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Abstract. In answer set programming, a program veri�cation task can
be sometimes accomplished by transforming rules into �rst-order sen-
tences so that the task is reduced to reasoning in classical logic, and in-
voking a resolution theorem prover. The proof assistant anthem, which
implements this idea, allows us to reason about programs written in
mini-gringo�a subset of the input language of the grounder gringo.
The goal of this paper is to extend the syntax of terms permitted in that
subset. First, instead of the speci�c choice of arithmetic functions made
in earlier publications on mini-gringo, we approach integer arithmetic in
an abstract way, so that di�erent choices are allowed for di�erent dialects
of the language. Second, symbolic constants can be used now as function
symbols. This generalization preserves the main property of the more
limited form of the language established in earlier work: mini-gringo
rules can be faithfully represented by �rst-order sentences.

1 Introduction

In answer set programming (ASP), a program veri�cation task can be sometimes
accomplished by transforming rules into �rst-order sentences so that the task is
reduced to reasoning in classical logic, and invoking a resolution theorem prover.
The proof assistant anthem,1 which implements this idea, allows us to reason
about programs written in mini-gringo�a subset of the input language of the
ASP grounder gringo.

The semantics of mini-gringo is de�ned in terms of the operator τ , which
transforms a mini-gringo program into a �propositional theory��a set of propo-
sitional formulas. Stable models (answer sets) of a propositional theory are de-
�ned by Paolo Ferraris [8]. Stable models of a mini-gringo program Π are
de�ned as stable models of τ(Π) [14, Section 3].

If a program Π contains variables, then the set τ(Π) is in�nite and thus
cannot be directly used in computational procedures. anthem relies instead on
the operator τ∗ [14, Section 6], which transforms a program into a �nite set of
�rst-order sentences. The target language of τ∗ is two-sorted. There are general
variables, which are similar to variables in mini-gringo programs: the set of
values of a general variable includes both symbolic constants and (symbols for)
integers. The other sort is integer, a subsort of general. The need to distinguish
between general terms and integer terms when we represent rules by formulas

1 https://potassco.org/anthem/ .
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is related to the di�erence between the treatment of function symbols in logic
programming and in �rst-order logic. In an ASP program, the rule

foo(london + paris).

is syntactically correct, even though adding symbolic constants is not de�ned.
(The stable model of this one-rule program is empty.) In �rst-order logic, on the
other hand, functions represented by function symbols are required to be total.
In the target language of τ∗, the expression t1 + t2 is an integer term if both t1
and t2 are integer terms. But if at least one of them is a general term then t1+t2
is syntactically incorrect.

The claim that the translation τ∗ faithfully represents the meaning of mini-
gringo programs can be made precise using in�nitary propositional formulas.
Two-sorted �rst-order sentences can be transformed into in�nitary propositional
formulas by the process of grounding�replacing quanti�ers by in�nite conjunc-
tions and disjunctions. For any mini-gringo program Π, the result of grounding
τ∗(Π) is satis�ed by the same HT-interpretations as τ(Π) [14, Proposition 3].
In other words, the result of grounding τ∗(Π) is strongly equivalent [11, 15] to
τ(Π). It follows that both sets of formulas have the same stable models.

Some recent publications [5, 10, 13] extend mini-gringo by additional con-
structs found in many ASP programs�conditional literals and aggregates�and
show how to extend the de�nition of τ∗ to rules containing these constructs. The
goal of this paper is to extend mini-gringo and τ∗ in a di�erent way: we extend
the class of terms permitted in the language.

According to the Potassco User Guide, the input language of gringo in-
cludes symbols for 12 arithmetic functions on integers: addition, subtraction,
unary minus, multiplication, integer division, modulo, exponentiation, absolute
value, and four bitwise operations [9, Section 3.1.7]. The authors of the original
publication on mini-gringo [14] chose to include the �rst six of these functions
in the language and to disregard the other six. Including all twelve would not be
di�cult, but the technical results of the paper, strictly speaking, would need to
be proved for the extended language anew. We address this di�culty by showing
that integer arithmetic of mini-gringo can be described in an abstract way that
covers many �dialects� of the language. In the de�nition proposed below, the set
of arithmetic functions is a parameter. This is useful, in particular, because in-
teger arithmetic is sometimes treated in di�erent ways in di�erent versions of
Potassco software. In Version 6, the result of integer division will be understood
as the quotient rounded toward negative in�nity, whereas earlier versions round
toward zero.2

In addition, the new version of mini-gringo allows symbolic constants to be
used as uninterpreted function symbols [9, Section 3.1.1]. Such use of symbolic
constants is common in answer set programming. For example, the blocks world
planning program in the Potassco User Guide [9, Section 5.3] expresses that
block b1 is initially on the table by the rule

init(on(b1,table)).

2 Roland Kaminski, personal communication (May 5, 2025).
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Here on is an uninterpreted function symbol.

The main result of this paper shows that mini-gringo rules generalized
as described above can be faithfully represented by �rst-order sentences: we
de�ne τ∗ for the new version of the language in such a way that the result of
grounding τ∗(Π) is strongly equivalent to τ(Π).

The syntax and semantics of extended mini-gringo are described in Sec-
tion 2. The translation τ∗ for the new version of the language is de�ned in Sec-
tion 3. The main result is stated in Section 4, and a proof outline is presented
in Section 5. Section 6 describes the direction of future work.

2 Mini-gringo

2.1 Syntax of terms

We assume that

� two disjoint sets of symbols are selected: basic symbols and variables; the
latter is countably in�nite;

� two disjoint sets of basic symbols are selected: symbolic constants and nu-
merals; a 1-1 correspondence n 7→ n between the set Z of integers and the
set of numerals is selected;

� a set of arithmetic function symbols is selected, disjoint from the set of basic
symbols and the set of variables; for every arithmetic function symbol f , a
function f̂ is selected that maps a subset of Zk to Z, where the arity k of f
is a positive integer.

EXAMPLE. Symbolic constants are strings of letters, digits and underscores that
begin with a lowercase letter. Variables are strings of letters, digits and under-
scores that begin with an upppercase letter. Numerals are (i) 0, (ii) strings of
digits that begin with a digit di�erent from 0, and (iii) - followed by a string of
type (ii). Basic symbols are symbolic constants, numerals, inf and sup. Arith-
metic function symbols are

+ × /

and the corresponding functions f̂ are addition, multiplication and integer divi-
sion (�oor of the quotient).

Mini-gringo terms are de�ned recursively:

� all basic symbols and variables are terms;

� if c is a symbolic constant and t is a non-empty tuple of terms, then c(t) is
a term;

� if f is an arithmetic function symbol of arity k, and t is a k-tuple of terms,
then f(t) is a term;

� if t1 and t2 are terms then t1 .. t2 is a term.
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EXAMPLE, CONTINUED. Abbreviations for mini-gringo terms:

− t is (−1)× t
t1 − t2 is t1 + (− t2)
t1 \ t2 is t1 − t2 × (t1 / t2)

A mini-gringo term (or any other syntactic expression) is ground if it does
not contain variables. A ground mini-gringo term is precomputed if it contains
neither arithmetic function symbols nor the interval symbol. We assume that a
total order on precomputed mini-gringo terms is selected such that numerals
are contiguous (every term between two numerals is a numeral), and, for all
integers m and n, m ≤ n i� m ≤ n.

EXAMPLE, CONTINUED. inf is smaller than numerals, which in turn are
smaller than symbolic constants, which are smaller than complex terms, which
are smaller than sup. Symbolic constants are ordered lexicographically. Com-
plex terms are ordered both structurally and lexicographically, as described in the
last clause of the de�nition of term ordering in the ASP-Core-2 document [1,
Section 3].

2.2 Syntax of programs

An atom is an expression of the form c(t), where c is a symbolic constant and t
is a tuple of mini-gringo terms (possibly empty, in which case the parentheses
can be dropped). An atom c(t) is precomputed if all members of t are precom-
puted mini-gringo terms. A literal is an atom possibly preceded by one or two
occurrences of not .

Comparisons are expressions of the forms t1 ≤ t2 and t1 6= t2, where t1 and t2
are mini-gringo terms. Abbreviations:

t1 ≥ t2 stands for t2 ≤ t1,
t1 = t2 stands for t1 ≤ t2 ∧ t1 ≥ t2,
t1 < t2 stands for t1 ≤ t2 ∧ t1 6= t2,
t1 > t2 stands for t1 ≥ t2 ∧ t1 6= t2.

A rule is an expression of the form

H ← B1 ∧ · · · ∧Bn (1)

(n ≥ 0), where

� the head H is either an atom (then (1) is a basic rule), or an atom in braces
(then (1) is a choice rule), or empty (then (1) is a constraint), and

� each member Bi of the body is a literal or a comparison.

A mini-gringo program is a �nite set of rules.
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2.3 Semantics of terms

The set [t] of values of a ground mini-gringo term t is de�ned recursively:

� if t is a basic symbol then [t] is {t};
� if t is c(t1, . . . , tk), where c is a symbolic constant, then [t] is the set of terms

of the form c(s1, . . . , sk), where si ∈ [ti] (i = 1, . . . , k);
� if t is f(t1, . . . , tk), where f is an arithmetic function symbol, then [t] is the

set of numerals of the form f̂(n1, . . . , nk), where n1, . . . , nk is a tuple in the

domain of f̂ such that ni ∈ [ti] (i = 1, . . . , k);
� if t is t1 .. t2 then [t] is the set of numerals n for all integers n such that, for

some integers n1, n2,

n1 ∈ [t1], n2 ∈ [t2], n1 ≤ n ≤ n2.

It is clear that values of a ground mini-gringo term are precomputed mini-
gringo terms, and that [t] is the singleton {t} whenever t is precomputed.

EXAMPLE, CONTINUED.

[2+ 2] = {4}, [(1 .. 2)× 2] = {2, 4}, [2 / 0] = [london+ paris] = ∅.

For any ground mini-gringo terms t1 . . . , tk, by [t1, . . . , tk] we denote the
set of tuples s1, . . . , sk of terms such that s1 ∈ [t1], . . . , sk ∈ [tk].

2.4 Semantics of programs

The translation τ , de�ned below, transforms literals, comparisons and rules into
propositional combinations of precomputed atoms. For any ground atom c(t),

� τ(c(t)) is
∨

s∈[t] c(s),

� τ(not c(t)) is
∨

s∈[t] ¬c(s), and
� τ(not not c(t)) is

∨
s∈[t] ¬¬c(s).

For any ground comparison t1 ≺ t2, τ(t1 ≺ t2) is

> (�true�), if there exist s1 in [t1] and s2 in [t2] such that s1 ≺ s2;
⊥ (�false�), otherwise.

EXAMPLE, CONTINUED.

τ(foo((1 .. 2)× 2)) = foo(2) ∨ foo(4),
τ(foo(london+ paris)) = ⊥,
τ(london ≤ paris) = >.

If Body is a conjunction B1 ∧B2 ∧ · · · of ground literals and ground compar-
isons then τ(Body) stands for the conjunction τ(B1) ∧ τ(B2) ∧ · · · .
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If R is a ground basic rule c(t)← Body then τ(R) is the propositional formula

τ(Body)→
∧
s∈[t]

c(s).

If R is a ground choice rule {c(t)} ← Body then τ(R) is the propositional formula

τ(Body)→
∧
s∈[t]

(c(s) ∨ ¬c(s)).

If R is a ground constraint ← Body then τ(R) is ¬τ(Body).
An instance of a rule is a ground rule obtained from it by substituting pre-

computed mini-gringo terms for variables. For any program Π, τ(Π) is the set
of the propositional formulas τ(R) for all instances R of the rules of Π.

A set of precomputed atoms is a stable model of a program Π if it is a stable
model of τ(Π).

3 Representing terms and programs by formulas

3.1 Signature σ0

An arithmetic function symbol f of arity k is total if the domain of f̂ is the
entire set Zk, and partial otherwise.

By σ0 we denote the two-sorted signature that consists of

(i) the sort general and its subsort integer ;

(ii) all numerals as object constants of sort integer ;

(iii) all basic symbols other than numerals as object constants of sort general ;

(iv) expressions c\k, where c is a symbolic constant and k is a positive integer, as
function constants of arity k, with both arguments and value of sort general ;

(v) all total arithmetic function symbols as function constants with both argu-
ments and value of sort integer ;

(vi) expressions c/k, where c is a symbolic constant and k is a nonnegative integer,
as predicate constants of arity k, with arguments of sort general ;

(vii) the symbol ≤ as a binary predicate constant with both arguments of sort
general.

(Partial arithmetic function symbols are not included, because they do not rep-
resent total functions even in application to integers.)

EXAMPLE, CONTINUED. Object constants of sort general are symbolic con-
stants, inf and sup. Function constants of group (v) are + and × (but not /).

We identify general variables with variables of mini-gringo.
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3.2 Signature σ−
0 and the standard interpretation

By σ−0 we denote the signature obtained from σ0 by removing the predicate
symbols c/k. The standard interpretation S of σ−0 is de�ned as follows:

� its domain of the sort general is the set of all precomputed mini-gringo
terms;

� its domain of the sort integer is the set of all numerals;
� if r is a basic symbol then rS = r;
� for every function constant c\k and precomputed mini-gringo terms t1, . . . , tk,

(c\k)S(t1, . . . , tk) = c(t1, . . . , tk);

� for every total arithmetic function symbol f and integers n1, . . . , nk, where k
is the arity of f ,

fS(n1, . . . , nk) = f̂(n1, . . . , nk);

� ≤S is the order on precomputed mini-gringo terms speci�ed in the de�ni-
tion of mini-gringo (Section 2.1).

A ground term over σ0 is precomputed if it does not contain arithmetic func-
tion symbols. It is clear that the map r 7→ rS is a 1-1 correspondence between
precomputed terms over σ0 and precomputed mini-gringo terms; rS can be
obtained from r by replacing each function symbol c\k with c.

The set of sentences over σ−0 that are satis�ed by the standard interpretation
is denoted by Std.

EXAMPLE, CONTINUED. The formula

∃X¬∃N(N = X), (2)

where X is a general variable and N is an integer variable, belongs to Std: take X
to be inf. By Lagrange's four-square theorem, the formula

∀N(N ≥ 0→ ∃IJKL(N = I × I + J × J +K ×K + L× L)),

where N , I, J , K, L are integer variables, belongs to Std as well.

Formula (2) is a sentence over the signature σ−0 in every possible dialect of
mini-gringo. But it does not necessarily belong to Std in dialects other than
our running example, because the general framework of Section 2.1 allows the
set of basic symbols to contain nothing other than numerals.

3.3 Representing mini-gringo terms by formulas

Assume that for every partial arithmetic function symbol f we chose a formula

Vf (N1, . . . , Nk+1)
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over σ−0 , where k is the arity of f , and N1, . . . , Nk+1 are integer variables, with

all free variables explicitly shown, which describes the function f̂ in the following
sense: for any integers n1, . . . , nk+1,

Vf (n1, . . . , nk+1) ∈ Std i� f̂(n1, . . . , nk) = nk+1. (3)

EXAMPLE, CONTINUED. The formula

(0 ≤ N1 −N2 ×N3 < N2) ∨ (0 ≥ N1 −N2 ×N3 > N2)

can be chosen as V/. Indeed, the formula

(0 ≤ n1 − n2 × n3 < n2) ∨ (0 ≥ n1 − n2 × n3 > n2)

is satis�ed by the standard interpretation i�

0 ≤ n1 − n2 × n3 < n2 (4)

or
0 ≥ n1 − n2 × n3 > n2. (5)

Condition (4) is equivalent to the condition

n2 > 0 and 0 ≤ n1/n2 − n3 < 1

and consequently to

n2 > 0 and n3 ≤ n1/n2 < n3 + 1.

Similarly, condition (5) is equivalent to the condition

n2 < 0 and 0 ≤ n1/n2 − n3 < 1

and consequently to

n2 < 0 and n3 ≤ n1/n2 < n3 + 1.

For a mini-gringo term t and a general variable X that does not occur in t,
val t(X) is the formula over σ0 de�ned recursively:

� if t is a basic symbol or a variable then val t(X) is X = t;
� if t is c(t1, . . . , tk), where c is a symbolic constant, then val t(X) is

∃X1 . . . Xk(val t1(X1) ∧ · · · ∧ val tk(Xk) ∧X = (c\k)(X1, . . . , Xk)),

where X1, . . . , Xk are general variables that do not occur in t;
� if t is f(t1, . . . , tk), where f is a total arithmetic function symbol, then

val t(X) is

∃N1 . . . Nk(val t1(N1) ∧ · · · ∧ val tk(Nk) ∧X = f(N1, . . . , Nk)),

where N1, . . . , Nk are integer variables that do not occur in t;
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� if t is f(t1, . . . , tk), where f is a partial arithmetic function symbol, then
val t(X) is

∃N1 . . . NkNk+1(val t1(N1) ∧ · · · ∧ val tk(Nk) ∧Nk+1 = X ∧
Vf (N1, . . . , Nk+1)),

where N1, . . . , Nk+1 are integer variables that do not occur in t;
� if t is t1 .. t2 then val t(X) is

∃N1N2(val t1(N1) ∧ val t2(N2) ∧N1 ≤ X ≤ N2),

where N1, N2 are integer variables that do not occur in t.

The formula val t(X) expresses that X is a value of t, as de�ned in Section 2.3
for ground t; this is made precise in Lemma 3 (Section 5). It is clear that the
free variables of this formula are X and the variables occurring in t.

EXAMPLE, CONTINUED. The formula valc(Y )(X) is

∃X1(X1 = Y ∧X = (c/1)(X1)).

The formula valY+Z(X) is

∃N1N2(N1 = Y ∧N2 = Z ∧X = N1 +N2).

The formula valY/Z(X) is

∃N1N2N3(N1 = Y ∧N2 = Z ∧N3 = X
∧ ((0 ≤ N1 −N2 ×N3 < N2) ∨ (0 ≥ N1 −N2 ×N3 > N2))).

3.4 Representing programs by formulas

The translation τB , de�ned below, produces a formula that characterizes the
meaning of an expression in the body of a rule; this is made precise in Lemma 4
(Section 5). This translation transforms

� c(t1, . . . , tk) into

∃X1 · · ·Xk(val t1(X1) ∧ · · · ∧ val tk(Xk) ∧ (c/k)(X1, . . . , Xk));

� not c(t1, . . . , tk) into

∃X1 · · ·Xk(val t1(X1) ∧ · · · ∧ val tk(Xk) ∧ ¬(c/k)(X1, . . . , Xk));

� not not c(t1, . . . , tk) into

∃X1 · · ·Xk(val t1(X1) ∧ · · · ∧ val tk(Xk) ∧ ¬¬(c/k)(X1, . . . , Xk));

� t1 ≺ t2 into ∃X1X2(val t1(X1) ∧ val t2(X2) ∧X1 ≺ X2);
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where each Xi is a general variable.
If Body is a conjunction B1 ∧ B2 ∧ · · · of literals and comparisons then

τB(Body) stands for the conjunction τB(B1) ∧ τB(B2) ∧ · · · .
The translation τ∗ converts a basic rule

c(t1, . . . , tk)← Body

of a program Π into the formula

∀̃(val t1(X1) ∧ · · · ∧ val tk(Xk) ∧ τB(Body)→ (c/k)(X1, . . . , Xk)),

where X1, . . . , Xk are alphabetically �rst general variables that do not occur
in Π, and ∀̃ denotes universal closure. A choice rule

{c(t1, . . . , tk)} ← Body

is converted into

∀̃(val t1(X1) ∧ · · · ∧ val tk(Xk) ∧ τB(Body) ∧ ¬¬(c/k)(X1, . . . , Xk)
→ (c/k)(X1, . . . , Xk)),

and a constraint ← Body becomes ∀̃¬τB(Body).
By τ∗(Π) we denote the set of sentences τ∗(R) for all rules R of Π.

4 Relationship between Π and τ ∗(Π)

The relationship between Π and τ∗(Π) can be described using the grounding
translation gr , which transforms sentences over σ0 into in�nitary propositional
combinations of precomputed atoms. This translation is de�ned recursively:

� if F is (c/k)(r1, . . . , rk) then gr(F ) is c(rS1 , . . . , r
S
k );

� if F is r1 ≺ r2, where ≺ is = or ≤, then gr(F ) is > if rS1 ≺ rS2 , and ⊥
otherwise;

� gr(⊥) is ⊥;
� gr(F �G) is gr(F )� gr(G) for every binary connective �;
� gr(∀X F (X)) is the conjunction of the formulas gr(F (r)) over all precom-

puted terms r over σ0 if X is a general variable, and over all numerals r if
X is an integer variable;

� gr(∃X F (X)) is the disjunction of the formulas gr(F (r)) over all precom-
puted terms r over σ0 if X is a general variable, and over all numerals r if
X is an integer variable.

(There is no clause for negation here because we treat ¬F as shorthand for
F → ⊥.)

Miroslaw Truszczynski [16] extended the stable model semantics of proposi-
tional theories proposed by Paolo Ferraris [8] to the in�nitary case. Sets H1, H2

of in�nitary formulas are strongly equivalent if, for every set H of in�nitary for-
mulas, the sets H1∪H and H2∪H have the same stable models [11, Section 3.1].
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Strong equivalence of in�nitary formulas can be characterized as equivalence in
the deductive system denoted by HT∞ [11, Corollary 2].3

Theorem. For any mini-gringo program Π, gr(τ∗(Π)) is strongly equivalent
to τ(Π).

Corollary. For any mini-gringo program Π, gr(τ∗(Π)) has the same stable
models as Π.

5 Proof outline

Lemma 1. For any formula F (X) over σ−0 that has no free variables other
than X,

(a) if X is a general variable then

• the sentence ∀X F (X) belongs to Std i� for every precomputed term r
over σ0 the sentence F (r) belongs to Std;

• the sentence ∃X F (X) belongs to Std i� for at least one precomputed
term r over σ0 the sentence F (r) belongs to Std;

(b) if X is an integer variable then

• the sentence ∀X F (X) belongs to Std i� for every integer n the sentence
F (n) belongs to Std;

• the sentence ∃X F (X) belongs to Std i� for a least one integer n the
sentence F (n) belongs to Std.

Proof. Recall that a sentence belongs to Std i� it is satis�ed by the standard
interpretation S. (a) The domain of the sort general in S is the set of precom-
puted terms of mini-gringo, and every element of this domain is rS for some
precomputed term r over σ0. (b) The domain of the sort integer in S is the set
of numerals, and every element of this domain is n for some integer n.

Lemma 2. For any sentence F over σ−0 , gr(F ) is strongly equivalent to > if
F ∈ Std, and to ⊥ otherwise.

The proof is by induction on the size of F , using Lemma 1.

Lemma 3. Let t(Z) be a mini-gringo term, where Z is a list of variables
that contains every variable occurring in t(Z), and let F (Z, X) stand for the
formula valt(Z)(X). For any list q of precomputed terms over σ0 of the same
length as Z and any precomputed term r over σ0, the formula gr(F (q, r)) is
strongly equivalent to > if rS ∈ [t(qS)], and to ⊥ otherwise.

Proof by induction on t. There are several cases to consider, depending on
whether t(Z) is a basic symbol (Case 1); a variable (Case 2); c(t1(Z), . . . , tk(Z)),

3 This system is an in�nitary version of the logic of here-and-there�the three-
valued logic, intermediate between intuitionistic and classical, introduced by Arend
Heyting [12], which plays an important role in the theory of stable models.
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where c is a symbolic constant (Case 3); f(t1(Z), . . . , tk(Z)), where f is an arith-
metic function symbol (Case 4); t1(q) .. t2(q) (Case 5). We consider here Case 4
as the most interesting. In this case, t(qS) is f(t1(q

S), . . . , tk(q
S)); [t(qS)] is the

set of numerals f̂(n1, . . . , nk), where n1, . . . , nk is a tuple in the domain of f̂
such that, for all i, ni ∈ [ti(q

S)]. The induction hypothesis is that for any pre-
computed terms r1, . . . , rk over σ0, gr(Fi(q, ri)) is strongly equivalent to > if
rSi ∈ [ti(q)], and to ⊥ otherwise (i = 1, . . . , k).

Case 4.1: f is total. The formula F (Z, X) is

∃N1 . . . Nk(F1(Z, N1) ∧ · · · ∧ Fk(Z, Nk) ∧X = f(N1, . . . , Nk)),

where Fi(Z, Xi) is val t(Z)(Xi), so that F (q, r) is

∃N1 . . . Nk(F1(q, N1) ∧ · · · ∧ Fk(q, Nk) ∧ r = f(N1, . . . , Nk)).

The formula gr(F (q, r)) is the disjunction of the conjunctions

gr(F1(q, n1)) ∧ · · · ∧ gr(Fk(q, nk)) ∧Gn1···nk
(6)

where n1, . . . , nk is an arbitrary tuple of integers, and Gn1···nk
stands for > if

rS = f̂(n1, . . . , nk), (7)

and for ⊥ otherwise. Since r is precomputed, condition (7) can be rewritten

as r = f̂(n1, . . . , nk). Case 4.1.1: r is a numeral n for some integer n. Then
gr(F (q, r)) is strongly equivalent to the disjunction of the formulas

gr(F1(q, n1)) ∧ · · · ∧ gr(Fk(q, nk)),

where n1, . . . , nk is an arbitrary tuple of integers such that

f̂(n1, . . . , nk) = n. (8)

By the induction hypothesis, this conjunction is srongly equivalent to > if

n1 ∈ [t1(q
S)], . . . , nk ∈ [tk(q

S)], (9)

and to ⊥ otherwise. By (8), condition (9) is equivalent to n ∈ [t(q)]. Case 4.1.2:
r is not a numeral. Then rS 6∈ [t(q)], and all disjunctive terms (6) of gr(F (q, r))
are strongly equivalent to ⊥.

Case 4.2: f is partial. The formula F (Z, X) is

∃N1 . . . Nk+1(F1(Z, N1) ∧ · · · ∧ Fk(Z, Nk) ∧Nk+1 = X ∧ Vf (N1, . . . , Nk+1)),

where Fi(Z, Xi) is val t(Z)(Xi), so that F (q, r) is

∃N1 . . . Nk+1(F1(q, N1) ∧ · · · ∧ Fk(q, Nk) ∧Nk+1 = r ∧ Vf (N1, . . . , Nk+1)).
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The formula gr(F (q, r)) is the disjunction of the conjunctions

gr(F1(q, n1)) ∧ · · · ∧ gr(Fk(q, nk)) ∧Gnk+1
∧ gr(Vf (n1, . . . , nk+1)) (10)

where n1, . . . , nk+1 is an arbitrary tuple of integers, and Gn stands for > if r
is n and for ⊥ otherwise. Case 4.2.1: r is a numeral n. By Lemma 2, it follows
that gr(F (q, r)) is strongly equivalent to the disjunction of the conjunctions

gr(F1(q, n1)) ∧ · · · ∧ gr(Fk(q, nk))

where n1, . . . , nk is an arbitrary tuple of integers satisfying the condition

Vf (n1, . . . , nk, n) belongs to Std.

By (3), this condition is equivalent to (8), and we can reason as in Case 4.1.1.
Case 4.2.2: r is not a numeral. Then rS 6∈ [t(q)]; all disjunctive terms (10) of
gr(F (q, r)) are strongly equivalent to ⊥, because the conjunctive term Gnk+1

in
each of them is ⊥.

Lemma 4. Let Body(Z) be a conjunction of literals and comparisons, where Z
is the list of all its variables, and let F (Z) stand for the formula τB(Body(Z)).
For any list q of precomputed terms over σ0 of the same length as Z, the formula
gr(F (q)) is strongly equivalent to τ(Body(qS)).

The proof uses Lemma 3.

In the proof of the theorem, it is su�cient to consider the case when the
program consists of a single rule R. The proof uses Lemmas 3 and 4 and distin-
guishes between three cases, depending on whether R is a basic rule, a choice
rule, or a constraint.

6 Future work

In published research on the original version of mini-gringo, the possibility of
relating τ∗ to τ is the basis of results on using τ∗ for program veri�cation [2,
Theorem 3], [3, Section 7], [4, Theorems 1 and 2], [6, Theorem 2], [7, Theorem 3].
The result of this paper will allow us to extend this work to generalized mini-
gringo and to extend the class of programs that can be veri�ed by anthem.
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