .)

and consequently to
k∧

i=1

∃I(I = Xi)→ H∗. (13)

On the other hand, Lemmas 7 and 9 show that the formulas

τB(B1) ∧ · · · ∧ τB(Bn)→ ∃I(I = Xi) (k + 1 ≤ i ≤ m)

are provable in Int . It follows that the antecedent

τB(B1) ∧ · · · ∧ τB(Bn)

of (8) is equivalent to

m∧
i=k+1

∃I(I = Xi) ∧ τB(B1) ∧ · · · ∧ τB(Bn). (14)

From these observations about formulas (13) and (14) we can conclude that
the result (8) of applying τ∗ to rule (4) is equivalent to the formula

∀̂

(
m∧
i=1

∃I(I = Xi) ∧ τB(B1) ∧ · · · ∧ τB(Bn)→ H∗

)
,

which can be further rewritten as

∀̂(C → (τB(B1) ∧ · · · ∧ τB(Bn)→ H∗)). (15)



From Lemmas 1(iii,iv,v), 2, 4, 5 we can conclude that formula (15) is equiv-
alent to

∀̂(C → (ν′(B1) ∧ · · · ∧ ν′(Bn)→ ν′(H))).

The only part of the last formula that contains any of the variables Xi is C.
Consequently that formula is equivalent to

∀̂

(∧
i

∃Xi(Ii = Xi)→ (ν′(B1) ∧ · · · ∧ ν′(Bn)→ ν′(H))

)
.

Since the antecedent
∧

i ∃Xi(Ii = Xi) is provable in Int , it can be dropped,
which leads us to formula (5).

8 Discussion

It was observed long ago that the head and body of a rule are similar to the
consequent and antecedent of an implication, and that choice expressions are
similar to excluded middle formulas. For instance, the rule

{q(X)} ← p(X)

is similar to the formula

p(X)→ q(X) ∨ ¬q(X).

The definition of the translation ν allows us to extend this analogy to regular
rules containing arithmetic operations and comparisons:

1. A variable in a regular rule is similar to a variable for integers if it occurs at
least once in the scope of a function symbol or in a comparison of the second
kind. Otherwise it is similar to a variable for arbitrary precomputed terms.

2. The equal sign in a comparison of the second kind, such as X = 1 .. 5, is
similar to the membership symbol: it expresses that the integer denoted by
the left-hand side is an element of the set denoted by the right-hand side.

3. The atom in the head of a regular rule that contains the interval symbol,
such as q(1 .. X, 1 .. Y ), is similar to a universally quantified formula.
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