
On the Stable Model Semantics
of First-Order Formulas with Aggregates

Paolo Ferraris1 and Vladimir Lifschitz2

1Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
2Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA

Abstract

The original definition of a stable model has been gen-
eralized to logic programs with aggregates. On the
other hand, it was extended to first-order formulas us-
ing a syntactic transformation SM, similar to circum-
scription. In a recent paper, Lee and Meng combined
these two ideas in a single framework by defining the
operator SM for generalized formulas that may include,
besides the usual syntactic features of first-order logic,
symbols used in dlv-style aggregate expressions. In
this note, we make the syntax proposed by Lee and
Meng more uniform by allowing aggregate symbols to
be used at any stage of the recursive process of building
a formula from atoms, along with propositional con-
nectives and quantifiers. We also generalize several
useful properties of SM to formulas with aggregates,
and investigate the relationship between the Lee-Meng
semantics of aggregates and the semantics of counting
adopted in the language RASPL-1.

Introduction

The stable model semantics, defined originally in (Gel-
fond and Lifschitz 1988), has been generalized in sev-
eral ways. Stable models were defined, in particular,
for logic programs with aggregates of various kinds
(Niemelä et al. 1999; Faber et al. 2004; Ferraris 2005).
This is an important extension because aggregates are
widely used in the practice of answer set programming.

On the other hand, the concept of a stable model
was extended to first-order formulas using a syntactic
transformation SM that is similar to circumscription
(Ferraris et al. 2007; 2010). Under this approach, logic
programs are identified with first-order formulas of spe-
cial syntactic forms. This version of the stable model
semantics is of interest because it allows us to reason
about logic programs using the well-known and well-
developed apparatus of predicate logic; it is similar in
this sense to Clark’s completion semantics (Clark 1978).

More recently, Lee and Meng [2009] showed how to
combine these two ideas in a single framework. This
is achieved by defining the operator SM for generalized
formulas that may include, besides the usual syntactic
features of first-order logic, symbols used in dlv-style
aggregate expressions.

In this note, we extend this line of work in several
directions. First, we make the definition of an aggre-
gate formula syntactically uniform by allowing aggre-
gate symbols to be used at any stage of the recursive
process of building a formula from atoms, along with
propositional connectives and quantifiers. (In (Lee and
Meng 2009) quantifiers cannot occur in the scope of ag-
gregates, and aggregates cannot be nested.) Aggregates
become now a special case of generalized quantifiers—a
syntactic construct that plays an important role in ap-
plications of logic to computational semantics (Peters
and Westerst̊ahl 2006).

Second, we generalize the properties of SM estab-
lished in (Ferraris et al. 2010, Section 6) to aggregate
formulas. These properties show how a process simi-
lar to program completion can be sometimes used to
simplify the result of applying the operator SM.

We also investigate the relationship between the Lee-
Meng semantics of aggregates and the semantics of
counting adopted in the answer set programming lan-
guage RASPL-1 (Lee et al. 2008).

Formulas with Aggregates
Aggregate Functions
A multiset is usually defined as a set along with a func-
tion assigning a positive integer, called the multiplicity,
to each of its elements. In this note, we understand mul-
tisets in a more general way: the multiplicity of each el-
ement is assumed to be either a positive integer or +∞.
By a number we understand an element of some fixed
set Num. In the examples, Num is assumed to be
Z ∪ {+∞,−∞}, where Z is the set of integers.

An aggregate function is a partial function from the
class of multisets to Num.

Example 1 The aggregate function #count maps any
multiset α to its cardinality if α is finite, and to +∞
otherwise. This function is defined on all multisets.

Example 2 The aggregate function #sum maps α
• to the sum of all non-zero integers from α if there are

finitely many of them,
• to +∞ if α contains infinitely many positive integers

but only finitely many negative integers,

• to −∞ if α contains infinitely many negative integers
but only finitely many positive integers.

If α contains both infinitely many positive integers and
infinitely many negative integers then #sum is unde-
fined.

Example 3 The aggregate function #max maps α
to the least upper bound of the integers from α. This
function is defined on all multisets.

Specifying a Language with Aggregates
Recall that a first-order language is characterized by its
signature—a collection of function and predicate con-
stants with an arity assigned to each of them; function
constants of arity 0 are called object constants (see, for
instance, (Lifschitz et al. 2008), Section 1.2.2). To spec-
ify a first-order language with aggregates, we should

• choose a signature σ that contains, among its object
constants, symbols for all numbers,

• specify which of the binary predicate constants of σ
are considered comparison operators, and specify a
binary relation on Num for each of them;

• choose a collection of symbols (not from σ) represent-
ing some aggregate functions.

To simplify notation, we will not distinguish here be-
tween symbols for numbers, comparison operators, and
symbols for aggregate functions on the one hand, and
the objects that these symbols represent on the other.

Example 4 Take an arbitrary signature σ containing,
among other symbols, the elements of Z ∪ {+∞,−∞}
as object constants and ≤, ≥ as binary predicate con-
stants. The comparison operators of the language are ≤
and ≥, and its aggregate functions are #count , #sum,
and #max .

Formulas
In a language with aggregates, terms and atomic formu-
las are defined in the same way as in first-order logic.
The usual recursive definition of a formula turns into a
joint definition of formulas and aggregate expressions,
and the following two clauses are added to it:

• if op is an aggregate function, x1, . . . ,xn are
nonempty tuples of pairwise distinct variables (n ≥
1), and F1, . . . , Fn are formulas, then

op〈x1.F1, . . . ,xn.Fn〉

is an aggregate expression;1

• if E is an aggregate expression and t a term, then
E = t and E � t for any comparison operator � are
formulas.

Formulas of the forms E = t and E � t will be called
aggregate formulas.

1This syntax is more general than in (Lee and Meng
2009), where n is assumed to be 1.

In the definition of free and bound variables, the con-
struct x.F is viewed as a quantifier binding the mem-
bers of x.

Example 5 In the language from Example 4, if p and q
are unary predicate constants then

#count〈x.p(x) ∨ q(x)〉 ≤ 3 (1)

and
#count〈x.p(x), x.q(x)〉 ≤ 3 (2)

are sentences (formulas without free variables). For-
mula (1) expresses, intuitively, that the number of ob-
jects that satisfy at least one of the conditions p, q is
at most 3. The meaning of (2) is similar, except each
object satisfying both p and q is counted twice.

Example 6 In the language from Example 4, if r is a
binary predicate constant then

#sum〈xy.r(x, y)〉 = 1 (3)

is a sentence. It expresses that the sum of the values of x
over all pairs x, y satisfying r in which x is an integer
equals 1. This example illustrates the special role of
the first component of the tuple x in the semantics of
expressions x.F defined below. In this respect, the Lee-
Meng semantics follows the approach adopted in the
input language of the answer set solver dlv (see (Faber
et al. 2010), Section 2.2).

Semantics
An interpretation of a first-order language with aggre-
gates is an interpretation of its signature (in the sense of
first-order logic) such that each number and each com-
parison operator is interpreted as itself. It follows that
the universe of any interpretation is a superset of Num,
and that the extent of every comparison operator in any
interpretation is a subset of Num×Num.

Recall that the semantics of first-order logic is defined
by specifying, for any interpretation I of the underlying
signature,

• the value tI of every term t that contains no variables
but may contain the names ξ∗ of the elements of the
universe |I| of I (added to the signature as object
constants),

• the truth value F I of every sentence F (that may
contain names ξ∗)

(see, for instance, (Lifschitz et al. 2008), Section 1.2.2
for details). In the presence of aggregates, the definition
of the value of a term remains the same. The recursive
definition of the truth value of a formula is extended by
a clause for aggregate formulas, and simultaneously we
define

• the subset (x.F)I of the universe |I| for every
nonempty tuple x of pairwise distinct variables and
for any formula F such that all free variables of F
belong to x.

For any set X of n-tuples (n ≥ 1), let msp(X) (“the
multiset projection of X”) be the multiset consisting
of all ξ1 such that (ξ1, ξ2, . . . , ξn) ∈ X for at least one
(n−1)-tuple (ξ2, . . . , ξn), with the multiplicity equal to
the number of such (n− 1)-tuples (and to +∞ if there
are infinitely many of them). Using this notation, we
define:

• (x1 · · ·xn.F (x1, . . . , xn))I is

msp({(ξ1, . . . , ξn) ∈ |I|n : F (ξ∗1 , . . . , ξ
∗
n)I = true});

• (op〈x1.F1, . . . ,xn.Fn〉 � t)I equals true if the
join2 α of the multisets (x1.F1)I , . . . , (xn.Fn)I be-
longs to the domain of op and satisfies the condition
op(α) � tI .

Example 7 Consider the language from Example 4
and assume that the underlying signature consists of
the numbers and the comparison operators, the object
constants a, b, c, the unary predicate constants p and q,
and the binary predicate constant r. The interpreta-
tion I is defined as follows:

• its universe is Z ∪ {+∞,−∞, a, b, c};
• every object constant is interpreted as itself;

• the extent of p is {a, b};
• the extent of q is {b, c};
• the extent of r is {〈−1, a〉, 〈1, b〉, 〈1, c〉}.
Then (x.p(x) ∨ q(x))I = [a, b, c], so that I satisfies (1).
On the other hand, (x.p(x))I = [a, b] and (x.q(x))I =
[b, c]; the join of these multisets is [a, b, b, c]. Since the
cardinality of the join is 4, I does not satisfy (2). Fur-
thermore,

(xy.r(x, y))I = msp({〈−1, a〉, 〈1, b〉, 〈1, c〉}) = [−1, 1, 1],

so that I satisfies (3).

If Num is empty and there are no comparison op-
erators and no symbols for aggregates then the syntax
and semantics of languages with aggregates turn into
the usual syntax and semantics of first-order logic.

Relation to Generalized Quantifiers
First-order logic with aggregates can be viewed as a
special case of first-order logic with generalized quanti-
fiers in the sense of (Westerst̊ahl 2008), Section 5 (that
is to say, with Lindström quantifiers (Lindström 1966)
without the isomorphism closure condition).

Without going into details, we can say that a Lind-
ström quantifier Q associates with each universe U a
relation QU between relations on U . For instance,
take QU to be

{〈A,B〉 : A ⊆ B ⊆ U}.
2Recall that by the definition of the join of multisets,

the multiplicity of each element of the join is the sum of its
multiplicities in the summands.

This is a binary relation between unary relations. For
this Q, the formula

Q[x][x](F (x), G(x)) (4)

has the same meaning as ∀x(F (x) → G(x)) (“all
F ’s are G’s”). In (4), [x] repeated twice indicates
that the quantifier binds x in each of the two formu-
las F (x), G(x).

The aggregate formula op〈x.F (x)〉 � t can be written
as

Q[x][y](F (x), y = t),
where y is a new variable, and Q is the Lindström quan-
tifier defined by

QU = {〈A, {n}〉 : A ⊆ U, n ∈ Num, op(A) � n}.

Entailment and Equivalent
Transformations
The definitions of entailment, logical validity, and
equivalence for formulas with aggregates are the same
as in first-order logic, with interpretations and satisfac-
tion understood as defined above. Since adding aggre-
gates does not affect the semantics of equality, propo-
sitional connectives, and quantifiers, the inference rules
of first-order logic remain sound in the presence of ag-
gregates, and standard equivalent transformations can
be used to verify the equivalence of formulas with ag-
gregates.

There are cases, however, when these inference rules
and equivalent transformations are not sufficient. First-
order logic does not tell us, for instance, that for any
aggregate expression E, the formula

E ≤ 1→ E ≤ 2

is logically valid, and that the formula

#count〈x.x = a ∨ x = b〉 = 1

is equivalent to a = b.

Second-Order Formulas with Aggregates
Predicate variables can be added to a language with ag-
gregates in the usual way (as described, for instance, in
(Lifschitz et al. 2008, Section 1.2.3)). Syntactically, n-
ary predicate variables are used to form atomic formulas
in the same way as n-ary predicate constants. Semanti-
cally, these variables range over arbitrary truth-valued
functions on |I|n.

Operator SM
Background
Recall that according to the definition of SM in (Fer-
raris et al. 2010), for any first-order formula F and
any tuple p of pairwise distinct predicate constants
p1, . . . , pn (“intensional predicates”), SMp[F] stands for
the second-order formula

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (5)

where u is a list of distinct predicate variables
u1, . . . , un, and F ∗(u) is defined recursively:

• pi(t)∗ = ui(t) for any tuple t of terms;

• F ∗ = F for any atomic F that does not contain mem-
bers of p;

• (F ∧G)∗ = F ∗ ∧G∗;
• (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗;
• (∃xF)∗ = ∃xF ∗.
(There is no clause for negation here because we treat
¬F as shorthand for F → ⊥.) A model of a sentence
F is stable (relative to p) if it satisfies SMp[F]. The
subscript p will be sometimes omitted.

The clauses for propositional connectives in this def-
inition can be stated in a more uniform way: they can
be equivalently replaced by

(F �G)∗ = (F ∗ �G∗) ∧ (F �G) (� ∈ {∧,∨,→}).

The possibility of dropping the second conjunctive term
in this version when � is ∧ or ∨ is related to the fact
that the truth-valued functions corresponding to these
two connectives are monotone. Similarly, the clauses
for quantifiers can be equivalently replaced by

(QxF)∗ = QxF ∗ ∧QxF (Q ∈ {∀,∃}).

Extending the Definition of SM to
Aggregates
To extend the definition of the operator SM to formu-
las with aggregates, Lee and Meng extend the recursive
definition of F ∗ by adding a clause that treats aggre-
gates in the same way as propositional connectives and
quantifiers in the uniform version:

(op〈x1.F1, . . . ,xn.Fn〉 � t)∗ =
(op〈x1.F ∗1 , . . . ,x

n.F ∗n〉 � t)
∧ (op〈x1.F1, . . . ,xn.Fn〉 � t)

where � is equality or a comparison operator.

Example 8 If F is the formula

p(2) ∧ p(3) ∧ (#sum〈x.p(x)〉 ≤ 10→ q) (6)

and p is pq then F ∗(u, v) is

u(2) ∧ u(3)
∧ ((#sum〈x.u(x)〉 ≤ 10 ∧#sum〈x.p(x)〉 ≤ 10)→ v)
∧ (#sum〈x.p(x)〉 ≤ 10→ q).

We will see below that the result of applying SM to (6)
is equivalent to

∀x(p(x)↔ x = 2 ∨ x = 3) ∧ q. (7)

Consequently the stable models of (6) can be charac-
terized as the interpretations in which the extent of p
is {2, 3}, and q is true.

Formula (6) can be viewed as the dlv program

p(2).
p(3).
q :- #sum{X : p(X)} <= 10.

written as a formula with aggregates. The output re-
turned by dlv for this program
{p(2), p(3), q}

agrees with the characterization of the stable models
of (6) given above. This is not surprising, in view of
Propositions 6 and 7 from (Lee and Meng 2009) that
relate the semantics of aggregates in dlv to the opera-
tor SM.

In view of the relationship between aggregates and
generalized quantifiers discussed above, it is interesting
to compare the Lee-Meng semantics of aggregates with
the definition of a stable model for logic programs with
generalized quantifiers proposed by Eiter et al. (1997,
1999). The former is more general syntactically in
the sense that arbitrary propositional connectives and
quantifiers are allowed. Semantically, the difference is
that the former generalizes the approach of (Ferraris et
al. 2010), and the latter is based on the concept of the
reduct from (Gelfond and Lifschitz 1988).

Monotonicity
As pointed out above, the concept of a stable model is
not affected when in the characterization of (F � G)∗
as

(F ∗ �G∗) ∧ (F �G) (8)
the second conjunctive term is dropped for the “mono-
tone” connectives ∧, ∨. This follows from the fact that
in the presence of the condition u < p from (5), or even
the weaker condition u ≤ p, the first conjunctive term
of (8) implies the second conjunctive term and is con-
sequently equivalent to the whole conjunction. To put
it precisely, the implication

u ≤ p→ ((F �G)∗ ↔ (F ∗ �G∗))

is logically valid for any formulas F , G if � is ∧ or ∨.
To state a similar fact for aggregates, we need the

following definition. An aggregate function op is mono-
tone with respect to a comparison operator � if for any
multisets α, β such that α ⊆ β,
• if op(α) is defined then so is op(β), and
• for any n ∈ Num, if op(α) � n then op(β) � n.
Anti-monotone aggregate functions are defined in a sim-
ilar way, with α ⊆ β replaced by β ⊆ α.

It is clear, for instance, that #count is monotone
with respect to ≥ and anti-monotone with respect to ≤.
Function #sum is not monotone with respect to ≥. In-
deed, it is true that #sum([1]) ≥ 1, but it is not true
that #sum([−1, 1]) ≥ 1. On the other hand, the aggre-
gate function #sum+, which maps any multiset α to
the sum of all positive integers from α (and to +∞ if α
contains infinitely many positive integers) has the same
properties as #count : it is monotone with respect to ≥
and anti-monotone with respect to ≤.

Theorem 1 (i) If op is monotone with respect to �
then the formula

u ≤ p→ ((op〈x1.F1, . . . ,xn.Fn〉 � t)∗
↔ op〈x1.F ∗1 , . . . ,x

n.F ∗n〉 � t)

is logically valid. (ii) If op is anti-monotone with re-
spect to � then the formula

u ≤ p→ ((op〈x1.F1, . . . ,xn.Fn〉 � t)∗
↔ op〈x1.F1, . . . ,xn.Fn〉 � t)

is logically valid.

Thus in the conjunction

(op〈x1.F ∗1 , . . . ,x
n.F ∗n〉 � t)

∧ (op〈x1.F1, . . . ,xn.Fn〉 � t),

which defines (op〈x1.F1, . . . ,xn.Fn〉 � t)∗, the second
conjunctive term can be dropped if op is monotone, and
the first term can be dropped if op is anti-monotone.
Part (i) of the theorem shows that monotone aggregates
are similar, from the point of view of the stable model
semantics, to conjunction and disjunction. In view of
Lemma 6 from (Ferraris et al. 2010), which asserts the
logical validity of

u ≤ p→ (¬F)∗ ↔ ¬F),

we can say that part (ii) demonstrates a similarity be-
tween anti-monotone aggregates and negation.

Equivalence with Respect to the Stable
Model Semantics
Two sentences that are equivalent to each other do not
necessarily have the same stable models. It is known,
on the other hand, that if the equivalence between first-
order formulas F and G can be proved in intuitionistic
logic with equality then SMp[F] is equivalent to SMp[G]
(Lifschitz et al. 2007; Ferraris et al. 2010).3 The exten-
sion of SM defined above has a similar property: if F
and G are first-order formulas with aggregates such that
the equivalence between them can be derived using ax-
iom schemas and inference rules of intuitionistic logic
with equality then SMp[F] is equivalent to SMp[G].

For instance, the equivalence between (6) and

∀x((x = 2 ∨ x = 3)→ p(x))
∧ (#sum〈x.p(x)〉 ≤ 10→ q) (9)

can be justified using postulates of intuitionistic logic
with equality. It follows that these two formulas have
the same stable models.

Completion and Tightness
The properties of the operator SM established in (Fer-
raris et al. 2010), Section 6, show how a process similar
to Clark’s program completion can be sometimes used

3These papers show that this claim holds also for a
stronger logical system—for the intermediate logic called
SQHT=.

to simplify the result of applying the operator SM and,
in particular, to eliminate second-order quantifiers from
it. In this section we show how to extend this process
to formulas with aggregates.

The following two definitions are not affected by the
presence of aggregates in the language. A formula is in
Clark normal form (relative to the list p of intensional
predicates) if it is a conjunction of formulas of the form

∀x(G→ p(x)), (10)

one for each intensional predicate p, where x is a list
of distinct object variables. The completion of a for-
mula F in Clark normal form, denoted by COMP[F],
is obtained from it by replacing each conjunctive
term (10) with

∀x(p(x)↔ G). (11)
For instance, formula (9) is in Clark normal form, and
its completion is

∀x(p(x)↔ (x = 2 ∨ x = 3))
∧ (q ↔ #sum〈x.p(x)〉 ≤ 10). (12)

According to Theorem 10 from (Ferraris et al. 2010),
the implication

SM[F]→ COMP[F]

is logically valid for any formula F in Clark normal
form. Furthermore, according to Theorem 11, the im-
plication in the other direction is logically valid when-
ever F is “tight.” To extend the concept of a tight for-
mula to formulas with aggregates, we need to introduce
a few definitions.

In first-order logic, occurrences of predicate constants
(or of any other expressions) in a formula are classified
into positive and negative as follows: an occurrence is
positive if the number of implications containing it in
the antecedent is even, and negative otherwise. (Re-
call that ¬F is shorthand for F → ⊥.) For first-order
formulas with aggregates, we will distinguish between
positive, negative, and “mixed” occurrences. The need
for a third category emerges also in other languages—
for instance, in propositional logic when ↔ is treated
as a primitive, rather than an abbreviation. In that
setting we would say that the occurrences of p and q in
p↔ q are neither positive nor negative.

Let F be a formula with aggregates. Consider an
occurrence of a predicate constant in F , and consider
all aggregate subformulas

op〈x1.F1, . . . ,xn.Fn〉 � t (13)

of F containing that occurrence. If in at least one
of these subformulas op is neither monotone nor anti-
monotone with respect to � then we say that the occur-
rence is mixed. If the occurrence is not mixed then con-
sider the number k of implications containing that oc-
currence in the antecedent, and the number l of formu-
las (13) in which op is anti-monotone with respect to �;
the occurrence is positive if k + l is even, and negative
otherwise. For example, the first two occurrences of p

in (6) are positive, and the third is mixed; if we replace
#sum in this formula with #count then the third occur-
rence will become positive as well (k = l = 1). Count-
ing anti-monotone aggregate functions along with the
antecedents of implications is suggested by the analogy
between such functions and negation discussed above.

An occurrence of a predicate constant in F is negated
if it belongs to a subformula of F that has the form
G→ ⊥ or is an aggregate formula (13) such that op is
anti-monotone with respect to �.

For any formula F in Clark normal form, the predi-
cate dependency graph of F is the directed graph that

• has all intensional predicates as its vertices, and

• has an edge from p to q if the antecedent G of the
conjunctive term (10) of F with p in the consequent
has an occurrence of q that is not negative and not
negated.4

For example, the predicate dependency graph of for-
mula (9) has the vertices p, q, and one edge—from q
to p, because the occurrence of p in

#sum〈x.p(x)〉 ≤ 10

is not negative (it is mixed) and not negated. If we
replace #sum in (9) with #count then the edge will
disappear, because the occurrence of p in

#count〈x.p(x)〉 ≤ 10

is negative (and also negated). If we replace #sum with
#count and also ≤ with ≥ then the edge from q to p
will come back, because the occurrence of p in

#count〈x.p(x)〉 ≥ 10

is not negative (it is positive) and not negated.
We say that a formula in Clark normal form is tight if

its predicate dependency graph is acyclic. For example,
formula (9) is tight, and so are its two modifications
described in the previous paragraph. If we replace the
first conjunctive term of (9) with

∀x((x = 2 ∨ (x = 3 ∧ q))→ p(x))

then the dependency graph will get a second edge,
from p to q, and the formula will become non-tight.

Theorem 2 If a formula F in Clark normal form is
tight then SM[F] is equivalent to COMP[F].

This theorem shows, for instance, that the result of
applying the operator SM to formula (9) is equivalent
to the completion (12) of this formula. Since (9) has the
same stable models as (6), and (12) can be equivalently
rewritten as (7), we have justified the claim regarding
the stable models of (6) made in Example 8.

4The definition of the predicate dependency graph would
not be affected if we replaced k + l with k in the definition
of a positive occurrence (Joohyung Lee, personal communi-
cation, February 5, 2010).

Relation to RASPL-1

The theorem stated below shows that in application
to the aggregate #count the Lee-Meng semantics is
equivalent to the approach adopted in RASPL-1 (Lee
et al. 2008). In the statement of the theorem,
Num is assumed to be Z ∪ {+∞,−∞}, or it can be
{0, 1, . . . ,+∞}; the set of aggregate functions of the
language is assumed to include #count , and the set of
comparison operators is assumed to include ≥.

Theorem 3 Let F be a formula containing a subfor-
mula of the form

#count〈x.G(x)〉 ≥ n,

where n is a positive integer. If F ′ is the result of re-
placing this subformula with

∃x1 · · ·xn

 ∧
1≤i≤n

G(xi) ∧
∧

1≤i<j≤n

¬(xi = xj)

 ,
where x1, . . . ,xn are disjoint lists of distinct variables
of the same length as x, then SM[F ′] is equivalent
to SM[F].

Conclusion

The Lee-Meng semantics of aggregates is perhaps the
most attractive of the existing approaches to incorpo-
rating aggregates in answer set programming languages.
Like the method of (Faber et al. 2004), it exhibits good
formal properties even in application to aggregates that
are neither monotone nor anti-monotone. On the other
hand, it inherits the conceptual simplicity of the frame-
work developed by Ferraris et al. (2007, 2010), which
does not require grounding as an intermediate step.

The main properties of the SM operator established
in (Ferraris et al. 2010) need to be extended now to
formulas with aggregates. We have made here a step in
this direction.

Acknowledgements

We are grateful to Joohyung Lee, Yuliya Lierler,
Fangkai Yang, and the anonymous referees for com-
ments on a draft of this note. The second author was
partially supported by the National Science Foundation
under grant IIS-0712113.

References

Keith Clark. Negation as failure. In Herve Gallaire
and Jack Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, New York, 1978.
Thomas Eiter, Georg Gottlob, and Helmuth Veith.
Modular logic programming and generalized quanti-
fiers. In Proceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), pages 290–309. Springer, 1997.

Thomas Eiter, Georg Gottlob, and Helmuth Veith.
Generalized quantifiers in logic programs. In Gen-
eralized Quantifiers and Computation, 9th European
Summer School in Logic, Language, and Information
(Lecture Notes in Computer Science 1754), pages 72–
98. Springer, 1999.
Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In Proceedings of Euro-
pean Conference on Logics in Artificial Intelligence
(JELIA), 2004.
Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Se-
mantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence, 2010. To
appear.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
A new perspective on stable models. In Proceedings
of International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 372–379, 2007.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
Stable models and circumscription.5 Artificial Intelli-
gence, 2010. To appear.
Paolo Ferraris. Answer sets for propositional the-
ories. In Proceedings of International Conference
on Logic Programming and Nonmonotonic Reasoning
(LPNMR), pages 119–131, 2005.
Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert
Kowalski and Kenneth Bowen, editors, Proceedings
of International Logic Programming Conference and
Symposium, pages 1070–1080. MIT Press, 1988.
Joohyung Lee and Yunsong Meng. On reductive se-
mantics of aggregates in answer set programming. In
Procedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR),
pages 182–195, 2009.
Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A
reductive semantics for counting and choice in answer
set programming. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), pages 472–479,
2008.
Vladimir Lifschitz, David Pearce, and Agustin
Valverde. A characterization of strong equivalence for
logic programs with variables. In Procedings of Inter-
national Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), 2007.
Vladimir Lifschitz, Leora Morgenstern, and David
Plaisted. Knowledge representation and classical logic.
In Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter, editors, Handbook of Knowledge Representa-
tion, pages 3–88. Elsevier, 2008.
Per Lindström. First-order predicate logic with gener-
alized quantifiers. Theoria, 32:186–195, 1966.
Ilkka Niemelä, Patrik Simons, and Timo Soininen.
Stable model semantics for weight constraint rules. In

5http://peace.eas.asu.edu/joolee/papers/smcirc.pdf

Procedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR),
pages 317–331, 1999.
Stanley Peters and Dag Westerst̊ahl. Quantifiers in
language and logic. Oxford University Press, 2006.
Dag Westerst̊ahl. Generalized quantifiers. In The
Stanford Encyclopedia of Philosophy (Winter 2008
Edition). 2008. URL = <http://plato.stanford.edu/
archives/win2008/entries/generalized-quantifiers/>.

