
A Normal Form for Rules Containing Arithmetic Operations

Jorge Fandinno1 , Yuliya Lierler1 , Vladimir Lifschitz2
1University of Nebraska Omaha
2University of Texas at Austin

{jfandinno, ylierler}@unomaha.edu, vl@cs.utexas.edu

Abstract
This paper describes the process of translating rules that may
contain arithmetic operations into the language of first-order
logic. It identifies a normal form for which this transforma-
tion can be performed in a particularly simple and natural
way. Other rules can be converted to this normal form by
steps that preserve their meaning under the stable model se-
mantics.

1 Introduction
This paper is about translating rules in the sense of answer
set programming (ASP) (Marek and Truszczynski 1999;
Niemelä 1999; Lifschitz 2019) into the language of first-
order logic. Such translations help us clarify the relationship
between logic programs and first-order theories as knowl-
edge representation mechanisms. They are important also
because of their role in the design of ANTHEM (Fandinno et
al. 2025), a proof assistant for verifying ASP programs that
operates by transforming verification tasks into first-order
reasoning problems. We are interested in translations that
are sound with respect to the stable model semantics, which
has been defined both for ASP rules (Gebser et al. 2015)
and for first-order formulas (Pearce and Valverde 2005;
Ferraris, Lee, and Lifschitz 2011; Truszczynski 2012).

To illustrate some of the issues involved, compare the rule

q(X,Y +1)← p(X,Y ) (1)

with its counterpart in the language of first-order logic:

∀XY (p(X,Y )→ q(X,Y +1)).

When rule (1) is grounded, substituting symbolic constants
for Y is not allowed, because Y occurs in the scope of an
arithmetic operation (Calimeri et al. 2020, Section 3). To re-
flect this difference between X and Y in the formula above,
we have to distinguish between variables of the sort general,
such as X , and variables of the subsort integer, such as Y
in this example. The syntax of the language requires that all
arguments of an arithmetic operation be integer terms.

Consider now a rule containing the integer division oper-
ation:

q(X/Y +1)← p(X,Y ). (2)
Since division is not a total function on domains that include
zero, the expression X/Y with integer variables X , Y can-
not be allowed in a first-order language: the semantics of

these languages requires that every function symbol repre-
sent a total function. Transforming rule (2) into a formula
has to be less straightforward and less natural than in the
case of rule (1).

Translating rules containing placeholders (Gebser et al.
2019, Section 3.15) may be challenging in another way.
Placeholders for integers are symbolic constants that are ex-
pected to be assigned numeric values before executing the
program, and they may occur in the scope of an arithmetic
operation. The fact p(n+1), for instance is not a syntac-
tically correct formula in the two-sorted language outlined
above, because the first argument of addition in this expres-
sion is not an integer term. This fact can be represented by
the longer formula

∀I(I = n→ p(I+1)), (3)
where I is an integer variable.

ANTHEM 2.0 implements two procedures for converting
rules into formulas, τ∗ and ν (Fandinno et al. 2025, Sec-
tion 3.1). Each of them applies to rules in a fragment of
the input language of the ASP grounder GRINGO (Gebser et
al. 2019, Section 3.1), called mini-GRINGO, and generates
formulas in a two-sorted first-order language. The transla-
tion τ∗ (Lifschitz, Lühne, and Schaub 2019, Section 6) is
applicable to all mini-GRINGO rules, whereas ν (Lifschitz
2021) is limited to rules satisfying some syntactic condi-
tions. For example, ν is not applicable to rule (2). On the
other hand, when ν is applicable, the result is often sim-
pler and more natural than the result of applying τ∗. This
makes ν more attractive for the user of ANTHEM, who often
needs to read formulas representing rules.

In this paper, we propose a method of representing rules
by formulas that combines the advantages of τ∗ and ν: on
the one hand, it is applicable to all mini-GRINGO rules; on
the other, it often produces relatively simple translations.
The process involves converting the given mini-GRINGO
rule to a certain normal form. For example, the normal form
of rule (2) is

q(Z+1)← p(X,Y ) ∧ Z = X/Y. (4)
The normal form of the fact p(n+1) is

p(X+1)← X = n. (5)
The normal form of the fact p(1 .. 8) (“p holds for all num-
bers between 1 and 8”) is

p(X)← X = 1 .. 8. (6)



Rules in normal form can be transformed into two-sorted
formulas using a generalization of the translation ν. For ex-
ample, the result of applying generalized ν to rule (5) is for-
mula (3).

The role of the normal form described in this paper is
determined by two theorems. First, if N is the normal
form of a mini-GRINGO rule R then τ∗(N) is intuitionis-
tically equivalent to τ∗(R). The fact that conversion to nor-
mal form can be justified without using the law of the ex-
cluded middle is essential because intuitionistically accept-
able transformations are known to preserve stable models of
a first-order theory (Pearce and Valverde 2005). Full clas-
sical logic does not have this property. For instance, if a
first-order theory includes the axiom ∀X(¬p(X) → q(X))
then replacing that axiom by the classically equivalent for-
mula ∀X(¬q(X)→ p(X)) may change its stable models.

Second, the result of applying the generalized ν to
any rule N in normal form is inuitionistically equivalent
to τ∗(N).

In Sections 2 and 3 we review the syntax of mini-GRINGO
rules and the definition of the translation τ∗. Our version
of mini-GRINGO is more expressive than the class of pro-
grams studied in earlier work on transforming rules into
formulas, because we allow symbolic constants to be used
as function symbols. It is also more general than earlier
work in the sense that we deal here with arbitrary dialects
of mini-GRINGO (Lifschitz 2025), instead of one specific di-
alect. The process of converting rules to normal form is de-
scribed in Section 4, and the generalized natural translation
in Section 5. In Section 6, we show how formulas produced
by the natural translation can be made completable. This ad-
ditional transformation is required for constructing the com-
pletion of a mini-gringo program (Fandinno, Lifschitz, and
Temple 2024, Section 3.1)—a step that plays an important
role in the operation of ANTHEM (Fandinno et al. 2025, Sec-
tion 3.2.2). Proofs of the main results of this paper are out-
lined in Sections 7 and 8.

2 Review: the syntax of mini-GRINGO
The syntax of rules is determined by a mini-GRINGO signa-
ture, which consists of
• a set of basic symbols, with some of them designated as

symbolic constants,
• a countably infinite set of variables, disjoint from the set

of basic symbols, and
• a set of arithmetic function symbols, with a positive inte-

ger, called its arity, assigned to each of them.
For example, we can define a mini-GRINGO signature Σ0

by saying that symbolic constants are strings of letters and
digits that begin with a lowercase letter; basic symbols are
symbolic constants and integers (both positive and negative)
in decimal notation; variables are strings of letters and dig-
its that begin with an uppercase letter; the binary arithmetic
function symbols are

.. + − × /

(Mini-GRINGO) terms over a mini-GRINGO signature Σ are
defined recursively:

• all basic symbols and variables of Σ are terms;
• if c is a symbolic constant of Σ, and t is a non-empty tuple

of terms (separated by commas), then c(t) is a term;
• if f is a k-ary arithmetic function symbol of Σ, and t is a
k-tuple of terms, then f(t) is a term.

A term is precomputed if it contains neither variables nor
arithmetic function symbols. In other words, precomputed
terms are formed from basic symbols using symbolic func-
tion symbols.

Atoms over Σ are symbolic constants and expressions of
the form c(t), where t is a non-empty tuple of terms. The
expression c() is alternative notation for the atom c. A lit-
eral over Σ is an atom possibly preceded by one or two oc-
currences of not. Comparisons over Σ are expressions of the
forms t1 ≺ t2 where t1 and t2 are terms and ≺ is one of the
binary relation symbols

= ̸= < ≤ > ≥
A rule over Σ is an expression of the form

H ← B1 ∧ · · · ∧Bn (7)

(n ≥ 0), where the head H is either an atom or empty,
and each member Bi of the body is a literal or a compari-
son. Rules with the empty body are facts, and rules with the
empty head are constraints. Rules of the form

H ← B1 ∧ · · · ∧Bn ∧ not not H,

where H is an atom, are called choice rules and can be writ-
ten as

{H} ← B1 ∧ · · · ∧Bn.

A dialect over a mini-GRINGO signature consists of
• a set of basic symbols called numerals, disjoint from the

set of symbolic constants,
• a 1–1 correspondence n 7→ n between the set Z of inte-

gers and the set of numerals,
• a total order on precomputed terms such that numerals

are contiguous (every term between two numerals is a nu-
meral), and, for all integers m and n, m ≤ n iff m ≤ n,

• for every arithmetic function symbol f , a function f̂ that
maps Zk to the powerset of Z, where k is the arity of f .1

For example, we can define a dialect D0 of mini-GRINGO
over the signature Σ0 by saying that numerals are integers
written in decimal notation; that n is the representation of n
in decimal notation; that basic symbols are ordered as in the
language ASP-Core-2 (Calimeri et al. 2020, Section 3); and
that the functions .̂., +̂, −̂ and ×̂ are defined by the formulas

.̂.(m,n) = {k : m ≤ k ≤ n};
+̂(m,n) = {m+ n}; −̂(m,n) = {m− n};

×̂(m,n) = {m× n};

if n ̸= 0 then /̂(m,n) = {⌊m/n⌋}; /̂(m, 0) = ∅.
1This description of f̂ is different than in the paper by Lif-

schitz (2025). That version would not allow us to include the inter-
val symbol .. among arithmetic function symbols.



In this example, every basic symbol is either a symbolic con-
stant or a numeral. The signature Σ0 can be extended by
adding #sup and #inf (Gebser et al. 2019, Section 3.1.1)
to the set of basic symbols; those would be neither symbolic
constants nor numerals.

3 Review: translation τ ∗

3.1 Target language of τ∗

An arithmetic function symbol f of a dialect of mini-
GRINGO is definite if all values of f̂ are singletons, and in-
definite otherwise. In the dialect D0, the symbols .. and /

are indefinite (the latter because /̂(m, 0) is empty). This dis-
tinction is important because representing definite function
symbols in a first-order language is particularly easy.

For any dialect D of mini-GRINGO, by σ(D) we denote
the two-sorted signature that2 consists of

• the sort general and its subsort integer;

• all numerals of D as object constants of sort integer;

• all basic symbols of D other than numerals as object con-
stants of sort general;

• expressions c\k, where c is a symbolic constant of D
and k is a positive integer, as k-ary function constants,
with both arguments and value of sort general;

• all definite arithmetic function symbols of D as function
constants with both arguments and value of sort integer;

• expressions c/k, where c is a symbolic constant of D
and k is a nonnegative integer, as k-ary predicate con-
stants with arguments of sort general;

• the symbol ≤ as a binary predicate constant with both ar-
guments of sort general.

For example, the signature σ(D0) includes the function
symbols +, − and ×, but neither the division symbol nor
the interval symbol.

Order relations other than ≤ are defined as abbreviations.
We identify variables of the sort general with variables of

the dialect D.

3.2 Definable symbols
By σ−(D) we denote the signature obtained from σ(D) by
removing all the predicate constants c/k. The standard in-
terpretation S of σ−(D) is defined as follows:

• its domain of the sort general is the set of all precomputed
terms of D,

• its domain of the sort integer is the set of all numerals
of D,

• if r is a basic symbol of D then rI = r;

• for every function constant c\k and precomputed terms
t1, . . . , tk of D,

(c\k)I(t1, . . . , tk) = c(t1, . . . , tk);

2Syntax and semantics of many-sorted languages are reviewed
by Fandinno, Lifschitz, and Temple (2024) in Appendix A.

• for every definite arithmetic function symbol f
of D and integers n1, . . . , nk, where k is the arity
of f , f I(n1, . . . , nk) = n for the integer n such that
f̂(n1, . . . , nk) = {n};

• ≤I is the order relation of the dialect D.

The set of sentences over σ−(D) that are satisfied by the
standard interpretation S is denoted by Std(D).

Let f be a k-ary arithmetic function symbol of D, and
let F (I1, . . . , Ik+1) be a formula over the signature σ−(D)
that contains neither symbolic object constants nor free vari-
ables other than the integer variables I1, . . . , Ik+1. We say
that the formula F (I1, . . . , Ik+1) defines f if, for all inte-
gers n1, . . . , nk+1,

nk+1∈ f̂(n1, . . . , nk) iff F (n1, . . . , nk+1)∈Std(D). (8)

If such a formula exists then we say that the symbol f is
definable.

Every definite function symbol f is definable: we can take
F (I1, . . . , Ik+1) to be f(I1, . . . , Ik) = Ik+1. Indeed, the
formula f(n1, . . . , nk) = nk+1 is satisfied by the standard
interpretation iff f̂(n1, . . . , nk) = {nk+1}, which is equiv-
alent to the left-hand side of (8).

In the dialect D0, all arithmetic function symbols are de-
finable. Indeed, +, − and × are definable because they are
definite. The formula I1 ≤ I3 ≤ I2 defines the interval
symbol, and the formula

(0 ≤ I1 − I2 × I3 < I2) ∨ (0 ≥ I1 − I2 × I3 > I2)

defines integer division.
In the rest of the paper, D is a dialect of mini-GRINGO

with at least one symbolic constant, such that all its arith-
metic function symbols are definable.

3.3 Values of a term
For a mini-GRINGO term t and a general variable V that does
not occur in t, the formula val t(V ) over σ(D), defined be-
low, expresses that V is a value of t. In writting this def-
inition, it is convenient to use the following notation: If t
and V are lists of terms t1, . . . , tk and variables V1, . . . , Vk

of the same length, respectively, then valt(V) stands for the
conjunction val t1(V1) ∧ · · · ∧ val tk(Vk). The definition is
recursive:

• if t is a basic symbol or a variable then val t(V ) is V = t;

• if t is c(t), where c is a symbolic constant, then val t(V )
is

∃Y(valt(Y) ∧ V = (c\k)(Y)),

where Y = Y1, . . . , Yk are general variables that do not
occur in t;

• if t is f(t), where f is a definite arithmetic function sym-
bol, then val t(V ) is

∃I(valt(I) ∧ V = f(I)),

where I = I1, . . . , Ik are integer variables;



∀X1X2XY (X1 = X ∧ ∃I1I2(I1 = Y ∧ I2 = 1 ∧X2 = I1+I2) ∧ (p/2)(X1, X2)→ (q/2)(X1, X2)), (9)
∀X1(∃I1I2I3(I1 = 1 ∧ I2 = 8 ∧ I3 = X1 ∧ I1 ≤ I3 ≤ I2)→ (p/1)(X1)) (10)

Figure 1: Result of applying τ∗ to rule (1) and fact p(1..8)

• if t is f(t), where f is an indefinite arithmetic function
symbol, then val t(V ) is

∃IIk+1(valt(I) ∧ Ik+1 = V ∧ F (I, Ik+1)),

where I = I1, . . . , Ik and Ik+1 are integer variables, and
F (I1, . . . , Ik+1) is a formula that defines f .

For example, the formula valX(V ) is V = X . In the di-
alect D0, valY+1(V ) is

∃I1I2(I1 = Y ∧ I2 = 1 ∧ V = I1+I2),

and val1 .. 8(V ) is

∃I1I2I3(I1 = 1 ∧ I2 = 8 ∧ I3 = V ∧ I1 ≤ I3 ≤ I2).

3.4 Definition of τ∗
The translation τB , defined below, produces a formula that
characterizes the meaning of an expression in the body of a
mini-GRINGO rule. It transforms
• c(t), where c is a symbolic constant, into

∃X(valt(X) ∧ (c/k)(X));

• not c(t) into

∃X(valt(X) ∧ ¬(c/k)(X));

• not not c(t) into

∃X(valt(X) ∧ ¬¬(c/k)(X));

• t1 ≺ t2, into ∃X1X2(val t1(X1)∧val t2(X2)∧X1 ≺ X2);
where X = X1, . . . , Xk and t = t1, . . . , tk respectively are
lists of general variables and terms of the same length such
that no Xi occurs in t.

For example, the result of applying τB to the atom
p(X,Y ) is

∃X1X2(X1 = X ∧X2 = Y ∧ (p/2)(X1, X2)).

If Body is a conjunction B1 ∧ · · · ∧ Bn of literals
and comparisons then τB(Body) stands for the conjunction
τB(B1) ∧ · · · ∧ τB(Bn).

Now we are ready to define the translation τ∗. It converts
a rule

c(t)← Body
into the formula

∀̃(valt(X) ∧ τB(Body)→ (c/k)(X)),

where X = X1, . . . , Xk and t = t1, . . . , tk respectively
are lists of general variables and terms of the same length,
and ∀̃ denotes universal closure; and a constraint ← Body
into ∀̃¬τB(Body).

For example, the result of applying τ∗ to rule (1) is the
sentence (9) in Figure 1, and the result of applying τ∗ to
fact p(1 .. 8) is the sentence (10) in the same figure.

4 Normal form
An equation is a comparison of the form t1 = t2. An equa-
tion is numeric if all basic symbols occurring in it are nu-
merals.

A rule is in normal form if
(a) every basic symbol that occurs in it in the scope of an

arithmetic function symbol is a numeral, and
(b) every occurrence of a term of the form f(t) with indefi-

nite f is the right-hand side of a numeric equation.
For example, all rules that do not contain arithmetic function
symbols are in normal form. In the dialect D0, rules (1)
and (4)–(6) are in normal form. Rule (2) and the fact p(1 .. 8)
are not in normal form because they violate condition (b).
The facts p(n+1) and p(n(3)+1) violate condition (a).

We will show that any rule can be converted to normal
form by

replacing an occurrence of some term t by a fresh
variable V and adding the equation V = t to the
body of the rule

(11)

one or more times.
The description of this process uses the following termi-

nology. An occurrence of a term of the form f(t) in a rule
is critical if
• it is not the right-hand side of any equation,
• the function symbol f is indefinite, and
• there are no indefinite function symbols in t.
In rule (2), for example, X/Y is critical. In the fact p(1 .. 8),
1 .. 8 is critical. In the rule

q(1 .. (X/2))← p(X) (12)

X/2 is critical, and 1 .. (X/2) is not. Furthermore, let t be
either a basic symbol different from numerals or a term of
the form c(t), where c is a symbolic constant. About an
occurrence of t in a rule we say that it is problematic if it is
in the scope of an arithmetic function symbol, and that it is
nasty if it is the left-hand side of an equation that includes
an indefinite arithmetic function symbol. For example, n in
p(n+1) and n(3) in p(n(3)+1) are problematic; n in the
rule

p(X)← n = X/2 (13)
is nasty.

A rule in normal form does not contain term occurrences
of any of these three types. Indeed, condition (a) in the def-
inition of normal form eliminates problematic occurrences,
and condition (b) eliminates both critical and nasty occur-
rences.

The normal form of a rule is constructed by the following
algorithm:



while the rule contains a problematic occurrence, apply to
it transformation (11);
while the rule contains a critical occurrence, apply to it
transformation (11);
while the rule contains a nasty occurrence, apply to it
transformation (11).

In case of the fact p(n+1), executing the first loop gives its
normal form (5). For rule (12), executing the body of the
second loop gives

q(1 .. Y )← p(X) ∧ Y = X/2,

and after the second execution we get the normal form

q(Z)← p(X) ∧ Y = X/2 ∧ Z = 1 .. Y.

Rule (13) is converted to its normal form

p(X)← Y = X/2 ∧ Y = n

by the third loop.
The algorithm above is guaranteed to terminate. Indeed,

executing the body of the first loop moves a problematic oc-
currence to a position that is not in the scope of an arithmetic
function symbol; hence the number of problematic occur-
rences goes down. After executing the body of the second
loop, a critical occurrence becomes the right-hand side of
an equation; hence the number of critical occurrences goes
down. After executing the body of the third loop, a nasty oc-
currence becomes the right-hand side of an equation; hence
the number of nasty occurrences goes down.

To prove that the rule produced by this algorithm is in nor-
mal form, consider the intermediate results generated in the
process of applying the algorithm to a rule R. Let R1 be
the result of executing the first loop, let R2 be the result of
executing the second loop, and let R3 be the output. There
are no problematic occurrences of terms in R1. It follows
that there are no such occurrences in R2 and R3, because
problematic occurrences cannot be introduced by transfor-
mation (11). Hence R3 satisfies condition (a).

To prove that the rule R3 satisfies condition (b), we will
show first that every occurrence of a term of the form f(t)
with indefinite f in that rule is the right-hand side of an
equation. Assume that some occurrence of f(t) with in-
definite f is not the right-hand side of any equation. Take a
subterm of f(t) that is minimal among subterms containing
an indefinite function symbol. It has the form f ′(t′) with
indefinite f ′ and no other indefinite function symbols. This
subterm is not the right-hand side of any equation, so that
it is critical. But there are no critical occurrences in R3,
because there are no critical occurrences in R2, and critical
occurrences cannot be introduced by transformation (11).

It remains to check that the equation with the right-hand
side f(t) is numeric. Every basic symbol in f(t) is a nu-
meral, because R3 satisfies condition (a). Assume that the
left-hand side t of the equation contains a basic symbol that
is not a numeral. Since R3 satisfies condition (a), the out-
ermost symbol of t is not an arithmetic function symbol.
Hence t is either a basic symbol different from numerals or a
term of the form c(t), where c is a symbolic constant. This is
impossible, because R3 does not contain nasty occurrences.

The theorem below describes the relationship between
a rule and its normal form. By Int(D) we denote the
many-sorted intuitionistic predicate calculus with equality
(Fandinno and Lifschitz 2023, Section 5.1) over the signa-
ture σ(D).

Theorem 1. If N is the normal form of a rule R then τ∗(N)
is equivalent to τ∗(R) in Int(D).

5 Generalized natural translation
Consider a rule N in normal form. Applying the transla-
tion ν to N involves substituting an integer variable for each
variable that occurs in N at least once

• in the scope of an arithmetic function symbol, or

• in the left-hand side of an equation that contains an indef-
inite function symbol in the right-hand side.

Make the list V1, . . . , Vm of all variables satisfying this con-
dition, and choose m distinct integer variables I1, . . . , Im.
For any mini-GRINGO term t that occurs in N and does not
contain indefinite function symbols, the result of

(i) substituting I1, . . . , Im for V1, . . . , Vm and

(ii) replacing every subexpression of the form c(r1, . . . , rk),
where c is a symbolic constant, with (c\k)(r1, . . . , rk)

is a term over the signature σ(D). The operator that per-
forms this transformation will be denoted by p2f . It applies
to tuples of terms componentwise.

For example, if N is rule (1) then m = 1, V1 is Y , and
p2f (X,Y + 1) is (X, I1 + 1). If N is rule (4) then m = 3,
p2f (X,Y ) is (I1, I2), and p2f (Z + 1) is I3 + 1.

The translation ν is defined first for expressions that may
occur in the head and the body of N :

• If t is a k-tuple of terms that do not contain indefinite
function symbols then

– ν(p(t)) is (p/k)(p2f (t)),
– ν(not p(t)) is ¬(p/k)(p2f (t)),
– ν(not not p(t)) is ¬¬(p/k)(p2f (t)).

• If t1 ≺ t2 is a comparison that does not contain indefinite
function symbols then ν(t1 ≺ t2) is p2f (t1) ≺ p2f (t2),

• ν(t = f(t1, . . . , tk)), where f is an indefinite function
symbol, is

F
(
p2f (t1), . . . , p2f (tk), p2f (t)

)
,

where F (N1, . . . , Nk+1) is a formula defining f .

• The result of applying ν to the empty string is ⊥ (false).

The result of applying the translation ν to a rule (7) in
normal form is defined as the sentence

∀̃(ν(B1) ∧ · · · ∧ ν(Bn)→ ν(H)). (14)

For example, ν transforms rule (1) into

∀XI1(p(X, I1)→ q(X, I1+1)), (15)

rule (5) into
∀I1(I1 = n→ p(I1)),



and rule (6) into

∀I1(1 ≤ I1 ≤ 8→ p(I1)).

The theorem below shows that the translations ν and τ∗

are equivalent whenever the former is applicable. It is simi-
lar to the main result of the original natural translation paper
(Lifschitz 2021) and is proved in a similar way.
Theorem 2. For any rule N in normal form, the formula
ν(N) is equivalent to τ∗(N) in Int(D).

6 Making the Translation Completable
A sentence over σ(D) is completable if it has the form

∀̃(F → p(V)), (16)

where V is a list of pairwise distinct variables of the
sort general. This is a special case of the definition used
by Fandinno, Lifschitz, and Temple (2024) for extending
Clark’s definition of program completion (Clark 1978) to
mini-gringo programs. Applying the transformation τ∗ to
any non-constraint rule produces a completable sentence.
Though the output of ν is not always a completable sentence,
we can easily apply intuitionistically equivalent transforma-
tions to make it so.

The result of applying ν to a non-constraint rule is always
of the form

∀̃(F → p(t)), (17)

where t is a list t1, . . . , tk of terms. Any sentence of this
form can be converted to a completable sentence as follows.
Pick a list V1, . . . , Vk of pairwise distinct variables of the
sort general that do not occur in F or t1, . . . , tk. Then, for
each i = 1, . . . , k, if ti is not a general variable different
from t1, . . . , ti−1, then
• replace ti in the consequent by Vi;
• add the conjunctive term Vi = ti to the antecedent;
• add ∀Vi to the list of quantifiers in front of the implication.
Clearly, after applying this transformation to all terms ti,
we obtain a sentence where all the terms in the consequent
are pairwise distinct variables of the sort general; hence, the
result is a completable sentence. It is also clear that each step
is an intuitionistically equivalent transformation, so that the
resulting sentence is equivalent to sentence (17) in Int(D).

For example, rule (1) is transformed by ν into sen-
tence (15), which is not completable because the term I1 + 1
occurring in its head is not a variable. Applying the transfor-
mation above to (15), we obtain the completable sentence

∀XV2I1(p(X, I1) ∧ V2 = I1 + 1→ q(X,V2)), (18)

To give an example of using the completable sentences pro-
duced by the algorithm above for forming the completed
definition of a predicate (Fandinno, Lifschitz, and Temple
2024, Section 3.1), consider the pair of rules: (1) and

q(X,Y )← r(Y,X). (19)

Rule (19) is in normal form, and the result of applying the
transformation ν to it is the completable formula

∀XY (r(Y,X)→ q(X,Y )). (20)

If a program defines the predicate q/2 by rules (1) and (19),
then the completed definition of this predicate can be con-
structed in two steps. First, we rename bound variables so
that the consequents of two implications become identical.
For example, we rename variable V2 in (18) to Y , obtaining:

∀XY I1(p(X, I1) ∧ Y = I1 + 1→ q(X,Y )).

Then we form an equivalence expressing that, jointly, these
two sufficient conditions for q/2 give a necessary condition:

∀XY (q(X,Y )↔ ∃I1(p(X, I1) ∧ Y =I1 + 1) ∨ r(Y,X)) .

7 Proof of Theorem 1
In the following, we say that two formulas F and G are
equivalent if the universal closure of F ↔ G is provable
in Int(D). We say that two rules are equivalent if their trans-
lations by τ∗ are equivalent formulas.

To prove Theorem 1, it is sufficient to show that applying
procedure (11) to the any rule results in an equivalent rule
(Lemma 4 below).

We start by introducing some notation. We use E[V ] to
indicate that E is a formula, term, or other syntactic en-
tity contains at most one occurrence of a variable V . Then,
by E[t] we denote the result of replacing that occurrence
of V in E[V ] by t.
Lemma 1. Let r[V ] be a term with exactly one occurrence
of a variable V , and t be a term that does not contain V .
Then,

valr[t](W )↔ ∃V (valr[V ](W ) ∧ val t(V )) (21)

is provable in Int(D).

Proof. By induction on the structure of r[V ]. Base case:
Since V occurs in r[V ], the latter cannot be a symbolic con-
stant. Hence r[V ] is the variable V itself, and (21) is

val t(W )↔ ∃V (W = V ∧ val t(V )), (22)

which, since V does not occur in t, is provable in Int(D).

Induction case 1: r[V ] is of the form c(r1, . . . , rk) where c
is a symbolic constant and V is a subterm of ri[V ] for
some i ∈ {1, . . . , n}. Assume without loss of generality
that i = 1. Then, the left-hand and right-hand side of (21)
respectively are

∃Y (valr1[t](Y1) ∧G ∧W = P ) (23)

∃V ∃Y (valr1[V ](Y1) ∧G ∧W = P ∧ val t(V )) (24)

where Y = Y1, . . . , Yk is a list of fresh variables, G stands
for

valr2(Y2) ∧ · · · ∧ valrk(Yk)

and P stands for (c\k)(Y1, . . . , Yk). Since V occurs neither
in G nor in P , formula (24) is equivalent to

∃Y (∃V (valr1[V ](Y1) ∧ val t(V )) ∧G ∧W = P ) (25)

By induction hypothesis,

valr1[t](W1)↔ ∃V (valr1[V ](W1) ∧ val t(V ))



is provable in Int(D) and, thus, (23) and (25) are equivalent.
Hence, the left-hand and right-hand side of (21) are equiv-
alent. Induction case 2: r[V ] is of the form f(r1, . . . , rk)
where f is a definite arithmetic function symbol, then the
left-hand and right-hand side of (21) respectively are

∃Y (valr1[t](Y1) ∧G ∧W =f(Y1, . . . , Yk))

∃V ∃Y (valr1[V ](Y1) ∧G ∧W =f(Y1, . . . , Yk) ∧ val t(V ))

where G is as above and we similarly assume that V is a sub-
term of r1[V ]. The rest of the proof is analogous to Induction
case 1. Induction case 3: r[V ] is of the form f(r1, . . . , rk)
where f is an indefinite arithmetic function symbol, then the
left-hand and right-hand side of (21) respectively are

∃Y (valr1[t](Y1) ∧G ∧ Ik+1 = W ∧ F (I1, . . . , Ik+1))

∃V ∃Y (valr1[V ](Y1) ∧G ∧ Ik+1 = W

∧ F (I1, . . . , Ik+1) ∧ val t(V ))

The rest of the proof is analogous to Induction case 1.

Lemma 2. If t is a term and V is a variable, then

τB(V = t)↔ val t(V )

is provable in Int(D).

Proof. Note that τB(V = t) is

∃X1∃X2(X1 = V ∧ val t(X2) ∧X1 = X2)

where X1 and X2 are fresh variables. This is equivalent to

∃X1∃X2(X1 = V ∧ val t(V ) ∧ V = X2)

which is equivalent to val t(V ) because neither X1 nor X2

occur in val t(V ).

Lemma 3. If L[V ] is a mini-gringo literal containing ex-
actly one occurrence of V and t is a term that does not con-
tain V , then

τB(L[t])↔ ∃V (τB(L[V ]) ∧ τB(V = t)) (26)

is provable in Int(D).

Proof. By case analysis on the form of L[V ]. Case 1: L is of
the form c(r1, . . . , rk) where t is a subterm of ri for some i.
Assume without loss of generality that i = 1. Hence, the
left-hand and right-hand side of (26) respectively are

∃Y (valr1[t](Y1) ∧G ∧ P ) (27)

∃V (∃Y (valr1[V ](Y1) ∧G ∧ P ) ∧ τB(V = t) (28)

where G and P are as in the proof of Lemma 1. By
Lemma 2, formula (28) is equivalent to

∃V (∃Y (valr1[V ](Y1) ∧G ∧ P ) ∧ val t(V )) (29)

Furthermore, since none of Y1, . . . , Yk occur free in val t(V )
and V occur neither in G nor P , formula (29) is equivalent
to

∃Y (∃V (valr1[V ](Y1) ∧ val t(V )) ∧G ∧ P ) (30)

By Lemma 1, formulas (27) and (30) are equivalent. The
other cases are similar.

Lemma 4. For any mini-gringo rule of the form
Head [V ]← Body [V ]

with exactly one occurrence of variable V and any term t
that does not contain V , the equivalence between sentences

τ∗(Head [t] ← Body [t]) (31)
τ∗(Head [V ]← Body [V ] ∧ V = t) (32)

is provable in Int(D).

Proof. We proceed by cases based on the position of the
single occurrence of V . Assume first that the single occur-
rence of V is in Head [V ]. Then, Body [V ] and Body [t] are
identical, and Head [V ] is of the form c(r1, . . . , rk) with V
occurring in ri[V ] for some i ∈ {1, . . . , k}. Assume without
loss of generality that i = 1. Sentences (31) and (32) can be
respectively written as the universal closures of formulas

valr1[t](Y1) ∧B → H (33)

valr1[V ](Y1) ∧B ∧ τB(V = t)→ H (34)

where H stands for (c/k)(Y1, . . . , Yk) and B stands
for τB(Body [V ]) ∧ G with G as in the proof of Lemma 1.
Since the only occurrence of V in the rule is in r1[V ], it
follows that V does not occur in B nor H . Hence, (34) is
equivalent to

∃V (valr1[V ](Y1) ∧ τB(V = t)) ∧B → H (35)
which, by Lemma 2, is equivalent to

∃V (valr1[V ](Y1) ∧ val t(V )) ∧B → H (36)
By Lemma 1, this is equivalent to (33).

Assume now that the single occurrence of V is in Body [V ].
Then, Head [V ] and Head [t] are identical and Body [V ] is
of the form L1 ∧ · · · ∧ Ln with V occurring in Li[V ] for
some i ∈ {1, . . . , n}. Assume without loss of generality
that i = 1. Sentences (31) and (32) can be respectively
written as the universal closures of formulas

τB(L1[t]) ∧B → H (37)

τB(L1[V ]) ∧B ∧ τB(V = t)→ H (38)
where H is as above, and B stands for

τB(L2) ∧ · · · ∧ τB(Ln).

Since the only occurrence of V in the rule is in Li[V ], it
follows that V does not occur in B nor H . Hence, (38) is
equivalent to

∃V (τB(L1) ∧ τB(V = t)) ∧B → H

which, by Lemma 3, is equivalent to (37).

8 Proof of Theorem 2
If t and t′ respectively are lists t1, . . . , tm and t′1, . . . , t

′
m of

terms of the same length, then t = t′ stands for the conjunc-
tion of equalities

t1 = t′1 ∧ · · · ∧ tm = t′m
We assume that N is a rule (7) in normal form, and that C is

I1 = V1 ∧ · · · ∧ Im = Vm,

where V1, . . . , Vm, I1, . . . , Im are variables as in the defini-
tion of p2f (Section 5).



Lemma 5. For any term t that occurs in N in the scope of
an arithmetic function or in an equation of the form t = t′

such that t′ contains an indefinite function symbol, p2f (t) is
of the sort integer.

Proof. By cases. Case 1: t is a variable. Since N is in
normal form and t occurs in the scope of a definite arith-
metic function symbol or in an equation of the form t = t′

such that t′ contains an indefinite function symbol, it follows
that t is one of the variables Vk (1 ≤ k ≤ m). Then by defi-
nition, p2f (Vk) is the integer variable Ik.

Case 2: t is a basic symbol. By definition of normal form, t
must be a numeral. Then, p2f (t) is t, and its sort is integer.

Case 3: t is of the form f(t1, . . . , tk). From the condi-
tion (b) of the definition of normal form, it follows that f
is a definite arithmetic function symbol. Then, by definition,
p2f (f(t1, . . . , tk)) is f(p2f (t1), . . . , p2f (tk)), which is of
the sort integer.

Lemma 6. For any tuple t of terms that occur in N and con-
tain no occurrences of indefinite function symbols, and any
tuple V of variables of the same length as t, the formulas

(i) C → ∀V(valt(V)↔ V = p2f (t));
(ii) C → (ν(p(t)) ↔ ∀V(valt(V) → (p/k)(V))), where k

is arity of t;
(iii) C → (ν(p(t))↔ τB(p(t)));
(iv) C → (ν(not p(t))↔ τB(not p(t)));
(v) C → (ν(not not p(t))↔ τB(not not p(t)))

are provable Int(D).

Proof. (i) It is sufficient to consider the case when t is a
single term t, so that the formula to be proven is

C → ∀V (val t(V )↔ V = p2f (t)). (39)

The proof is by induction on t. Case 1: t is one of the vari-
ables Vk (1 ≤ k ≤ m). Then the consequent of (39) is
∀V (V = Vk ↔ V = Ik), and the antecedent C contains the
conjunctive term Vk = Ik.

Case 2: t is a variable different from V1, . . . , Vm, or a basic
symbol. Then, the consequent of (39) is

∀V (V = t↔ V = t).

Case 3: t is c(t), where c is a symbolic constant and t is a
list t1, . . . , tk of terms. Then, valt(V ) is

∃Y(valt(Y) ∧ V = (c\k)(Y))

where Y is a list Y1, . . . , Yk of general variables not occur-
ring in t of the same length as t.

By the induction hypothesis, under the assumption C, the
formula above can be simplified as follows:

∃Y(Y = p2f (t) ∧ V = (c\k)(Y))

which is equivalent to

V = (c\k)(p2f (t))

that is V = p2f (c(t)).

Case 4: t is f(t), where f is a definite arithmetic function
symbol and t is a list t1, . . . , tk of terms. Then, valt(V ) is

∃J(valt(J) ∧ V = f(J))

where J is a list J1, . . . , Jk of integer variables. Then, by the
induction hypothesis, under the assumption C, the formula
above can be simplified as follows:

∃J(J = p2f (t) ∧ V = f(J))

By Lemma 5 each of the terms in p2f (t) is of the sort inte-
ger. Hence, the above formula is equivalent to

V = f(p2f (t))

We conclude that

valf(t)(V )↔ V = f(p2f (t))

By the definition, f(p2f (t)) is p2f
(
f(t)

)
.

Items (ii)-(v) follow as in the proof of Lemma 1 (ii)-(v) by
Lifschitz (2021).

Lemma 7. For any comparison t1 ≺ t2 that occurs in N
and contains no occurrences of indefinite function symbols,
the formula

C → (ν(t1 ≺ t2)↔ τB(t1 ≺ t2))

is provable in Int(D).

Proof. The proof follows using Lemma 6(i) as the proof of
Lemma 2 by Lifschitz (2021).

In the following lemmas, by J we denote a list J1, . . . , Jk
of integer variables.
Lemma 8. Let f be an indefinite function symbol, and
let F (J,K) be a formula over σ−(D) defining f . For any
term f(t) occurring in N and every term r of the sort inte-
ger, formula

C → (valf(t)(r)↔ F (p2f (t), r)) (40)

is provable in Int(D).

Note that substituting p2f (t) for J in F (J,K) is allowed
because, by Lemma 5, p2f (t) is a tuple of integer terms.

Proof. The left-hand side of the equivalence in (40) stands
for

∃JK(valt(J) ∧K = r ∧ F (J,K))

which, since r is of the sort integer, is equivalent to

∃J(valt(J) ∧ F (J, r)).

By condition (b) of the normal form definition it follows
that t are terms containing no occurrences of indefinite func-
tion symbols. By Lemma 6(i), this formula can be rewritten,
under the assumption C, as

∃J(J = p2f (t) ∧ F (J, r))

which is equivalent to the right-hand side of the equivalence
in (40).



Lemma 9. For any numeric equation t = f(t) occurring
in N where f is an indefinite function symbol, the formula

C → (ν(t = f(t))↔ τB(t = f(t))

is provable in Int(D).

Proof. By definition, τB(t = f(t)) is

∃X1X2

(
val t(X1) ∧ valf(t)(X2) ∧X1 = X2

)
where X1 and X2 are general variables. This formula is
equivalent to formula

∃X
(
val t(X) ∧ valf(t)(X)

)
.

By Lemma 6(i), the last formula can be rewritten, under the
assumption C, as

∃X
(
X = p2f (t) ∧ valf(t)(X)

)
,

which can be further rewritten as

valf(t)(p2f (t)).

By Lemma 5, p2f (t) is an integer term. Then, by Lemma 8,
the last formula is equivalent, under the assumption C, to

F (p2f (t), p2f (t)).

This is ν(t = f(t)).

Lemma 10. If a term t occurs in a rule in N and V is a
variable that occurs in t at least once in the scope of an
arithmetic function symbol, then formula

∃W valt(W )→ ∃I(I = V ),

where W is a general variable, is provable in Int(D).

Proof. Let us assume first that t is an expression of the
form f(t) such that some ti is V where t is a list t1, . . . , tk
of terms. We proceed by cases on whether f is definite or
indefinite. Case 1. f is a definite arithmetic function. Then
the antecedent of the implication to be proved is

∃WJ(valt(J) ∧W = f(J)).

and

∃Ji valti(Ji) = ∃Ji valV (Ji) = ∃Ji(V = Ji)

The last formula is equivalent to ∃I(I = V ), which is the
consequent of the formula to be proved and is implied
by valt(J). Case 2. The reasoning is similar to Case 1.
The general case follows by induction on the size of t be-
cause there is a minimal subterm of the form f(t) such that
some ti is V .

Lemma 11. If B is a literal or a comparison occurring in N
that does not contain indefinite function symbols, and V is
a variable that occurs in B at least once in the scope of an
arithmetic function symbol, then formula

τB(Body)→ ∃I(I = V )

is provable in Int(D).

The proof follows the proof of Lemma 7 by Lifschitz (2021),
but using Lemma 10 in this paper in place of Lemma 6 used
there.
Lemma 12. For any term t whose only basic symbols are
numerals, and any variable V occurring in t, formula

∃N valt(N)→ ∃I(I = V )

is provable in Int(D).

Proof. By induction on t. Since all basic symbols occurring
in t are numerals, three cases are possible. Case 1: Term t
is V . Then the antecedent ∃N valt(N) of the implication to
be proven is ∃N(N = V ), which is equivalent to its conse-
quent. Case 2: Term t has the form f(t1, . . . , tk), where f is
a definite arithmetic function symbol. Then the antecedent
∃N valt(N) of the implication to be proven is

∃NJ(valt(J) ∧N = f(J)).

where J is a list of integer variables. Then, V occurs in some
term ti. The formula above implies ∃I val ti(I). By the in-
duction hypothesis, ∃I(I = V ) follows. Case 3: Term t
has the form f(t1, . . . , tk), where f is a indefinite arithmetic
function symbol. Similar to Case 2.

Lemma 13. If B is a numeric equation of the form t = f(t)
such that f is an indefinite arithmetic function and V is a
variable that occurs in B at least once, then formula

τB(Body)→ ∃I(I = V )

is provable in Int(D).

Proof. The antecedent τB(Body) of the formula to be
proved is

∃X1X2(val t(X1) ∧ valf(t)(X2) ∧X1 = X2),

which is equivalent to

∃X(val t(X) ∧ valf(t)(X)) (41)
Case 1: V occurs in t. Formula (41) can be expanded as

∃X(val t(X) ∧ ∃JK(valt(J) ∧K = X ∧ F (J,K))).

The above sentence implies ∃K val t(K), and hence
∃I(I = V ) follows by Lemma 12, because all basic sym-
bols occurring in t are numerals. Case 2: V occurs in f(t).
Formula (41) implies ∃X valf(t)(X), and hence ∃I(I = V )
follows by Lemma 10.

Lemma 14. Let t be a list of terms occurring in N ,
let V1, . . . , Vk be all the variables that occur in t in the scope
of an arithmetic function symbol, Y be a list of general vari-
ables of the same length k and c be a symbolic constant.
Then, sentences

∀Y(valt(Y)→ (c/k)(Y)) (42)
k∧

i=1

∃I(I = Vi)→ ∀Y(valt(Y)→ (c/k)(Y)) (43)

are equivalent in Int(D), where I is a integer variable.



Proof. It is sufficient to show that, for every i,

∃I(I = Vi)→ ∀Y(valt(Y)→ (c/k)(Y)) (44)

is equivalent to (42). This is equivalent to

∀Y(∃I(I = Vi) ∧ valt(Y)→ (c/k)(Y)). (45)

By Lemma 10, the conjunction in the antecedent is equiva-
lent to to its second conjunctive term.

Proof of the Theorem 2. We need to show that formulas (14)
and

τ∗(H ← B1 ∧ · · · ∧Bn) (46)
are equivalent to each other in Int(D). Let Body
stand for the conjunction B1 ∧ · · · ∧Bn so that τB(Body)
and ν(Body) respectively are

τB(B1) ∧ · · · ∧ τB(Bn) and ν(B1) ∧ · · · ∧ ν(Bn)

Let H be an atom c(t), where t is a tuple t1, . . . , tk (the
case when H is empty is similar). Then, formula (46) has
the form

∀̃(valt(Y) ∧ τB(Body)→ (c/k)(Y)),

which is equivalent to

∀̃
(
τB(Body)→ ∀Y(valt(Y)→ (c/k)(Y))

)
. (47)

By Lemma 14, it follows that the consequent of (47) is
equivalent to

k∧
i=1

∃I(I = Vi)→ ∀Y(valt(Y)→ (c/k)(Y)) (43)

where V1, . . . , Vk are all the variables occurring in t in the
scope of some arithmetic function symbol. Then the vari-
ables Vk+1, . . . , Vm occur in the scope of an arithmetic func-
tion symbol in Body . By Lemmas 11 and 13 it follows that
formula

τB(Body)→ ∃I(I = Vi)

is provable in Int(D) for every i with k+1 ≤ i ≤ m. Hence
the antecedent τB(Body) of (47) is equivalent to

m∧
i=k+1

∃I(I = Vi) ∧ τB(Body)

and, thus, (47) is equivalent to

∀̃

(
m∧
i=1

∃I(I = Vi) ∧ τB(Body)→ F

)
,

This can be rewritten as

∀̃(C → (τB(Body)→ F )). (48)

From Lemmas 6(i,iii,iv,v), 7, 9 we can conclude that for-
mula (48) is equivalent to

∀̃(C → (ν(Body)→ ∀Y(Y = p2f (t)→ (c/k)(Y)))),

which is equivalent to

∀̃(C → (ν(Body)→ ν(H))).

The only part of the last formula that contains any of the
variables Vi is C. Consequently that formula is equivalent
to

∀̃

(∧
i

∃Vi(Ii = Vi)→ (ν(Body)→ ν(H))

)
.

Since the antecedent
∧

i ∃Vi(Ii = Vi) is provable in intu-
itionistic logic, it can be dropped, which leads us to for-
mula (14).

9 Conclusion
This paper describes an approach to transforming mini-
gringo rules into first-order sentences that involves a prepro-
cessing step – converting the rule to a normal form. We ex-
pect that the new translation will be implemented in a future
version of the proof assistant ANTHEM, and that it will make
ANTHEMeasier to use. We plan to extend this translation
method to answer set programming languages that include
useful programming constructs not available in mini-gringo,
such as conditional literals and aggregates.

Acknowledgements
We would like to thank Michael Gelfond, Zachary Hansen
and Tobias Stolzmann for their comments on a draft of this
paper.

References
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.;
and Schaub, T. 2020. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20:294–309.
Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases. New York: Plenum
Press. 293–322.
Fandinno, J., and Lifschitz, V. 2023. Omega-completeness
of the logic of here-and-there and strong equivalence of logic
programs. In Proceedings of International Conference on
Principles of Knowledge Representation and Reasoning.
Fandinno, J.; Glinzer, C.; Hansen, Z.; Heuer, J.; Lierler, Y.;
Lifschitz, V.; Schaub, T.; and Stolzmann, T. 2025. AN-
THEM: answer set programming and automated theorem
proving. Theory and Practice of Logic Programming. To
appear.
Fandinno, J.; Lifschitz, V.; and Temple, N. 2024. Locally
tight programs. Theory and Practice of Logic Programming.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015. Abstract Gringo. Theory and Practice of
Logic Programming 15:449–463.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Lindauer, M.;
Ostrowski, M.; Romero, J.; Schaub, T.; and Thiele, S.
2019. Potassco User Guide. Available at https://github.com/
potassco/guide/releases/.

https://github.com/potassco/guide/releases/
https://github.com/potassco/guide/releases/


Lifschitz, V.; Lühne, P.; and Schaub, T. 2019. Verify-
ing strong equivalence of programs in the input language of
gringo. In Proceedings of the 15th International Conference
on Logic Programming and Non-monotonic Reasoning.
Lifschitz, V. 2019. Answer Set Programming. Springer.
Lifschitz, V. 2021. Transforming gringo rules into formulas
in a natural way. In Proceedings of European Conference on
Artificial Intelligence.
Lifschitz, V. 2025. Generalizing the syntax of terms in mini-
gringo. In Proceedings of European Conference on Logics
in Artificial Intelligence (JELIA).
Marek, V., and Truszczynski, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: a 25-Year Perspective. Springer
Verlag. 375–398.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25:241–273.
Pearce, D., and Valverde, A. 2005. A first order nonmono-
tonic extension of constructive logic. Studia Logica 80:323–
348.
Truszczynski, M. 2012. Connecting first-order ASP and
the logic FO(ID) through reducts. In Erdem, E.; Lee, J.;
Lierler, Y.; and Pearce, D., eds., Correct Reasoning: Essays
on Logic-Based AI in Honor of Vladimir Lifschitz. Springer.
543–559.


	Introduction
	Review: the syntax of mini@汥瑀瑯步渠--gringo
	Review: translation *
	Target language of *
	Definable symbols
	Values of a term
	Definition of *

	Normal form
	Generalized natural translation
	Making the Translation Completable
	Proof of Theorem 1
	Proof of Theorem 2
	Conclusion

