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Abstrat

We propose a new delarative semantis for logi programs with nega-

tion. Its formulation is quite simple; at the same time, it is more gen-

eral than the iterated �xed point semantis for strati�ed programs,

and is appliable to some useful programs that are not strati�ed.

1. Introdution

This paper belongs to the diretion of researh whih attempts to de-

�ne the delarative meaning of logi programs by means of \anonial

models". The programs under onsideration are sets of rules of the

form

A L

1

; : : : ; L

m

(1)

where A is an atom, and L

1

; : : : ; L

m

are literals (i.e., atoms or negated

atoms), m � 0. Rule (1) is a notational variant of the formula

(L

1

^ : : : ^ L

m

) � A;

so that any program an be viewed as a set of �rst-order formulas.

Aordingly, we an talk about models of a logi program. Every

program has many di�erent models. For instane, a model of the

program

p(1);

q(2);

q(x) p(x)

(2)



onsists of (i) a nonempty set | the universe of the model, (ii) two

elements of the universe | the interpretations of the onstants 1 and

2, and (iii) two subsets of the universe | the interpretations (extents)

of the prediates p and q. The only restrition on the hoie of the

interpretations is that it should make all rules of the program true:

The objet representing 1 must belong to the extent of p, the objet

representing 2 must belong to the extent of q, and the extent of p

must be a subset of the extent of q.

The idea of the anonial model approah is that a delarative se-

mantis for a lass of logi programs an be de�ned by seleting, for

eah program � in this lass, one of its models as the \anonial"

model CM(�). This model determines whih answer to a given query

is onsidered orret. For instane, a query without variables should

be answered yes if it is true in CM(�), and no otherwise.

The anonial model is usually seleted among the Herbrandmodels of

�, i.e., among the models whose universe is the set of ground terms

of the language of �, and whose objet and funtion onstants are

interpreted in suh a way that every ground term denotes itself. An

Herbrand model is ompletely determined by the ground atoms that

are true in it, and it an be identi�ed with the set of these atoms. For

instane, (2) has two Herbrand models:

fp(1); q(1); q(2)g (3)

and

fp(1); p(2); q(1); q(2)g: (4)

A reasonable semantis would designate the �rst of them as anonial.

An Herbrand model M of � is minimal, if no proper subset of M is

an Herbrand model of �. For instane, (3) is a minimal model of (2),

and (4) is not. A program that does not ontain negation, suh as (2),

has exatly one minimal Herbrand model, and the usual semantis for

negation-free programs [4℄ selets that model as its anonial model

CM(�). Programs with negation may have several minimal Herbrand

models. There has been muh reent work on de�ning anonial mod-

els for programs with negation. An important lass of \strati�ed" pro-

grams was introdued, and anonial models were de�ned for strat-

i�ed programs using an \iterated �xed point" onstrution [2℄, [1℄,

[14℄. Further generalizations were proposed in [12℄ (\perfet models")



and in [15℄ (\well-founded models"). Eah of these de�nitions im-

poses some restritions on the use of negation; researhers seem to

agree that there an be no useful de�nition of anonial models for

arbitrary programs (see Remark 4 below).

This theoretial work is losely related to some pratial issues in the

design of logial query languages for databases. The uses of negation

that are disallowed by the aepted delarative semantis must be

reognized as \semanti errors" in queries. For example, the NAIL!

system [11℄ prohibits all nonstrati�ed programs.

There is also a lose onnetion between this work and some of the ex-

isting approahes to the theory of nonmonotoni reasoning, inluding

irumsription [9℄ and autoepistemi logi [10℄. In partiular, the it-

erated �xed pont semantis for strati�ed programs an be equivalently

formulated in terms of these two onepts [7℄, [5℄.

The de�nition proposed in [5℄ is partiularly simple. It uses the trans-

formation of rules (1) into formulas of autoepistemi logi whih in-

serts the \belief" operator L after eah negation, so that eah nega-

tive literal :B in the body of (1) beomes :LB. This mapping an

be thought of as a representation of \negation as failure" in the sym-

bolism of autoepistemi logi: :B in the body of a rule expresses

that the program gives no grounds for believing in B. The anonial

model assigned to a strati�ed program � by the iterated �xed point

semantis an be easily desribed in terms of the autoepistemi theory

obtained from � by applying this transformation to eah of its rules.

In this paper we disuss another implementation of the same idea,

whih does not use autoepistemi logi and is, in this sense, even

simpler than the approah of [5℄. The de�nition of the new semantis

is given in Setion 2. Then we onsider a few examples; we will see

that our semantis is appliable to some useful programs that are

not strati�ed (Setion 3). Familiarity with autoepistemi logi is not

required for understanding these parts of the paper. In Setion 4, we

study the relation between the new semantis and some of the other

anonial model approahes.

2. Stable Models

Let � be a logi program, i.e., a set of rules of form (1). We assume

that eah rule ontaining variables is replaed by all its ground in-

stanes, so that all atoms in � are ground. (Sine � is not required



to be �nite, the variables an be eliminated in this way even when the

program uses funtion symbols, and its Herbrand universe is in�nite.)

For any set M of atoms from �, let �

M

be the program obtained

from � by deleting

(i) eah rule that has a negative literal :B in its body with B 2M ,

and

(ii) all negative literals in the bodies of the remaining rules.

Clearly, �

M

is negation-free, so that �

M

has a unique minimal Her-

brand model. If this model oinides with M , then we say that M is

a stable set of �. Suh sets an be also desribed as the �xed points

of the operator S

�

de�ned by the ondition: for any set M of atoms

from �, S

�

(M) is the minimal Herbrand model of �

M

.

Theorem 1. Any stable set of � is a minimal Herbrand model of �.

In view of this fat, stable sets an be also alled stable models. The

proof of Theorem 1 is given at the end of this setion.

The intuitive meaning of stable sets an be desribed in the same way

as the intuition behind \stable expansions" in autoepistemi logi:

they are \possible sets of beliefs that a rational agent might hold"

[10℄ given � as his premises. If M is the set of ground atoms that

I onsider true, then any rule that has a subgoal :B with B 2 M

is, from my point of view, useless; furthermore, any subgoal :B with

B 62 M is, from my point of view, trivial. Then I an simplify the

premises � and replae them by �

M

. IfM happens to be preisely the

set of atoms that logially follow from the simpli�ed set of premises

�

M

, then I am \rational".

The stable model semantis is de�ned for a logi program �, if �

has exatly one stable model, and it delares that model to be the

anonial model of �.

Proof of Theorem 1. Consider a stable set M . First we want to

show that M is a model of �. Let R be a rule from �. If the body

of R ontains a literal :B suh that B 2 M , then R is true in M .

If not, onsider the rule R

0

obtained from R by deleting all negative



literals from its body. Sine R

0

is one of the rules of �

M

, andM is the

minimal model of �

M

, it is lear that R

0

is true in M . On the other

hand, R logially follows from R

0

; onsequently, R is true in M . To

show that M is minimal, assume that a subset M

1

of M is a model of

�. We will show thatM

1

is also a model of �

M

. Consider any rule R

0

of �

M

; it is obtained from some rule R of � by deleting all negative

literals from its body, and, in every suh literal :B, B 62M . To show

that R

0

is true in M

1

, observe that R is true in M

1

(beause M

1

is a

model of �), that every negative literal :B in the body of R is true

in M

1

(beause B 62 M and M

1

� M), and that R

0

an be obtained

by resolving R against these literals. Sine M is the minimal model

of �

M

, M

1

=M .

3. Examples

If � is negation-free, then, for every M , �

M

oinides with �, and

S

�

(M) is the minimal Herbrand model of �. Consequently, this model

is the only �xed point of S

�

. We see that the minimal Herbrand model

of a negation-free program is its only stable model.

Consider the program

p(1; 2);

q(x) p(x; y);:q(y):

(5)

Let � be (5) with the seond rule replaed by its ground instanes:

q(1) p(1; 1);:q(1);

q(1) p(1; 2);:q(2);

q(2) p(2; 1);:q(1);

q(2) p(2; 2);:q(2):

Let M = fq(2)g. Then �

M

is

p(1; 2);

q(1) p(1; 1);

q(2) p(2; 1):

The minimal Herbrand model of this program is fp(1; 2)g. It is di�er-

ent from M , so thatM is not stable. (This ould have been predited



on the basis of Theorem 1, beause M is not a model of �.) Now let

us try M = fp(1; 2); q(1)g. In this ase �

M

is

p(1; 2);

q(1) p(1; 2);

q(2) p(2; 2):

The minimal Herbrand model of this program is fp(1; 2); q(1)g, i.e.,

M . Hene fp(1; 2); q(1)g is stable. Are there any other stable models

among the 2

6

possible sets of ground atoms? First of all, it is lear

that every value of S

�

inludes p(1; 2) but does not inlude any of

the atoms p(1; 1), p(2; 1), p(2; 2). Consequently, every �xed point of

S

�

has the same properties. Besides the �xed point we have found,

there are 3 other sets satisfying this ondition. The examination of

eah of them shows that it is not a �xed point of S

�

. So � has only

one stable model.

Remark 1. Program (5) is not strati�ed, so that the iterated �xed

point semantis annot be applied to it. The perfet model semantis

[12℄ is not appliable to it either. The method of [15℄ selets the same

anonial model as our approah.

Remark 2. The query evaluation proedure of PROLOG handles

program (5) orretly relative to the stable model semantis: For

every query without variables, it produes the answer yes if the query

belongs to the stable model of (5), and no otherwise.

Remark 3. Some programs similar to (5) an play two-person games

[3℄, [15℄. A position x is winning for White if there is a legal move

from x to a position y that is not winning for Blak. If legal moves

are the same for both players, then this priniple is expressed by the

seond rule of (5).

Here is another nonstrati�ed program with a unique stable model:

p q;:r;

q  r;:p;

r  p;:q:

(6)

The only minimal Herbrand model of (6) is ;, and it is obviously

stable. This example illustrates the following general fat: If the



body of eah rule of a program � ontains a positive literal, then ;

is the only stable model of �. To prove this, notie that, for suh �,

the bodies of all rules in any �

M

are nonempty, and onsequently the

minimal Herbrand model of any �

M

is ;.

There are two kinds of programs to whih the stable model semantis

is not appliable: the programs that have no stable models, and the

programs that have several stable models. The program onsisting

of just one rule p  :p has no stable models. (For this program,

S

�

(;) = fpg and S

�

(fpg) = ;.) The program onsisting of two rules,

p  :q and q  :p, has two stable models: fpg and fqg. Similarly,

the program obtained from (5) by adding the rule p(2; 1) has two

stable models:

fp(1; 2); p(2; 1); q(1)g

and

fp(1; 2); p(2; 1); q(2)g:

Remark 4. The symmetry of eah of the last two examples suggests

that it is hardly possible to selet a single anonial model for any of

them in a reasonable way.

Remark 5. The interpretation of the seond rule of (5) given in

Remark 3 above impliitly assumes that the graph p of the game

is loop-free. The fat that adding p(2; 1) to (5) makes the program

meaningless reets this limitation.

4. Relation to Other Approahes

The relation between the stable model semantis and the well-founded

semantis is investigated in [15℄, and the former is found to be more

general:

Theorem 2 ([15℄, Corollary 6.2). If � has a well-founded model,

then that model is its unique stable model.

Moreover, Examples 6.1 and 6.2 from [15℄ show that the stable model

semantis is stritly more general that the well-founded semantis.

Sine the well-founded semantis oinides with the perfet model

semantis on loally strati�ed programs ([15℄, Theorem 6.3), we on-

lude:



Corollary 1. If � is loally strati�ed, then it has a unique stable

model, whih is idential to its perfet model.

As to the programs that are not loally strati�ed, we an only say that

the areas of appliability of our de�nition and of the perfet model

semantis partially overlap [13℄. We have seen that the latter is not

appliable to program (5) whih has a unique stable model (Remark

1). On the other hand, the only Herbrand model of p :p is perfet,

but not stable.

Sine the perfet model semantis, restrited to strati�ed programs,

oinides with the iterated �xed point semantis [12℄, we also on-

lude:

Corollary 2. If � is strati�ed, then its unique stable model is iden-

tial to its iterated �xed point model.

Finally, we will relate stable models to the translation of logi pro-

grams into autoepistemi theories de�ned in [5℄.

Reall that the language of autoepistemi logi [10℄ ontains the sym-

bols of propositional logi and the modal operator L. The formulas

not ontaining L are alled objetive. Let A be a set of formulas. A

set of formulas E is a stable expansion of A if

E = th(A [ fLF : F 2 Eg [ f:LF : F 62 Eg):

Here F ranges over arbitrary formulas, and th(X) denotes the set of

propositional onsequenes of X. If all formulas in A are objetive,

then (i) A has exatly one stable expansion E, and (ii) an objetive

formula belongs to E i� it follows from A in propositional logi ([8℄,

[6℄).

For any logi program � (without variables), I(�) stands for the set of

formulas of autoepistemi logi obtained from � by inserting L after

every negation [5℄. By At we denote the set of atoms ourring in �.

Theorem 3. If a logi program � has a unique stable modelM , then

I(�) has a unique stable expansion E, and M = E \ At.

The following simple proof of Theorem 3 belongs to Halina Przy-

musinska.



Lemma. E is a stable expansion of I(�) i� E is a stable expansion

of �

E\At

.

Proof. It is suÆient to show that

I(�) [ fLF : F 2 Eg [ f:LF : F 62 Eg

is equivalent to

�

E\At

[ fLF : F 2 Eg [ f:LF : F 62 Eg:

The set fLF : F 2 Eg [ f:LF : F 62 Eg ontains LF for eah

F 2 E \ At and :LF for eah atom F 62 E \ At. In the presene of

these literals, I(�) is equivalent to �

E\At

.

Proof of Theorem 3. Let M be the only stable model of �. Sine

�

M

is a set of objetive formulas, it has exatly one stable expansion

E, and

E \ At = th(�

M

) \At = S

�

(M) =M:

Hene E is a stable expansion of �

E\At

. By the lemma, it follows

that E is a stable expansion of I(�). It remains to show that I(�)

has no other stable expansions. Let E

0

be a stable expansion of I(�).

By the lemma, E

0

is a stable expansion of �

E

0

\At

. Sine the latter is

a set of objetive formulas, an objetive formula belongs to E

0

i� it is

a propositional onsequene of �

E

0

\At

. Consequently,

E

0

\ At = th(�

E

0

\At

) \ At = S

�

(E

0

\ At);

so that E

0

\At is a stable model of �. Sine the only stable model of

� is M , it follows that E

0

\At =M . Hene �

E

0

\At

= �

M

, and E

0

is

a stable expansion of �

M

. Consequently E

0

= E.
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