
Preprint 0 (1999) ?{? 1

Nested Expressions in Logic Programs

Vladimir Lifschitz and Lappoon R. Tang

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712, USA

Hudson Turner

Department of Computer Science

University of Minnesota at Duluth

Duluth, MN 55812, USA

We extend the answer set semantics to a class of logic programs with nested

expressions permitted in the bodies and heads of rules. These expressions are formed

from literals using negation as failure, conjunction (,) and disjunction (;) that can

be nested arbitrarily. Conditional expressions are introduced as abbreviations. The

study of equivalent transformations of programs with nested expressions shows that

any such program is equivalent to a set of disjunctive rules, possibly with negation

as failure in the heads. The generalized answer set semantics is related to the Lloyd-

Topor generalization of Clark's completion and to the logic of minimal belief and

negation as failure.

1. Introduction

In most papers on the semantics of logic programming, the body of a rule is

supposed to be a list of syntactically simple expressions, such as atoms or literals.

The syntax of Prolog, however, permits nested expressions. Besides conjunctions

(p; q) and negation as failure (not p), these expressions may include, for instance,

disjunctions (p; q) and if-then-else constructs (p! q; r), nested arbitrarily.

The use of such expressions does not appear to make a program any less

declarative. Declaratively, the rule

s (p! q; r); t (1)

2

has the same meaning as the pair of rules

s p; q; t

s not p; r; t

(2)

but it is more concise. The usefulness of the if-then-else operator is related also

to the fact that p is evaluated only once when (1) is processed by Prolog; in (2),

p may be evaluated twice. To eliminate this unnecessary recomputation without

the use of the if-then-else construct, one would have to use cut. For these reasons,

the use of nested expressions is standard practice in Prolog programming.

The �rst declarative semantics for logic programs with nested expressions

was proposed by Lloyd and Topor [17], who extended the completion semantics

[3] to programs with arbitrary �rst-order formulas in the bodies of rules. In this

note, we propose a semantics for programs with nested expressions that is based

on the answer set (\stable model") approach [7]. The role of logic programs

under the answer set semantics as a knowledge representation language has been

growing in recent years. This is evidenced by the development of software systems

for computing answer sets, such as smodels [19] and dlv [5], by the emergence

of \stable model programming" as an alternative logic programming paradigm

[18] and by the use of answer sets for specifying planning problems [21,14] and for

the development of e�cient planning algorithms [4]. The extension of the answer

set semantics proposed below can serve as a speci�cation for extending systems

like smodels and dlv to programs with nested expressions.

In this paper, we restrict attention to propositional programs; the semantics

can be extended to programs with variables by grounding. Both the heads and

bodies of the rules in such programs are formed from literals (atoms possibly

preceded by the classical negation sign :) using the operators

; ; not (3)

that can be nested arbitrarily. Conditional expressions are introduced as abbre-

viations.

An interesting fact about nested expressions under the answer set semantics

is that two negation as failure operators in a row do not, generally, cancel each

other. Our de�nition, applied, for instance, to the program

p not not p ; (4)

3

gives both ; and fpg as the answer sets, although

p p

has only one answer set ;. The following informal argument shows that this is in

fact reasonable. In (4), we can \denote" the subformula not p by q, and (4) will

turn into

p not q ;

q not p :

The answer sets for this program are fpg and fqg. After dropping the \auxiliary"

symbol q from each of them, we will get the two answer sets shown above.

In Sections 2 and 3 we de�ne the syntax and semantics of programs with

nested expressions. In Section 4, we turn to the study of equivalent transfor-

mations of programs with nested expressions,

1

and show that any such program

can be equivalently transformed into a set of \disjunctive rules" in the sense of

Section 5.1 of [13]|expressions of the form

L

1

; : : : ;L

k

;not L

k+1

; : : : ;not L

l

L

l+1

; : : : ; L

m

;not L

m+1

; : : : ;not L

n

(5)

where 0 � k � l � m � n and all L

i

are literals.

2

A somewhat unorthodox

feature of (5) is the possibility of negation as failure in the head. This possibility,

useful in abductive logic programming [10] and in the theory of updates [1], is

essential here also, because in the process of \unwinding" a nested expression in

the body some occurrences of negation as failure can move to the head.

In Section 5 we discuss the relation of our proposal to the Lloyd and Topor

system mentioned above. Several authors, including Lin and Shoham [16], Lif-

schitz [12], Herre and Wagner [8] and Pearce [20], described ways to embed logic

programs under the answer set semantics into languages that are closed under

the formation rules of propositional logic. In Section 6 the embedding due to

Lifschitz is extended to logic programs with nested expressions.

Proofs of theorems are given in Section 7.

1

These transformations are somewhat similar to the \algebraic laws" of Prolog discussed in [9]

on the basis of a procedural view of logic programming.

2

In [13], the vertical bar is used instead of the semicolon to separate literals in the head of a

rule.

4

2. Syntax

The words atom and literal are understood here as in propositional logic.

Elementary formulas are literals and the 0-place connectives ? (\false") and >

(\true"). Formulas are built from elementary formulas using the unary connective

not and the binary connectives ; (conjunction) and ; (disjunction). A rule is an

expression of the form

F G

where F and G are formulas, called the head and the body of the rule.

For any formulas F , G and H,

F ! G;H

stands for the formula

(F;G); (not F;H) :

We will write a rule of the form F > as F and identify it with for-

mula F . Rules of the form ? G will be called constraints and written as G.

Given these conventions, the de�nition of a rule given above is a generalization

of rules in the sense of [7], and even of \disjunctive rules" (5).

A program is a set of rules.

Note that, syntactically, the status of the classical negation operator : is

di�erent from the status of operators (3): classical negation is allowed only in

front of an atom. About an occurrence of a formula F in a formula or a rule we

will say that it is singular if the symbol before this occurrence is :; otherwise the

occurrence is regular. It is clear that an occurrence of F can be singular only if

F is an atom. For instance, in the formula

not p;not :p (6)

the �rst occurrence of p is regular, and the second is singular. This di�erence is

important because the result of replacing a regular occurrence of F in a formula

or a rule by another formula G is again a formula or a rule, but for a singular

occurrence this is not necessarily the case. For instance, the result of replacing

the �rst occurrence of p in (6) by (q; r) is a formula, but the result of applying

the same operation to the second occurrence is not.

5

3. Semantics

Recall that the de�nition of an answer set [7] consists of two parts. First this

concept is de�ned for the \basic" case of programs that do not contain negation

as failure. Then the \reduct" of a program relative to a set of literals is de�ned,

and this is used to reduce the general case to the basic case. The extension of

this de�nition to programs with nesting follows the same plan.

The formulas, rules and programs that do not contain the negation as failure

operator not will be called basic. We de�ne when a consistent set X of literals

satis�es a basic formula F (symbolically, X j= F) recursively, as follows:

� for elementary F , X j= F if F 2 X or F = >.

� X j= (F;G) if X j= F and X j= G .

� X j= (F ;G) if X j= F or X j= G .

Let � be a basic program. A consistent set X of literals is closed under �

if, for every rule F G in �, X j= F whenever X j= G. We say that X is an

answer set for � if X is minimal among the consistent sets of literals closed under

�.

Example 1. Consider the program whose only rule is

q p;:p : (7)

Being closed under (7) is characterized by the following condition: if p 2 X or

:p 2 X then q 2 X. It is clear that the only answer set for (7) is empty. If

we add the rule p (that is, p >) to this program then fp; qg will be the only

answer set.

The reduct of a formula, rule or program relative to a consistent set X of

literals is de�ned recursively, as follows:

� for elementary F , F

X

= F .

� (F;G)

X

= (F

X

; G

X

) .

� (F ;G)

X

= (F

X

;G

X

) .

� (not F)

X

=

(

?; if X j= F

X

,

>; otherwise.

� (F G)

X

= F

X

 G

X

.

� �

X

= f(F G)

X

: F G 2 �g .

6

A consistent set X of literals is an answer set for � if it is an answer set for

the reduct �

X

.

Example 2. Consider the program whose only rule is

p (q ! r;not s) ; (8)

that is,

p (q; r); (not q;not s) :

Take X = fpg; let us check that X is an answer set for this program. Note that

q

X

= q, so that q

X

=2 X and X 6j= q

X

. Consequently (not q)

X

= >. Similarly,

(not s)

X

= >. It follows that

((q; r); (not q;not s))

X

= (q; r); (>;>) :

Consequently the reduct of (8) relative to X is

p (q; r); (>;>) :

The only answer set for this program is fpg, so X is indeed an answer set for (8).

(There are no other answer sets.)

Example 3. Consider program (4). For X

1

= ;, p

X

1

=2 X

1

, which means that

X

1

6j= p

X

1

and consequently (not p)

X

1

= >. It follows that X

1

j= (not p)

X

1

, so

that (not not p)

X

1

= ?. Hence the reduct of (4) relative to X

1

is

p ? :

The only answer set for this program is empty, so X

1

is indeed an answer set

for (4). Now take X

2

= fpg. Note that p

X

2

2 X

2

, so X

2

j= p

X

2

. Consequently

(not p)

X

2

= ?. It follows that X

2

6j= (not p)

X

2

, so that (not not p)

X

2

= >. Hence

the reduct of (4) relative to X

2

is

p > :

The only answer set for this program is fpg, so X

2

is an answer set for (4) also.

Proposition 1. For a program whose rules have form (5), the answer sets

according to the de�nition of an answer set given above are exactly the consistent

answer sets according to the de�nition from [13].

7

Unlike the de�nitions of an answer set given in [7,15,13], the de�nition in-

troduced above does not allow for an inconsistent answer set. All three previous

de�nitions agree, where they overlap, on the question of consistent answer sets,

but there is some disagreement among them on inconsistent answer sets. For

instance, according to [15], the program

not p

has two answer sets: ; and the set of all literals. According to [13], it has only

the empty answer set. (In [7], negation as failure in the head is not considered.)

As another example, consider the program

p ;

 p :

According to [7] and [13], this program has no answer sets. In [15], it has a single

answer set: the set of all literals.

Let � be a set of constraints. A consistent set X of literals violates � if it

is not closed under �

X

, that is to say, if � includes a constraint G such that

X j= G

X

. For instance, X violates f pg if p 2 X; X violates f not pg if

p 62 X. The e�ect of adding a set of constraints to a program is to rule out the

answer sets that violate these constraints. More precisely:

Proposition 2. Let �

1

, �

2

be programs such that every rule in �

2

is a con-

straint. A consistent set of literals is an answer set for �

1

[�

2

i� it is an answer

set for �

1

and does not violate �

2

.

4. Equivalent Transformations

In this section we describe several equivalent transformations of programs

with nested expressions. These transformations can turn any program into an

equivalent program whose rules have form (5).

Equivalence can be understood here as a condition stronger than merely

having the same answer sets. About programs �

1

and �

2

we say that they are

equivalent if, for any consistent sets X and Y of literals, X is closed under �

Y

1

i� X is closed under �

Y

2

. It is clear that the reducts of two equivalent programs

relative to the same set of literals have the same answer sets. Consequently, any

two equivalent programs have the same answer sets.

8

It is clear also that if �

1

is equivalent to �

2

then, for any program �, �

1

[�

is equivalent to �

2

[�.

Some of the transformations discussed in this section replace subformulas

in the program by other formulas. Some transformations move subformulas from

the body of a rule to its head, or from the head to the body. We will also consider

transformations that break a rule into two rules.

In connection with transformations of the �rst kind, we need the following

de�nition. A formula F is equivalent to a formula G (symbolically, F , G) if,

for any consistent sets X and Y of literals, X j= F

Y

i� X j= G

Y

. Here is why

this de�nition is of interest to us:

Proposition 3. Let � be a program, and let F , G be a pair of equivalent

formulas. Any program obtained from � by replacing some regular occurrences

of F by G is equivalent to �.

Here is a collection of useful facts about the equivalence of formulas:

Proposition 4. For any formulas F , G, H,

(i) F;G, G;F and F ;G, G;F .

(ii) (F;G);H , F; (G;H) and (F ;G);H , F ; (G;H) .

(iii) F; (G;H), (F;G); (F;H) and F ; (G;H), (F ;G); (F ;H) .

(iv) not (F;G), not F ;not G and not (F ;G), not F;not G .

(v) not not not F , not F .

(vi) F;> , F and F ;> , > .

(vii) F;? , ? and F ;? , F .

(viii) if p is an atom then p;:p, ? and not p;not :p, > .

(ix) not > , ? and not ? , > .

Using Propositions 3 and 4, we can show that any formula can be converted

to \disjunctive" and \conjunctive" normal forms, described in Proposition 5 be-

low. A simple conjunction is a formula of the form

L

1

; : : : ; L

k

;not L

k+1

; : : : ;not L

m

;not not L

m+1

; : : : ;not not L

n

(9)

9

and a simple disjunction is a formula of the form

L

1

; : : : ;L

k

;not L

k+1

; : : : ;not L

m

;not not L

m+1

; : : : ;not not L

n

(10)

where 0 � k � m � n, n > 0 and all L

i

are literals.

Proposition 5. Any formula is equivalent to

(i) a formula of the form F

1

; : : : ;F

n

where n � 1 and each F

i

is a simple con-

junction, and

(ii) a formula of the form F

1

; : : : ; F

n

where n � 1 and each F

i

is a simple dis-

junction.

The following proposition describes further equivalent transformations of

programs.

Proposition 6.

(i) F;G H is equivalent to

F H ;

G H :

(ii) F G;H is equivalent to

F G ;

F H :

(iii) F G;not not H is equivalent to F ;not H G :

(iv) F ;not not G H is equivalent to F not G;H :

From the facts stated above, we can derive:

Proposition 7. Any program is equivalent to a set of rules of form (5).

Examination of the proof of Proposition 7 shows that the rules of form (5)

generated from a program � do not contain negation as failure in the heads

(k = l) if negation as failure in �

(i) does not occur in the heads of rules, and

(ii) is not nested, that is, not applied to formulas containing negation as failure.

10

The answer sets for any collection of rules of form (5) without negation as failure

in the heads are known to have the anti-chain property: an answer set for such a

program cannot be a proper subset of another answer set for the same program.

It follows that the answer sets for any collection of rules satisfying conditions (i)

and (ii) form an anti-chain. Program (4) does not satisfy condition (ii), and one

of its two answer sets is a subset of the other.

5. Relation to the Lloyd-Topor Semantics

The review of the Lloyd-Topor semantics below di�ers from its description

in [17] in two ways. First, it is restricted to the propositional case. Second, it is

stated in terms of \supported models" [2] instead of completion, which allows us

to extend the theory to in�nite programs. For �nite programs, the two de�nitions

are equivalent.

A (propositional) Lloyd-Topor rule is an expression of the form

p F

where p is an atom and F is a propositional formula. A Lloyd-Topor program is

a set of Lloyd-Topor rules.

Recall that a (propositional) interpretation is a function from atoms to truth

values. We will identify an interpetation with the set of atoms to which it assigns

the value true.

Let � be a Lloyd-Topor program. A model of � is an interpretation I such

that, for any rule p F in � such that I satis�es F , I satis�es p also. A model

I of � is supported if, for any atom p such that I satis�es p, there is a rule p F

in � such that I satis�es F .

For instance, the Lloyd-Topor program whose only rule is p p has two

supported models: ; and fpg.

The translation � of propositional formulas, and of Lloyd-Topor rules and

programs, to our language is de�ned as follows, assuming that all connectives

other than ^, _ and : have been eliminated:

� for atomic F , �F = not not F .

� �(F ^G) = �F; �G .

� �(F _G) = �F ; �G .

� �(:F) = not �F .

11

� �(p F) = p �F .

� �� = f�(p F) : p F 2 �g .

The soundness of this translation is expressed by the following theorem:

Proposition 8. For any Lloyd-Topor program � and any interpretation I, I

is a supported model of � i� I is an answer set for ��.

Since the heads of the rules of �� are atoms, any answer set for this program

is a set of atoms, that is to say, an interpretation. Consequently, we can conclude

from Proposition 8 that every answer set for �� is a supported model of �.

For instance, �(p p) is (4). In accordance with Proposition 8, the two

answer sets for (4) computed in Example 3 are identical to the two supported

models of p p. As another example, the result of applying � to

p :q (11)

is

p not not not q :

According to Propositions 3 and 4(v), this program is equivalent to

p not q :

We see that, in application to (11), the Lloyd-Topor semantics is equivalent to

the answer set semantics, modulo replacing : by not . This is not surprising in

view of the fact that the result of this replacement is a tight program (see [13],

and the result from [6] reproduced there as Proposition 3.5).

Proposition 8 is similar to Theorem 5.10 from [11], which is limited to pro-

grams without nested expressions.

6. Relation to MBNF

In the propositional fragment of the logic of minimal belief and negation as

failure (MBNF) [12], formulas are built from atoms using propositional connec-

tives and two modal operators: B (\minimal belief") and not . An MBNF theory

is a set of formulas (axioms) in this language. We will introduce a translation

� that maps formulas and rules to formulas of MBNF, and maps programs to

MBNF theories. The translation is de�ned recursively, as follows:

12

� for elementary F , �F = BF .

� �(F;G) = �F ^ �G .

� �(F ;G) = �F _ �G .

� for elementary F , �(not F) = not F .

� �(not (F;G)) = �(not F) _ �(not G) .

� �(not (F ;G)) = �(not F) ^ �(not G) .

� �(not not F) = :�(not F) .

� �(F G) = �G � �F .

� �� = f�(F G) : F G 2 �g .

As an example, note that, in application to (4), � gives the formula

:not p � Bp :

This translation is essentially an extension of the translation from Section 5

of [12] to programs with nested expressions. The translation �� of any program �

is an MBNF theory of the special type studied in [15]|a \theory with protected

literals." This means that every occurrence of an atom in an axiom of this theory

is a part of an expression of the form BL or not L, where L is a literal.

Recall that models of a propositional MBNF theory are de�ned as the pairs

(I; S), where I is an interpretation and S is a set of interpretations, that satisfy

a certain �xpoint condition (see [12], Section 4).

The following theorem establishes a correspondence between the answer sets

for a program � and the consistent models of the MBNF theory �� (that is, the

models (I; S) with nonempty S). For any consistent set X of literals, by Mod(X)

we denote the (nonempty) set of interpretations that satisfy all members of X.

Proposition 9. For any program �, consistent set X of literals, and interpre-

tation I, X is an answer set for � i� (I;Mod(X)) is a model of ��. Moreover,

every consistent model of �� can be represented in the form (I;Mod(X)), where

I is an interpretation and X is a consistent set of literals.

13

7. Proofs of Theorems

7.1. Proof of Proposition 1

Proposition 1. For a program whose rules have form (5), the answer sets

according to the de�nition of an answer set given above are exactly the consistent

answer sets according to the de�nition from [13].

The de�nition of an answer set in [13] di�ers from the one given above in

three ways: the de�nition of closure under a basic program is di�erent; the de�ni-

tion of the reduct is di�erent; the inconsistent answer set is allowed. Proposition 1

follows from two lemmas:

Lemma 1. Let � be a program whose rules have the form

L

1

; : : : ;L

k

 L

k+1

; : : : ; L

m

(12)

where 0 � k � m and all L

i

are literals, and let X be a consistent set of literals.

X is closed under � in the sense of this paper i� X is closed under � in the sense

of [13].

Lemma 2. Let � be a program whose rules have the form (5), and let X, Y be

consistent sets of literals. Y is closed under �

X

i� Y is closed under the reduct

of � relative to X in the sense of [13].

(According to the �rst lemma, there is no need to distinguish between the

two meanings of \closed under" in the statement of the second lemma.)

Proof of Lemma 1. It is easy to verify that X is closed under � in the sense

of this paper i�, for every rule (12) in �, X includes at least one of the literals

L

1

; : : : ; L

k

provided that X includes all of L

k+1

; : : : ; L

m

. This is exactly what it

is for X to be closed under � in the sense of [13].

Proof of Lemma 2. For a program � whose rules have form (5) and for a con-

sistent set X of literals, �

X

can be characterized as the result of replacing each

subformula of the form not L in � by ? if L 2 X, and by > otherwise. On the

other hand, the reduct of � relative to X in the sense of [13] is de�ned as the

program obtained from � by

14

� deleting every rule (5) such that at least one of L

k+1

; : : : ; L

l

is not in X, or at

least one of L

m+1

; : : : ; L

n

is in X, and

� replacing each remaining rule (5) by

L

1

; : : : ;L

k

 L

l+1

; : : : ; L

m

:

It is easy to verify that this program can be obtained from �

X

by

� deleting every rule (5) such that its head contains > or body contains ?, and

� removing every ? in the head, and every > in the body, of each remaining

rule.

It is clear that these steps have no e�ect on whether a consistent set Y of literals

is closed under the program.

7.2. Proof of Proposition 2

Lemma 3. Let � be a set of basic constraints, and let X be a consistent set

of literals. If X is closed under � then every subset of X is closed under �.

Proof. It is easy to see that, for any consistent sets X, Y of literals and any

basic formula G, if Y � X and Y j= G then X j= G.

Proposition 2. Let �

1

, �

2

be programs such that every rule in �

2

is a con-

straint. A consistent set of literals is an answer set for �

1

[�

2

i� it is an answer

set for �

1

and does not violate �

2

.

Proof. Let X be a consistent set of literals. We need to show that X is an

answer for �

X

1

[�

X

2

i� it is an answer set for �

X

1

and does not violate �

2

.

Left-to-right: Assume that X is an answer for �

X

1

[�

X

2

. Then X is closed

under both �

X

1

and �

X

2

. The second condition means that X does not violate

�

2

. It remains to check the minimality of X. Let Y be a subset of X closed

under �

X

1

. Since X is closed under �

X

2

, it follows by Lemma 3 that Y is closed

under �

X

2

also. Since X is minimal under the sets closed under �

X

1

[�

X

2

, it

follows that Y = X.

Right-to-left: Assume that X is an answer set for �

X

1

and does not violate

�

2

. The second condition means that X is closed under �

X

2

. Consequently, X is

closed under both �

X

1

and �

X

2

. It remains to check the minimality of X. Let Y

15

be a subset of X closed under �

X

1

[�

X

2

Then, in particular, Y is closed under

�

X

1

. Since X is minimal among such sets, it follows that Y = X.

7.3. Proof of Proposition 3

Lemma 4. Let F , G, H be formulas such that F , G. If a formula H

0

is

obtained from H by replacing some regular occurrences of F by G then H , H

0

.

Proof. By structural induction on H.

Case 1: H is elementary. Then the only regular occurrence of a formula in

H is H itself. Consequently either H = F and H

0

= G or H

0

= H. In both cases,

H , H

0

.

Case 2: H = H

1

;H

2

. If H = F and H

0

= G then the assertion is trivial.

Otherwise, H

0

= H

0

1

;H

0

2

and, by the induction hypothesis, H

1

, H

0

1

, H

2

, H

0

2

.

Then

X j= H

Y

i� X j= (H

1

;H

2

)

Y

i� X j= (H

1

)

Y

; (H

2

)

Y

i� X j= (H

1

)

Y

and X j= (H

2

)

Y

i� X j= (H

0

1

)

Y

and X j= (H

0

2

)

Y

i� X j= (H

0

1

)

Y

; (H

0

2

)

Y

i� X j= (H

0

1

;H

0

2

)

Y

i� X j= (H

0

)

Y

:

Case 3: H = H

1

;H

2

. Similar to Case 2.

Case 4: H = not H

1

. If H = F and H

0

= G then the assertion is trivial.

Otherwise, H

0

= not H

0

1

and, by the induction hypothesis, H

1

, H

0

1

. Then

X j= H

Y

i� X j= (not H

1

)

Y

i� (not H

1

)

Y

= >

i� Y 6j= (H

1

)

Y

i� Y 6j= (H

0

1

)

Y

i� (not H

0

1

)

Y

= >

i� X j= (not H

0

1

)

Y

i� X j= (H

0

)

Y

:

Proposition 3. Let � be a program, and let F , G be a pair of equivalent

16

formulas. Any program obtained from � by replacing some regular occurrences

of F by G is equivalent to �.

Proof. Assume that �

0

can be obtained from � by replacing some regular oc-

currences of F by an equivalent formula G, and assume that X is closed under

(�

0

)

Y

. Take any rule H

1

 H

2

in �. For the corresponding rule H

0

1

 H

0

2

in �

0

,

if X j= (H

0

2

)

Y

then X j= (H

0

1

)

Y

. By Lemma 4, H

1

is equivalent to H

0

1

, and H

2

is

equivalent to H

0

2

. Consequently, if X j= (H

2

)

Y

then X j= (H

1

)

Y

. It follows that

X is closed under �

Y

. The proof in the other direction is similar.

7.4. Proof of Proposition 4

Proposition 4. For any formulas F , G, H,

(i) F;G, G;F and F ;G, G;F .

(ii) (F;G);H , F; (G;H) and (F ;G);H , F ; (G;H) .

(iii) F; (G;H), (F;G); (F;H) and F ; (G;H), (F ;G); (F ;H) .

(iv) not (F;G), not F ;not G and not (F ;G), not F;not G .

(v) not not not F , not F .

(vi) F;> , F and F ;> , > .

(vii) F;? , ? and F ;? , F .

(viii) if p is an atom then p;:p, ? and not p;not :p, > .

(ix) not > , ? and not ? , > .

Proof. All parts other than (iv) and (v) follow directly from the de�nitions. For

the �rst assertion of part (iv),

X j= (not (F;G))

Y

i� (not (F;G))

Y

= >

i� Y 6j= (F;G)

Y

i� Y 6j= F

Y

; G

Y

i� Y 6j= F

Y

or Y 6j= G

Y

i� (not F)

Y

= > or (not G)

Y

= >

i� X j= (not F)

Y

or X j= (not G)

Y

i� X j= (not F)

Y

; (not G)

Y

i� X j= (not F ;not G)

Y

:

17

The proof of the second assertion is similar.

For part (v),

X j= (not not not F)

Y

i� (not not not F)

Y

= >

i� Y 6j= (not not F)

Y

i� (not not F)

Y

= ?

i� Y j= (not F)

Y

i� (not F)

Y

= >

i� X j= (not F)

Y

:

7.5. Proof of Proposition 5

Lemma 5. (i) If F is equivalent to a simple conjunction then not F is equivalent

to a simple disjunction. (ii) If F is equivalent to a simple disjunction then not F

is equivalent to a simple conjunction.

Proof. Immediate from Proposition 4(i,ii,iv,v) and Lemma 4.

Proposition 5. Any formula is equivalent to

(i) a formula of the form F

1

; : : : ;F

n

where n � 1 and each F

i

is a simple con-

junction, and

(ii) a formula of the form F

1

; : : : ; F

n

where n � 1 and each F

i

is a simple dis-

junction.

Proof. Both parts are proved simultaneously by structural induction. Every ele-

mentary formula is a literal or > or ?; in the latter cases, use Proposition 4(viii).

Otherwise, assume that formulas F and G are each equivalent to formulas of the

forms described in parts (i) and (ii) of Proposition 5. We need to check the same

for formulas F;G and F ;G. This follows from Proposition 4(ii,iii) and Lemma 4.

We also need to check that not F is equivalent to formulas of the forms described

in parts (i) and (ii) of Proposition 5. This follows from Proposition 4(iv) and

Lemmas 4 and 5.

7.6. Proof of Proposition 6

Proposition 6.

18

(i) F;G H is equivalent to

F H ;

G H :

(ii) F G;H is equivalent to

F G ;

F H :

(iii) F G;not not H is equivalent to F ;not H G :

(iv) F ;not not G H is equivalent to F not G;H :

Proof. Let X;Y be consistent sets of literals.

Part (i): we need to check that X is closed under F

Y

; G

Y

 H

Y

i� X is

closed under F

Y

 H

Y

and G

Y

 H

Y

. This is immediate from the de�nitions

of closure and satisfaction.

The proof of part (ii) is similar.

Part (iii): we need to check that X is closed under

F

Y

 G

Y

; (not not H)

Y

(13)

i� X is closed under

F

Y

; (not H)

Y

 G

Y

: (14)

If (not H)

Y

= > then (not not H)

Y

= ?, so that (13), (14) turn into

F

Y

 G

Y

;?

and

F

Y

;> G

Y

:

Clearly X is closed under both rules. Otherwise (not H)

Y

= ? and so

(not not H)

Y

= >. Then (13), (14) turn into

F

Y

 G

Y

;>

and

F

Y

;? G

Y

:

Clearly X is closed under the �rst of these rules i� X is closed under the second.

19

Part (iv): we need to check that X is closed under

F

Y

; (not not G)

Y

 H

Y

(15)

i� X is closed under

F

Y

 (not G)

Y

;H

Y

: (16)

If G

Y

= ?, then (15) turns into

F

Y

;? H

Y

;

while (16) turns into

F

Y

 >;H

Y

:

Clearly X is closed under the latter i� it is closed under the former. On the other

hand, if G

Y

= >, then (15) turns into

F

Y

;> H

Y

;

while (16) turns into

F

Y

 ?;H

Y

:

Clearly X is closed under both rules.

7.7. Proof of Proposition 7

Proposition 7. Any program is equivalent to a set of rules of form (5).

Proof. Propositions 3, 5 and 6(i,ii) show that any program is equivalent to a set

of rules of the following form: the head is a simple disjunction, and the body is

a simple conjunction. Thus we arrive at a set of rules of the form

F

1

; : : : ;F

m

 F

m+1

; : : : ; F

n

(17)

where 0 < m < n and each F

i

has one of the forms

L;not L;not not L

where L is a literal. Proposition 6(iii,iv) shows that any such rule is equivalent

to a rule of the same form (17) in which every F

i

has one of the forms

L;not L :

20

7.8. Proof of Proposition 8

Lemma 6. For any propositional formula F , interpretation I and consistent

set X of literals, X j= (�F)

I

i� I satis�es F .

Proof. By structural induction on F . If F is atomic then

X j= (�F)

I

i� X j= (not not F)

I

i� (not not F)

I

= >

i� I 6j= (not F)

I

i� (not F)

I

= ?

i� I j= F

I

i� I j= F

i� F 2 I

i� I satis�es F:

If F is G ^H then

X j= (�F)

I

i� X j= (�G; �H)

I

i� X j= (�G)

I

; (�H)

I

i� X j= (�G)

I

and X j= (�H)

I

i� I satis�es G and I satis�es H

i� I satis�es G ^H:

In the case when F is G _H the proof is similar. If F is :G then

X j= (�F)

I

i� X j= (not �G)

I

i� (not �G)

I

= >

i� I 6j= (�G)

I

i� I does not satisfy G

i� I satis�es :G:

Proposition 8. For any Lloyd-Topor program � and any interpretation I, I

is a supported model of � i� I is an answer set for ��.

Proof. The rules of (��)

I

have the form p (�F)

I

, where p F is a rule

from �. Consequently, a consistent set X of literals is closed under (��)

I

i� X

includes every atom p such that there is a rule p F in � for which X j= (�F)

I

.

According to Lemma 6, the last formula simply says that I satis�es F . It follows

21

that (��)

I

has a unique answer set|the set of all atoms p such that there is a

rule p F in � for which I satis�es F . Consequently I is an answer set for �� i�

it satis�es the following condition: for any atom p, p 2 I i� there is a rule p F

in � for which I satis�es F . This is equivalent to saying that I is a supported

model of �.

7.9. Proof of Proposition 9

For any nonempty set S of interpretations, let L(S) be the (consistent) set

of literals satis�ed by every member of S.

The �rst lemma addresses the four equations in the recursive de�nition of

the translation � that apply to formulas that begin with not .

Lemma 7. For any formula F and nonempty sets S; S

0

of interpretations such

that S � S

0

, (not F)

L(S)

= > i� �(not F) is true in (I; S

0

; S).

Proof. By structural induction.

Case 1: F is an elementary formula. Then

(not F)

L(S)

= > i� L(S) 6j= F

L(S)

i� L(S) 6j= F

i� some member of S does not satisfy F

i� for some J 2 S, F is not true in (J; S

0

; S)

i� not F is true in (I; S

0

; S)

i� �(not F) is true in (I; S

0

; S).

Case 2: F is (G;H). By the induction hypothesis, (not G)

L(S)

= > i�

�(not G) is true in (I; S

0

; S), and (not H)

L(S)

= > i� �(not H) is true in (I; S

0

; S).

Thus,

(not (G;H))

L(S)

= > i� L(S) 6j= (G;H)

L(S)

i� L(S) 6j= (G

L(S)

;H

L(S)

)

i� L(S) 6j= G

L(S)

or L(S) 6j= H

L(S)

i� (not G)

L(S)

= > or (not H)

L(S)

= >

i� �(not G) is true in (I; S

0

; S)

or �(not H) is true in (I; S

0

; S)

i� �(not G) _ �(not H) is true in (I; S

0

; S)

i� �(not (G;H)) is true in (I; S

0

; S) .

Case 3: F is (G;H). Similar to Case 2.

22

Case 4: F is not G. By the induction hypothesis, (not G)

L(S)

= > i�

�(not G) is true in (I; S

0

; S). Thus,

(not not G)

L(S)

= > i� L(S) 6j= (not G)

L(S)

i� (not G)

L(S)

6= >

i� �(not G) is not true in (I; S

0

; S)

i� :�(not G) is true in (I; S

0

; S)

i� �(not not G) is true in (I; S

0

; S) .

Lemma 8. For any formula F and nonempty sets S; S

0

of interpretations such

that S � S

0

, L(S

0

) j= F

L(S)

i� �F is true in (I; S

0

; S).

Proof. By structural induction.

Case 1: F is elementary. Then

L(S

0

) j= F

L(S)

i� L(S

0

) j= F

i� every member of S

0

satis�es F

i� for every J 2 S

0

, F is true in (J; S

0

; S)

i� BF is true in (I; S

0

; S)

i� �F is true in (I; S

0

; S) .

Case 2: F is (G;H). By the induction hypothesis, L(S

0

) j= G

L(S)

i� �G is

true in (I; S

0

; S), and L(S

0

) j= H

L(S)

i� �H is true in (I; S

0

; S). Thus,

L(S

0

) j= (G;H)

L(S)

i� L(S

0

) j= (G

L(S)

;H

L(S)

)

i� L(S

0

) j= G

L(S)

and L(S

0

) j= H

L(S)

i� both �G and �H are true in (I; S

0

; S)

i� �G ^ �H is true in (I; S

0

; S)

i� �(G;H) is true in (I; S

0

; S) .

Case 3: F is (G;H). Similar to Case 2.

Case 4: F is not G. Since L(S

0

) j= (not G)

L(S)

i� (not G)

L(S)

= >, the claim

follows from the previous lemma.

Lemma 9. For any program � and nonempty sets S; S

0

of interpretations such

that S � S

0

, L(S

0

) is closed under �

L(S)

i� every formula in �� is true in (I; S

0

; S).

Proof. By de�nition, L(S

0

) is closed under �

L(S)

i�, for every rule F G 2 �,

L(S

0

) j= F

L(S)

if L(S

0

) j= G

L(S)

. The previous lemma shows that L(S

0

) j= F

L(S)

23

i� �F is true in (I; S

0

; S), and that L(S

0

) j= G

L(S)

i� �G is true in (I; S

0

; S).

Hence,

L(S

0

) j= F

L(S)

if L(S

0

) j= G

L(S)

i� �F is true in (I; S

0

; S) if �G is

i� �G � �F is true in (I; S

0

; S)

i� �(F G) is true in (I; S

0

; S) .

Since �� = f�(F G) : F G 2 �g, we're done.

Proposition 9. For any program �, consistent set X of literals, and interpre-

tation I, X is an answer set for � i� (I;Mod(X)) is a model of ��. Moreover,

every consistent model of �� can be represented in the form (I;Mod(X)), where

I is an interpretation and X is a consistent set of literals.

Proof. We show the second part �rst. Assume that (I; S) is a consistent model

of ��. It follows that every formula in �� is true in (I; S; S). So by Lemma 9,

L(S) is closed under �

L(S)

. Let X = L(S). Notice that X = L(Mod(X)), so

we know by Lemma 9 that every formula in �� is true in (I;Mod(X); S). Next

notice that S � Mod(L(S)). That is, S � Mod(X). Since (I; S) is a model of ��,

it follows that S = Mod(X).

For the right-to-left direction of the �rst part, assume that (I;Mod(X)) is

a model of ��, where X is consistent set of literals. It follows that every formula

in �� is true in (I;Mod(X);Mod(X)), and since X = L(Mod(X)), we know

by Lemma 9 that X is closed under �

X

. Let Y be a subset of X that is closed

under �

X

. Since Y = L(Mod(Y)), we know by Lemma 9 that every formula in ��

is true in (I;Mod(Y);Mod(X)). Since Mod(X) � Mod(Y) and (I;Mod(X)) is a

model of ��, we can conclude that X = Y , which shows that X is an answer set

for �.

Now assume that X is an answer set for �. It follows that X is closed un-

der �

X

. By Lemma 9, every formula in �� is true in (I;Mod(X);Mod(X)).

Let S be a superset of Mod(X) such that every formula in �� is true

in (I; S;Mod(X)). By Lemma 9, L(S) is closed under �

X

. Since L(S) � X

and X is an answer set for �, we conclude that L(S) = X. It follows that

S � Mod(X), and since Mod(X) � S, Mod(X) = S. We can conclude that

(I;Mod(X)) is a model of ��.

24

8. Conclusions

We showed how the answer set semantics can be extended to a class of logic

programs with nested expressions in the bodies and heads of rules. In the special

case of disjunctive logic programs, the answer sets according to the new de�nition

are exactly the consistent answer sets according to the traditional de�nition. In

published papers, inconsistent answer sets were treated in di�erent ways; the

new de�nition does not allow for an inconsistent answer set at all. Our proposal

can be used as a speci�cation for extending systems like smodels and dlv to

programs with nested expressions.

The study of equivalent transformations of programs with nested expressions

shows that such expressions can be always eliminated, altough this process may

lead to the emergence of additional occurrences of negation as failure in the heads

of rules.

The proposed de�nition is related to the completion semantics for programs

with formulas in the bodies of rules due to Lloyd and Topor and to the logic of

minimal belief and negation as failure.

Acknowledgements

We are grateful to Esra Erdem, Michael Gelfond, Katsumi Inoue, David

Pearce, David S. Warren and Phoebe Weidmann, and to anonymous referees, for

useful comments on the subject of this paper. This work was partially supported

by National Science Foundation under grants IRI-9306751 and IRI-9732744.

References

[1] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przymusinski. Dynamic

logic programming. In Anthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors,

Principles of Knowledge Representation and Reasoning: Proc. Sixth Int'l Conf., pages 98{

109, 1998.

[2] Krzysztof Apt, Howard Blair, and Adrian Walker. Towards a theory of declarative knowl-

edge. In Jack Minker, editor, Foundations of Deductive Databases and Logic Programming,

pages 89{148. Morgan Kaufmann, San Mateo, CA, 1988.

[3] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and

Data Bases, pages 293{322. Plenum Press, New York, 1978.

25

[4] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning problems in

non-monotonic logic programs. In Proc. European Conference on Planning 1997, pages

169{181, 1997.

[5] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The

KR system dlv: Progress report, comparisons and benchmarks. In Anthony Cohn, Lenhart

Schubert, and Stuart Shapiro, editors, Proc. Sixth Int'l Conf. on Principles of Knowledge

Representation and Reasoning, pages 406{417, 1998.

[6] Fran�cois Fages. Consistency of Clark's completion and existence of stable models. Journal

of Methods of Logic in Computer Science, 1:51{60, 1994.

[7] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-

tive databases. New Generation Computing, 9:365{385, 1991.

[8] Heinrich Herre and Gerd Wagner. Stable models are generated by a stable chain. Journal

of Logic Programming, 30:165{177, 1997.

[9] C.A.R. Hoare. Programs are predicates. In Proc. Int'l Conf. on Fifth Generation Computer

Systems, pages 211{218, 1992.

[10] Katsumi Inoue and Chiaki Sakama. On positive occurrences of negation as failure. In

Proc. Fourth Int'l Conf. on Principles of Knowledge Representation and Reasoning, pages

293{304, 1994.

[11] Katsumi Inoue and Chiaki Sakama. Negation as failure in the head. Journal of Logic

Programming, 35:39{78, 1998.

[12] Vladimir Lifschitz. Minimal belief and negation as failure. Arti�cial Intelligence, 70:53{72,

1994.

[13] Vladimir Lifschitz. Foundations of logic programming. In Gerhard Brewka, editor, Princi-

ples of Knowledge Representation, pages 69{128. CSLI Publications, 1996.

[14] Vladimir Lifschitz. Action languages, answer sets and planning. In The Logic Programming

Paradigm: a 25-Year Perspective. Springer Verlag, 1999. To appear.

[15] Vladimir Lifschitz and Thomas Woo. Answer sets in general nonmonotonic reasoning

(preliminary report). In Bernhard Nebel, Charles Rich, and William Swartout, editors,

Proc. Third Int'l Conf. on Principles of Knowledge Representation and Reasoning, pages

603{614, 1992.

[16] Fangzhen Lin and Yoav Shoham. A logic of knowledge and justi�ed assumptions. Arti�cial

Intelligence, 57:271{289, 1992.

[17] John Lloyd and Rodney Topor. Making Prolog more expressive. Journal of Logic Program-

ming, 3:225{240, 1984.

[18] Victor Marek and Miros law Truszczy�nski. Stable models and an alternative logic program-

ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective. Springer

Verlag, 1999. To appear.

[19] Ilkka Niemel�a and Patrik Simons. E�cient implementation of the well-founded and stable

model semantics. In Proc. Joint Int'l Conf. and Symp. on Logic Programming, pages 289{

303, 1996.

[20] David Pearce. A new logical characterization of stable models and answer sets. In J�urgen

Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-Monotonic Extensions of Logic

26

Programming (Lecture Notes in Arti�cial Intelligence 1216), pages 57{70. Springer-Verlag,

1997.

[21] V.S. Subrahmanian and Carlo Zaniolo. Relating stable models and AI planning domains.

In Proc. ICLP-95, 1995.

