
Safe Formulas in the General Theory

of Stable Models (Preliminary Report)

Joohyung Lee1 , Vladimir Lifschitz2, and Ravi Palla1

1School of Computing and Informatics, Arizona State University, USA
2Department of Computer Sciences, University of Texas at Austin, USA

1{joolee,Ravi.Palla}@asu.edu, 2
vl@cs.utexas.edu

Abstract. Safe first-order formulas generalize the concept of a safe rule,
which plays an important role in the design of answer set solvers. We
show that any safe sentence is equivalent, in a certain sense, to the re-
sult of its grounding—to the variable-free sentence obtained from it by
replacing all quantifiers with multiple conjunctions and disjunctions. It
follows that a safe sentence and the result of its grounding have the
same stable models, and that stable models of a safe sentence can be
characterized by a formula of a simple syntactic form.

1 Introduction

The definition of a stable model proposed in [Ferraris et al., 2007] is more gen-
eral than the original definition from [Gelfond and Lifschitz, 1988]: it applies to
models of arbitrary first-order sentences. Logic programs referred to in the 1988
definition are identified in this theory with first-order formulas of a special form.
For instance, the rule

p(x)← not q(x) (1)

is treated as alternative notation for the sentence

∀x(¬q(x) → p(x)). (2)

In this example, stable models are the interpretations of the unary predicate
constants p and q (in the sense of first-order logic) that make p identically true
and q identically false.

This general definition of a stable model involves a syntactic transformation
of formulas, which is similar to the circumscription operator [McCarthy, 1980]—
it turns a first-order sentence into a stronger second-order sentence. There is
an important difference, however, between stable models and models of circum-
scription. Two sentences may be equivalent (that is, have the same models), but
have different stable models. For instance, formula (2) is equivalent to

∀x(¬p(x)→ q(x)),

but the stable models of these two formulas are not the same. The equivalent
transformations of formulas that preserve their stable models are studied in [Lif-
schitz et al., 2007]. They are represented there by a subsystem of classical logic



called SQHT= (“static quantified logic of here-and-there with equality”). This
deductive system includes all axioms and inference rules of intuitionistic logic
with equality, the decidable equality axiom

x = y ∨ x 6= y (3)

and two other axiom schemas, but it does not include the general law of the
excluded middle F ∨ ¬F .

In [Lee et al., 2008], the new approach to stable models is used to define
the semantics of an answer set programming language with choice rules and
counting, called RASPL-1. The meaning of a RASPL-1 program is defined in
terms of the stable models of a first-order sentence associated with the program,
which is called its “FOL-representation.” For instance, the FOL-representation
of the RASPL-1 rule

p← {x : q(x)} 1 (4)

is the formula
¬∃xy(q(x) ∧ q(y) ∧ x 6= y)→ p. (5)

In this note, we continue one line of research from [Lee et al., 2008], the
study of safe sentences and their stable models. The definition of a safe sentence,
reproduced in the next section, is related to some ideas of [Topor and Sonenberg,
1988].1 It extends the familiar concept of a safe rule, which plays an important
role in the design of answer set solvers [Leone et al., 2006, Section 2.1]. For
instance, rule (1) is not safe, and for this reason it is not allowed in the input of
any of the existing systems for computing stable models. Rule (4) is safe, and
we expect that it will be accepted by a future implementation of RASPL-1.

According to Proposition 1 below, stable models of a safe sentence (without
function symbols) have what can be called the “small predicate property”: the
relation represented by any of its predicate constants can hold for a tuple of ar-
guments only if each member of the tuple is represented by an object constant.
We show, furthermore, that any safe sentence is equivalent, in a certain sense,
to the result of its grounding—to the variable-free sentence obtained from it by
replacing all quantifiers with multiple conjunctions and disjunctions (Proposi-
tion 2). We derive from these two facts that a safe sentence and the result of its
grounding have the same stable models (Proposition 3). This theorem leads us
to the conclusion that stable models of a safe sentence can be characterized by a
sentence of a simple syntactic structure—not just first-order, but universal and,
moreover, “almost variable-free” (Proposition 4).

2 Review: Safe Sentences

We consider first-order formulas that may contain object constants and equality
but no function constants of arity > 0. ¬F is shorthand for F → ⊥, F ↔ G is

1 Topor and Sonenberg [1988] defined the notion of “allowed” formulas, similar to
the notion of safe formulas, in a much more limited setting of stratified deductive
databases. (That paper was written before the invention of the stable model seman-
tics.) The definitions are not equivalent to each other. For example, ∃x(¬p(x) → q)
is safe but not allowed; ∃x(¬p(x) → q(x)) is allowed but not safe.



shorthand for (F → G) ∧ (G→ F ), and > is shorthand for ⊥ → ⊥. A sentence

is a formula without free variables.
Recall that a traditional rule—an implication of the form

(L1 ∧ · · · ∧ Ln)→ A, (6)

not containing equality, where L1, . . . , Ln are literals and A is an atom—is con-
sidered safe if every variable occurring in it occurs in one of the positive literals
in the antecedent. The definition of a safe formula from [Lee et al., 2008], repro-
duced below, generalizes this condition to arbitrary sentences in prenex form.
The assumption that the formula is in prenex form is not a significant limitation
in the general theory of stable models, because all steps involved in the standard
process of converting a formula to prenex form are equivalent transformations
in SQHT= [Lee and Palla, 2007].

To every quantifier-free formula F we assign a set RV(F ) of its restricted

variables as follows:

– For an atomic formula F ,
• if F is an equality between two variables then RV(F ) = ∅;
• otherwise, RV(F ) is the set of all variables occurring in F ;

– RV(⊥) = ∅;
– RV(F ∧G) = RV(F ) ∪ RV(G);
– RV(F ∨G) = RV(F ) ∩ RV(G);
– RV(F → G) = ∅.

It is clear, for instance, that a variable is restricted in the antecedent of (6) iff
it occurs in one of the positive literals among L1, . . . , Ln.

Consider a sentence F in prenex form: Q1x1 · · ·QnxnM (each Qi is ∀ or ∃;
x1, . . . , xn are distinct variables; the matrix M is quantifier-free). We say that F

is safe if every occurrence of each of the variables xi in M is contained in a
subformula G→ H that satisfies two conditions:

(a) the subformula is positive in M if Qi is ∀, and negative in M if Qi is ∃;
(b) xi is restricted in G.

3 Properties of Safe Sentences

We assume that the reader is familiar with the definition of the stable model
operator SM from [Ferraris et al., 2007]. Proposition 1 below shows that all
stable models of a safe sentence have the small predicate property: the relation
represented by any of its predicate constants pi can hold for a tuple of arguments
only if each member of the tuple is represented by an object constant occurring
in F . To make this idea precise, we will use the following notation: for any finite
set c of object constants, inc(x1, . . . , xm) stands for the formula

∧

1≤j≤m

∨

c∈c

xj = c.



The small predicate property can be expressed by the conjunction of the sen-
tences

∀x(pi(x)→ inc(x))

for all predicate constants pi occurring in F , where x is a list of distinct variables.
We will denote this sentence by SPPc. By c(F ) we denote the set of all object
constants occurring in F .

Proposition 1 For any safe sentence F , SM[F ] entails SPPc(F ).

Corollary 1 For any safe sentence F that does not contain object constants,

SM[F ] entails the formulas ∀x¬pi(x) for all predicate constants pi of arity > 0.

Indeed, SPP∅ is equivalent to the conjunction of all these formulas.
The process of grounding replaces quantifiers by multiple conjunctions and

disjunctions. To make this idea precise, we define, for any sentence F in prenex
form and any nonempty finite set c of object constants, the variable-free formula
Groundc[F ] as follows. If F is quantifier-free then Groundc[F ] = F . Otherwise,

Groundc[∀xF (x)] =
∧

c∈c

Groundc[F (c)],

Groundc[∃xF (x)] =
∨

c∈c

Groundc[F (c)].

As in [Lifschitz et al., 2007], by INT= we denote intuitionistic predicate
logic with equality, and DE stands for the decidable equality axiom (3). The
importance of the logical system INT= + DE is determined by the fact that it
is a part of SQHT=, so that the provability of a sentence F ↔ G in this system
implies that SM[F ] is equivalent to SM[G].

Proposition 2 For any safe sentence F and any nonempty finite set c of object

constants containing c(F ), the equivalence

Groundc[F ]↔ F

is derivable from SPPc in INT= + DE.

Using Proposition 2 we can prove that the variable-free formula obtained by
grounding a safe sentence F has the same stable models as F :

Proposition 3 For any safe sentence F and any nonempty finite set c of object

constants containing c(F ), SM[Groundc[F ]] is equivalent to SM[F ].

In general, the second-order definition of a stable model cannot be expressed
in first-order logic. The following theorem shows, however, that in the case of
a safe sentence, stable models can be characterized by a very simple first-order
formula, almost variable-free:

Proposition 4 For every safe sentence F there exists a variable-free formula G

such that SM[F ] is equivalent to G ∧ SPPc(F ).



4 Conclusion

In this paper we investigated properties of stable models of safe formulas in a
semantically general situation, not limited to Herbrand models, and established
a few positive results. We saw, in particular, that grounding a safe sentence
preserves its stable models even in this general case, and that the stable models
of a safe sentence can be characterized in first-order logic. We hope that these
theorems will help us in future work on non-Herbrand answer set programming.

Acknowledgements

We are grateful to Paolo Ferraris and the anonymous referees for useful comments
on the draft of this paper. The first and the third author were partially supported
by the National Science Foundation under Grant IIS-0839821. The second author
was partially supported by the National Science Foundation under Grant IIS-
0712113.

References

[Ferraris et al., 2007] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new
perspective on stable models. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), pages 372–379, 2007.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Proceedings of International Logic Programming Conference and Symposium,
pages 1070–1080. MIT Press, 1988.

[Lee and Palla, 2007] Joohyung Lee and Ravi Palla. Yet another proof of the strong
equivalence between propositional theories and logic programs. In Working Notes of
the Workshop on Correspondence and Equivalence for Nonmonotonic Theories, 2007.

[Lee et al., 2008] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A reductive se-
mantics for counting and choice in answer set programming. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 2008. To appear.

[Leone et al., 2006] Nicola Leone, Wolfgang Faber, Gerald Pfeifer, Thomas Eiter,
Georg Gottlob, Simona Perri, and Francesco Scarcello. The DLV system for knowl-
edge representation and reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

[Lifschitz et al., 2007] Vladimir Lifschitz, David Pearce, and Agustin Valverde. A char-
acterization of strong equivalence for logic programs with variables. In Procedings
of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), 2007.

[McCarthy, 1980] John McCarthy. Circumscription—a form of non-monotonic reason-
ing. Artificial Intelligence, 13:27–39,171–172, 1980.

[Topor and Sonenberg, 1988] R. W. Topor and E. A. Sonenberg. On domain inde-
pendent databases. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 217–240. Morgan Kaufmann, San Mateo, CA, 1988.


