
Restricted Monotonicity

Vladimir Lifschitz

�

Department of Computer Sciences

and Department of Philosophy

University of Texas at Austin

Austin, TX 78712

Abstract

A knowledge representation problem can be some-

times viewed as an element of a family of prob-

lems, with parameters corresponding to possible

assumptions about the domain under consider-

ation. When additional assumptions are made,

the class of domains that are being described be-

comes smaller, so that the class of conclusions that

are true in all the domains becomes larger. As

a result, a satisfactory solution to a parametric

knowledge representation problem on the basis of

some nonmonotonic formalism can be expected to

have a certain formal property, that we call re-

stricted monotonicity. We argue that it is im-

portant to recognize parametric knowledge repre-

sentation problems and to verify restricted mono-

tonicity for their proposed solutions.

Introduction

This paper is about the methodology of representing

knowledge in nonmonotonic formalisms. A knowledge

representation problem can be sometimes viewed as an

element of a family of problems, with parameters cor-

responding to possible assumptions about the domain

under consideration. When additional assumptions are

made, the class of domains that are being described be-

comes smaller, so that the class of conclusions that are

true in all the domains becomes larger. As a result, a

satisfactory solution to a parametric knowledge repre-

sentation problem on the basis of some nonmonotonic

formalism can be expected to have a certain formal

property, that we call restricted monotonicity.

The idea of restricted monotonicity is �rst illustrated

here by examples. Then the precise de�nition of this

property is given, and methods for proving it are

discussed. Finally, we apply the concept of restricted

monotonicity to the analysis of some of the recent work

on representing action and change in nonmonotonic

formalisms.

�

This work was partially supported by National Science

Foundation under grant IRI-9101078.

Examples

Here is a simple knowledge representation problem

involving a default:

Formalize the assertions:

Birds normally
y.

Penguins are birds.

Penguins do not
y.

We will compare two solutions, one based on default

logic

[

Reiter, 1980

]

, the other on circumscription

[

Mc-

Carthy, 1986

]

.

The �rst formalization is the default theory whose

postulates are the axioms

8x(Penguin(x) � Bird(x)) (1)

and

8x(Penguin(x) � :Flies(x)); (2)

and the default

Bird(x) : Flies(x) = Flies(x): (3)

The second is the circumscriptive theory with the

axioms (1), (2) and

8x(Bird(x) ^ :Ab(x) � Flies(x)); (4)

in which Ab is circumscribed and Flies varied.

There is an important di�erence between the two for-

malizations that becomes obvious when we apply the

default birds normally
y to speci�c objects. Although

the postulates of the two theories do not use any ob-

ject constants, let us assume that their languages in-

clude an object constant, say, Joe. Since Joe is not

postulated to be a bird, the formula Flies(Joe) is un-

decidable both in the default logic formalization T

1

and in the circumscriptive formalization T

2

. We are

interested in the theories obtained from T

1

and T

2

by

adding some of the possible assumptions

Bird(Joe);:Bird(Joe);

Penguin(Joe);:Penguin(Joe)

(5)

to their axiom sets.

For some subsets p of (5), adding p to the axiom

set of T

1

will have the same e�ect on the status of the

formula Flies(Joe) as adding p to T

2

. If, for instance,

p is fBird(Joe);:Penguin(Joe)g, then Flies(Joe) is

provable both in T

1

[p and T

2

[p. If, on the other hand,

p is fPenguin(Joe)g, then this formula is refutable in

both theories.

The situation will be di�erent, however, if we take

p to be fBird(Joe)g. Now Joe is known to be a bird,

but it is not known whether he is a penguin. The

default logic formalization sanctions the conclusion

that Joe
ies: T

1

[fBird(Joe)g entails Flies(Joe).

In the corresponding circumscriptive formalization,

T

2

[fBird(Joe)g, the formula Flies(Joe) remains

undecidable.

The theories T

1

and T

2

can be viewed as somewhat

di�erent interpretations of the given set of assumptions

about the ability of birds to
y. Whether or not T

1

is considered too strong|or T

2

too weak|depends

on which of the two identically worded, but slightly

di�erent knowledge representation problems we had in

mind in the �rst place.

The circumscriptive solution T

2

can be viewed as

reasonable, and the default logic solution T

1

as exces-

sively strong, if the absence of both Penguin (Joe) and

:Penguin(Joe) among the axioms is supposed to in-

dicate our willingness to take into consideration both

the domains in which Joe is a penguin and the domains

in which he isn't, and to sanction only the conclusions

that are true in domains of both kinds. We will ex-

press this knowledge representation convention by say-

ing that these two literals function in this example as

\parameters." A parameter is an additional postulate

whose presence in the axiom set is supposed to make

the set of domains under consideration smaller, and

thus to increase the set of conclusions sanctioned by

the formalization.

The knowledge representation problem stated at the

beginning of this section would be described more pre-

cisely if we speci�ed that the ground literals contain-

ing Bird or Penguin should be treated as parame-

ters. This statement implies that a formalization T

will be considered adequate only if it has the follow-

ing property: For any subsets p, q of (5) such that

p � q, each consequence of T [p is a consequence of

T [q. In particular, if T is adequate, then all theo-

rems of T [fBird(Joe)g will be among the theorems of

T [fBird(Joe);Penguin(Joe)g, so that Flies(Joe) will

not be one of them.

This property is an example of what we call \re-

stricted monotonicity." It is satis�ed for the circum-

scriptive formalization T

2

, but not for the default the-

ory T

1

. We will see that, in general, there is no correla-

tion between restricted monotonicity and the choice of

a nonmonotonic formalism; what matters is which pos-

tulates are included in the formalization and, in case

of circumscription, what circumscription policy is ap-

plied. For instance, we will give a default logic formal-

ization of the same example that satis�es the restricted

monotonicity condition.

There is nothing wrong, of course, with a di�erent

interpretation of the
ying birds problem: If the

axioms do not tell us whether Joe is a penguin,

we may treat the domains in which this is the case

as \secondary," and be prepared to jump to the

conclusion that we are not in such a domain, at

least when we decide whether Joe can
y. But

it is important to be clear about how the problem

is interpreted before discussing the adequacy of a

particular solution.

We argue in this paper that many knowledge rep-

resentation problems can be described as parametric,

and that, when we deal with such a problem, it is im-

portant to recognize this fact and to verify restricted

monotonicity for its proposed solutions.

A class of examples that is discussed here in some de-

tail is given by initial conditions in temporal projection

problems. In various versions of the \Yale shooting"

story

[

Hanks and McDermott, 1987

]

, the initial situa-

tion is described by including some of the formulas

Holds(Loaded ; S0); :Holds(Loaded ; S0);

Holds(Alive; S0); :Holds(Alive; S0)

(6)

in the axiom set. We can think of these formulas as

parameters. Every consistent subset of (6) represents

an instance of a \parametric problem"; the larger the

subset is, the more conclusions about the values of

uents in future situations can be justi�ed. This is

again an example of restricted monotonicity.

De�nition

We would like to give a de�nition of restricted mono-

tonicity applicable to many nonmonotonic formalisms.

In order to make it general, we will �rst introduce the

notion of a \declarative formalism."

A declarative formalism is de�ned by a set S of

symbolic expressions called sentences, a set P of

symbolic expressions called postulates, and a map Cn

from sets of postulates to sets of sentences. A set of

postulates is a theory. A sentence A is a consequence

of a theory T if A 2 Cn(T). The formalism is

monotonic if Cn is a monotone operator, that is, if

Cn(T) � Cn(T

0

) whenever T � T

0

.

Here are some examples. Any �rst-order or higher-

order language of classical logic can be viewed as a

declarative formalism. Its postulates are identical to

its sentences|they are arbitrary closed formulas of

the language; Cn(T) is the set of sentences that are

true in all models of T . The use of circumscription

amounts to de�ning Cn(T) to be the set of sentences

that are true in the models of T which are minimal

relative to some circumscription policy. In case of

default theories, a sentence is a closed formula, and a

postulate is either a closed formula or a default. (Note

that here P di�ers from S.) For a default theory T ,

Cn(T) is the intersection of the extensions of T .

When a declarative formalism hS; P;Cni is used to

solve a parametric knowledge representation problem,

a subset S

0

of its sentences is designated as the set

of assertions, and a subset P

0

of its postulates is

designated as the set of parameters. The idea of

a parameter was discussed above: A parameter is

an additional postulate whose presence in a theory

is supposed to make the class of domains under

consideration smaller. An assertion is a sentence

that can be interpreted as true or false in a domain

described by the theory. The need to distinguish

between assertions and arbitrary sentences arises when

the language contains auxiliary symbols, such as Ab,

that have no \observable" meaning in the domains

under consideration. We may wish to specify, for

instance, that a sentence is an assertion if it does not

contain Ab. Some formalizations do not use auxiliary

symbols; in such cases, we view every sentence as an

assertion.

Let hS; P;Cni be a declarative formalism. Let a

subset S

0

of S be designated as the set of assertions,

and a subset P

0

of P as the set of parameters. We say

that a theory T satis�es the restricted monotonicity

condition if, for any sets p; q � P

0

,

p � q) Cn(T [p) \ S

0

� Cn(T [q) \ S

0

: (7)

In words: If more parameters are added to T as

additional postulates, no assertions will be retracted.

Note that (7) is trivially true if Cn is a monotone op-

erator. Consequently, restricted monotonicity becomes

an issue only when a nonmonotonic formalism is used.

Condition (7) is weaker than the monotonicity of

Cn in two ways. First, it applies only to theories of

the form T [p for the subsets p of P

0

, rather than to

arbitrary theories. Second, it refers not to the set of

all consequences of a theory, but only to the assertions

that belong to it.

Methods for Proving Restricted

Monotonicity

The mathematical apparatus required for proving re-

stricted monotonicity will vary depending on the

declarative formalism on which the solution is based.

In this section we discuss some of the methods that

can be used for verifying the restricted monotonicity

condition in circumscriptive theories and in extended

logic programs.

Circumscriptive Theories

For simplicity, we restrict attention to �nite circum-

scriptive theories without prioritization. Let S be the

set of all sentences of some �rst-order language,R a list

of distinct predicate constants of that language, and Z

a list of distinct function and/or predicate constants

disjoint from R. By Cn

R;Z

we denote the consequence

operator corresponding to the circumscription which

circumscribes R and varies Z. This means that, for

any �nite subset T of S, Cn

R;Z

(T) is the set of sen-

tences entailed by CIRC[

V

A2T

A;R;Z].

Proposition 1. Let T be a �nite theory in the

formalism hS; S;Cn

R;Z

i. If the set of parameters is

�nite, and the parameters do not contain symbols from

R or Z, then T satis�es the restricted monotonicity

condition.

Proof. For any set p of parameters, Cn

R;Z

(T [p) is

the set of sentences entailed by

CIRC[

^

A2T

A ^

^

A2p

A;R;Z]:

Since

V

A2p

A does not contain symbols from R or Z,

this formula is equivalent to

CIRC[

^

A2T

A;R;Z]^

^

A2p

A:

If p � q, then this conjunction is entailed by the

corresponding condition for q:

CIRC[

^

A2T

A;R;Z]^

^

A2q

A:

It follows that p � q implies

Cn

R;Z

(T [p) � Cn

R;Z

(T [q);

and consequently

Cn

R;Z

(T [p) \ S

0

� Cn

R;Z

(T [q) \ S

0

:

In case of the circumscriptive theory T

2

de�ned

above, R is Ab, Z is Flies, P

0

is (5), and S

0

is the

set of sentences not containing Ab. By Proposition 1,

the restricted monotonicity of T

2

follows from the fact

that the parameters (5) contain neither Ab nor Flies.

Note that the statement of Proposition 1 imposes a

restriction on the set of parameters, but not on the set

of assertions. It follows, in particular, that T

2

would

have satis�ed the restricted monotonicity condition

even if all sentences were considered assertions. We will

see below that, for some other solutions to the same

knowledge representation problem, the fact that Ab is

not allowed in assertions is crucial for the veri�cation

of restricted monotonicity.

Consider, on the other hand, the theory T

0

2

, which

di�ers from T

2

in that the predicates Bird and Penguin

are allowed to vary, along with Flies. This theory is

stronger than T

2

, and it allows us to justify, among

others, the conclusion that there are no penguins

in the world: 8x:Penguin(x). This result may be

viewed as undesirable. Peculiarities of this kind in

circumscriptive theories are well known (

[

McCarthy,

1986

]

, Section 5). In fact, T

0

2

has a more fundamental

defect: It does not satisfy the restricted monotonicity

condition. Indeed, :Penguin(Joe) is a consequence of

T

0

2

which is lost when Penguin(Joe) is added to its

axiom set. Proposition 1 does not apply here, because

the predicates Bird and Penguin , varied in T

0

2

, occur

in the parameters.

Extended Logic Programs

According to

[

Gelfond and Lifschitz, 1991

]

, an ex-

tended logic program is a set of rules of the form

L�0�L�1; : : : ; L�m; not L�m+ 1; : : : ; not L�n;

(8)

where each L

i

is a literal, that is, an atom possibly

preceded by :. (\General" logic programs are, syn-

tactically, the special case when classical negation : is

not used.) The rule (8) has the same meaning as the

default

L�1� : : :�L�m : L�m + 1; : : : ; L�n = L�0; (9)

where L stands for the literal complementary to L, so

that the language of extended programs can be viewed

as a subsystem of default logic. A ground literal L is a

consequence of an extended program � if it belongs to

all extensions of �. Extended logic programs can be

viewed as theories in a declarative formalism, if ground

literals are taken to be sentences, and rules of the form

(8) are considered postulates.

The knowledge representation problem described

at the beginning of the paper can be solved in the

language of extended programs as follows:

Flies(x) Bird(x); not Ab(x);

Bird(x) Penguin(x);

:Flies(x) Penguin (x);

Ab(x) not :Penguin(x):

(10)

Note the last rule, which plays an important

part in this program. Without it, adding the fact

Penguin(Joe) to the program would have made it in-

consistent. Note also the use of the combination not :

in that rule. The simpler rule

Ab(x) Penguin(x) (11)

would have canceled the applicability of the �rst rule of

the program to x only when x is known to be a penguin;

with not : inserted in front of Penguin(x), this is

accomplished for every x that is not known to satisfy

:Penguin(x). (Compare this with the discussion

of the cancelation rule for Noninertial in Section

4 of

[

Gelfond and Lifschitz, 1992

]

.) In particular,

even with the fact Bird(Joe) added to (10), the

formula Flies(Joe) remains undecidable. We see that

(10) is similar in this respect to the circumscriptive

formalization T

2

, rather than to the default theory T

1

.

Written as defaults, the rules (10) are:

Bird(x) : :Ab(x) = Flies(x);

Penguin(x) = Bird(x);

Penguin(x) = :Flies(x);

: Penguin(x) = Ab(x):

(12)

The �rst of these defaults is reminiscent of the ap-

proach to the use of default logic advocated by Morris

[1988].

The theorem about restricted monotonicity in ex-

tended logic programs stated below is based on the

notion of a \signing." This notion was originally de-

�ned for general logic programs

[

Kunen, 1989

]

, and

then extended by Turner [1993] to programs that may

contain classical negation.

The absolute value of a literal L (symbolically, jLj)

is L if L is positive, and L otherwise. A signing for an

extended logic program � without variables is a set X

of ground atoms such that

(i) for any rule (8) from �, either

jL

0

j; : : : ; jL

m

j 2 X; jL

m+1

j; : : : ; jL

n

j 62 X

or

jL

0

j; : : : ; jL

m

j 62 X; jL

m+1

j; : : : ; jL

n

j 2 X;

(ii) for any atom A 2 X, :A does not appear in �.

It is easy to see, for example, that the set of ground

instances of Ab(x) is a signing for the set of ground

instances of the rules (10).

The following lemma is a special case of Theorem 1

from

[

Turner, 1993

]

.

Lemma. Let �

1

be an extended program without

variables, and let X be a signing for �

1

. Let �

2

be

a program obtained from �

1

by dropping some of its

rules (8) such that jL

0

j 62 X. If a ground literal L

is a consequence of �

2

and jLj 62 X, then L is a

consequence of �

1

also.

Proposition 2. Let � be an extended logic program,

and let X be a signing for the set of ground instances

of the rules of �. If all parameters and assertions are

ground literals whose absolute values do not belong

to X, then � satis�es the restricted monotonicity

condition.

Proof. Since a program has the same consequences

as the set of all ground instances of its rules, we can

assume, without loss of generality, that the rules of

� do not contain variables. Let p and q be sets of

parameters such that p � q. By applying the lemma

to �[q as �

1

and �[p as �

2

, we conclude that, for any

ground literal L such that jLj 62 X, if L 2 Cn(� [p)

then L 2 Cn(� [q). It follows that

Cn(� [p) \ S

0

� Cn(� [q) \ S

0

:

Proposition 2 implies, for instance, that (10) satis�es

the restricted monotonicity condition.

Restricted Monotonicity in Theories of

Action

As observed above, temporal projection problems can

be thought of as parametric, with initial conditions as

parameters. It is interesting to look from this perspec-

tive at the existing approaches to describing actions

in nonmonotonic formalisms and to see how success-

ful they are in achieving restricted monotonicity. (For

the methods based on stating frame axioms explicitly

and then applying classical logic, the problem does not

arise, because any theory based on a monotonic logic

satis�es the restricted monotonicity condition.)

Minimizing Change

The �rst attempt to solve the frame problem using

circumscription (

[

McCarthy, 1986

]

, Section 9) was

shown by Hanks and McDermott [1987] to lead in

some cases to \overweak disjunctions." The analysis of

McCarthy's method from the point of view of restricted

monotonicity shows that it has also another
aw.

The following key observation was made by

Fangzhen Lin in connection with the temporal min-

imization method (personal communication, October

31, 1992). Let A be an action whose e�ect is to make

a propositional
uent F false if it is currently true.

The initial value of F is not given. Minimizing change

will lead to the conclusion that F was initially false,

because in this case nothing has to change as A is ex-

ecuted.

This undesirable conclusion presents a di�culty

that is perhaps even more fundamental than the one

uncovered by Hanks and McDermott. Minimizing

change may lead not only to conclusions that are too

weak; sometimes, its results are much too strong. Since

the only action considered in this example is performed

in the initial situation, it does not matter whether

the minimization criterion is simple or temporal, as

in

[

Kautz, 1986

]

,

[

Lifschitz, 1986

]

and

[

Shoham, 1986

]

.

We will describe Lin's example formally and show

that it can be viewed as a violation of restricted mono-

tonicity. Instead of the situation calculus language, we

will use the simpler syntax of a theory of a single action

(

[

Lifschitz, 1990

]

, Section 2). Theories of this kind in-

clude situation variables and
uent variables, but they

do not have variables for actions. The function Result

is replaced by two situation constants: S

i

for the initial

situation, in which a certain �xed action is executed,

and S

r

for the result of the action. If the only
uent

constant in the language is F , then the possible initial

conditions are

Holds(F; S

i

); :Holds(F; S

i

): (13)

The assumption that the action in question makes F

false if executed when F is true is expressed by the

formula

Holds(F; S

i

) � :Holds(F; S

r

): (14)

Minimizing change, in this simpli�ed language, is

expressed by postulating the \commonsense law of

inertia" in the form

�Ab(f)�Holds(f; S

r

)�Holds(f; S

i

); (15)

and circumscribing Ab.

Let T be the circumscriptive theory with axioms (14)

and (15), in which Ab is circumscribed and Holds var-

ied. Take the formulas (13) to be parameters, and

all closed formulas not containing Ab to be asser-

tions. Lin's observation shows that T does not sat-

isfy the restricted monotonicity condition. Indeed,

:Holds(F; S

i

) is a consequence of T , but not a con-

sequence of T [fHolds(F; S

i

)g.

Mathematically, the lack of restricted monotonicity

in this example is not surprising: The predicate Holds,

varied in T , occurs in parameters, so that Proposition 1

does not apply.

Other Approaches to the Frame Problem

Two other ways to apply circumscription to the

frame problem are proposed in

[

Lifschitz, 1987

]

and

[

Baker, 1991

]

. Unlike McCarthy's original proposal

and the temporal minimization approach, these meth-

ods have reasonable restricted monotonicity proper-

ties, although this fact does not follow from Propo-

sition 1. A restricted monotonicity theorem for Baker-

style formalizations can be proved using Theorem 3

from

[

Kartha, 1993

]

.

The logic programming method of

[

Gelfond and

Lifschitz, 1992

]

and

[

Baral and Gelfond, 1993

]

builds

on the ideas of

[

Morris, 1988

]

,

[

Eshghi and Kowalski,

1989

]

,

[

Evans, 1989

]

and

[

Apt and Bezem, 1990

]

. A

restricted monotonicity theorem for this method can

be derived from Proposition 2.

Sandewall [1989] proposed to apply a nonmonotonic

formalism to a set of axioms that does not include

initial conditions (\observations") and to get �rst

\the set of all possible developments in the world

regardless of any observations," and then \ to take that

whole set and `�lter' it with the given observations."

A mechanism of this kind may achieve restricted

monotonicity by removing the initial conditions from

the scope of the nonmonotonic consequence operator.

Some of the ideas of

[

Lin and Shoham, 1991

]

seem to

be in the same group.

High-Level Languages for Describing

Actions

The \high-level" language A

[

Gelfond and Lifschitz,

1992

]

, designed speci�cally for describing action and

change, has propositions of two kinds. \Value propo-

sitions" specify the values of
uents in particlular sit-

uations. \E�ect propositions" are general statements

about the e�ects of actions. A \domain description"

is a set of propositions. The semantics of domain de-

scriptions is de�ned in terms of \models." A model of a

domain descriptionD consists of two components: One

speci�es the \initial state" of the system, and the other

is a \transition function," describing how states are af-

fected by performing actions. The e�ect propositions

from D determine what can be used as the transition

function in a model of D. The value propositions limit

possible choices of the initial state. Details of the syn-

tax and semantics of A can be found in

[

Gelfond and

Lifschitz, 1992

]

.

A value proposition is a consequence of a domain

description D if it is true in all models of D. This def-

inition allows us to treat the language A as a declar-

ative formalism, with value propositions as sentences,

and both value propositions and e�ect propositions as

postulates.

This formalism is nonmonotonic. Indeed, adding an

e�ect proposition to a domain description D, generally,

changes the set of models of D in a nonmonotonic way,

so that the set of consequences ofD changes nonmono-

tonically also. However, adding value propositions to

D merely imposes additional constraints on the choice

of the initial state in a model, so that it can only make

the set of models smaller, and the set of consequences

larger. If we agree to identify both parameters and as-

sertions with value propositions, then this fact can be

expressed as follows:

Proposition 3. Every domain description in A satis-

�es the restricted monotonicity condition.

Since initial conditions in a temporal projection

problem are represented in A by value propositions, we

conclude that the problem of restricted monotonicity

for temporal projection is resolved in A in a satisfac-

tory way.

The extensions of A introduced in

[

Baral and Gel-

fond, 1993

]

and

[

Lifschitz, 1993

]

have similar restricted

monotonicity properties.

Acknowledgements

I have bene�tted from discussing the ideas pre-

sented here with Robert Causey, Michael Gelfond,

G.N. Kartha, Fangzhen Lin, Norman McCain, Luis

Pereira, Hudson Turner and Thomas Woo. My special

thanks go to Fangzhen Lin for permission to include

his unpublished counterexample.

References

Apt, Krzysztof and Bezem, Marc 1990. Acyclic pro-

grams. In Warren, David and Szeredi, Peter, editors

1990, Logic Programming: Proc. of the Seventh Int'l

Conf. 617{633.

Baker, Andrew 1991. Nonmonotonic reasoning in the

framework of situation calculus. Arti�cial Intelligence

49:5{23.

Baral, Chitta and Gelfond, Michael 1993. Repre-

senting concurrent actions in extended logic program-

ming. In Proc. of IJCAI-93. 866{871.

Eshghi, Kave and Kowalski, Robert 1989. Abduction

compared with negation as failure. In Levi, Giorgio

and Martelli, Maurizio, editors 1989, Logic Program-

ming: Proc. of the Sixth Int'l Conf. 234{255.

Evans, Chris 1989. Negation-as-failure as an approach

to the Hanks and McDermott problem. In Proc. of

the Second Int'l Symp. on Arti�cial Intelligence.

Gelfond, Michael and Lifschitz, Vladimir 1991. Clas-

sical negation in logic programs and disjunctive

databases. New Generation Computing 9:365{385.

Gelfond, Michael and Lifschitz, Vladimir 1992. Rep-

resenting actions in extended logic programming.

In Apt, Krzysztof, editor 1992, Proc. Joint Int'l

Conf. and Symp. on Logic Programming. 559{573.

Hanks, Steve and McDermott, Drew 1987. Nonmono-

tonic logic and temporal projection. Arti�cial Intel-

ligence 33(3):379{412.

Kartha, G. Neelakantan 1993. Soundness and com-

pleteness theorems for three formalizations of action.

In Proc. of IJCAI-93. 724{729.

Kautz, Henry 1986. The logic of persistence. In

Proc. of AAAI-86. 401{405.

Kunen, Kenneth 1989. Signed data dependencies

in logic programs. Journal of Logic Programming

7(3):231{245.

Lifschitz, Vladimir 1986. Pointwise circumscription:

Preliminary report. In Proc. AAAI-86. 406{410.

Lifschitz, Vladimir 1987. Formal theories of action

(preliminary report). In Proc. of IJCAI-87. 966{972.

Lifschitz, Vladimir 1990. Frames in the space of

situations. Arti�cial Intelligence 46:365{376.

Lifschitz, Vladimir 1993. A language for describing

actions. InWorking Papers of the Second Symposium

on Logical Formalizations of Commonsense Reason-

ing.

Lin, Fangzhen and Shoham, Yoav 1991. Provably

correct theories of action (preliminary report). In

Proc. AAAI-91. 349{354.

McCarthy, John 1986. Applications of circumscrip-

tion to formalizing common sense knowledge. Arti-

�cial Intelligence 26(3):89{116. Reproduced in

[

Mc-

Carthy, 1990

]

.

McCarthy, John 1990. Formalizing common sense:

papers by John McCarthy. Ablex, Norwood, NJ.

Morris, Paul 1988. The anomalous extension problem

in default reasoning. Arti�cial Intelligence 35(3):383{

399.

Reiter, Raymond 1980. A logic for default reasoning.

Arti�cial Intelligence 13:81{132.

Sandewall, Erik 1989. Combining logic and di�er-

ential equations for describing real-world systems.

In Brachman, Ronald; Levesque, Hector; and Re-

iter, Raymond, editors 1989, Proc. of the First Int'l

Conf. on Principles of Knowledge Representation and

Reasoning. 412{420.

Shoham, Yoav 1986. Chronological ignorance: Time,

nonmonotonicity, necessity and causal theories. In

Proc. of AAAI-86. 389{393.

Turner, Hudson 1993. A monotonicity theorem for

extended logic programs. In Proc. of the Tenth Int'l

Conference on Logic Programming. 567{585.

