ON THE SEMANTICS OF STRIPS

Vladimir Lifschitz
Computer Science Department

Stanford University
Stanford, CA 94305

Abstract

STRIPS is a problem solver which operates with world models represented by
sets of formulas of first-order logic. A STRIPS system describes the effect of an ac-
tion by a rule which defines how the current world model should be changed when
the action is performed. The explanations of the meaning of these descriptions in the
literature are very informal, and it is not obvious how to make them more precise.
Moreover, it has been observed that minor and seemingly harmless modifications in
standard examples of STRIPS systems cause STRIPS to produce incorrect results.
In this paper we study the difficulties with interpreting STRIPS operator descrip-
tions and define a semantics which draws a clear line between “good” and “bad”
uses of the language of STRIPS.

On the Semantics of STRIPS
1. Introduction

STRIPS (Fikes and Nilsson 1971) is a problem solver which operates with world
models, represented by sets of formulas of first order-logic. A STRIPS system is
defined by an initial world model, which describes the initial state of the world, and
by a set of operators, which correspond to actions changing the current state. Using
means-ends analysis, STRIPS attempts to find a sequence of operators transforming
the initial world model into a model which satisfies a given goal formula.

The description of each operator consists of its precondition (the applicability
condition, expressed by a first-order formula), its add list (the list of formulas that
must be added to the current world model), and its delete list (the list of formulas
that may no longer be true and therefore must be deleted). A resolution theorem
prover is used for the verification of operator preconditions, for establishing the
validity of the goal formula in the last world model, and also for directing the
search.

The explanation of the meaning of operator descriptions in (Fikes and Nils-
son 1971) is very brief and is almost completely reproduced in the parenthesized
comments above. It is not immediately clear how to make this explanation more
precise; more specifically, it turns out to be a non-trivial task to define under what
conditions the delete list of an operator may be considered sufficiently complete.
Moreover, some minor and seemingly harmless modifications in the main example
of (Fikes and Nilsson 1971) cause STRIPS to produce incorrect results (see Sec-
tions 4 and 5 below). Alan Bundy observes that the AI literature “abounds with
plausible looking formalisms, without a proper semantics. As soon as you depart
from the toy examples illustrated in the paper, it becomes impossible to decide how
to represent information in the formalism or whether the processes described are
reasonable or what these processes are actually doing” (Bundy 1983). Is STRIPS
a formalism of this sort?

In this paper we do the additional theoretical work needed to make sure that
this is not the case. We study the difficulties with interpreting STRIPS operator
descriptions and define a semantics which draws a clear line between “good” and
“bad” uses of the language of STRIPS.

2. Operators and Plans

We start with an arbitrary first-order language L. A world model is any set of
sentences of L. An operator description is a triple (P, D, A), where P is a sentence
of L (the precondition), and D and A are sets of sentences of L (the delete list and
the add list).

Consider an example from Section 3.2 of (Fikes and Nilsson 1971). In this
example, the language contains some object constants and two predicate symbols,

2

On the Semantics of STRIPS

unary ATR and binary AT. Intuitively, the language is designed for describing the
locations of a robot and of other objects. We think of the universe of the intended
model as consisting of these objects and their possible locations. ATR(xr) means
that the robot is at location . AT(x,y) means that the object is at location y.
Let now k, m, n be object constants of this language. The operator push(k, m,n)
for pushing object k£ from m to n is described by the triple:

Precondition: ATR(m) A AT(k,m).

Delete list: {ATR(m), AT(k,m)}.

Add list: {ATR(n), AT(k,n)}.

What we have defined here is a family of operator descriptions, one for each
triple of constants k, m, n. The precondition shows that the corresponding action
is possible whenever the robot and object k are both at location m. The delete list
tells us that these two facts should be removed from the current world model when
the operator push(k,m,n) is applied. The add list requires that the information
about the new location of the robot and of object k, represented by the formulas
ATR(n) and AT(k,n), be added to the model.

A STRIPS system Y consists of an initial world model My, a set Op of symbols
called operators, and a family of operator descriptions {(Py, Dy, Aa)}acop-

Section 4 of (Fikes and Nilsson 1971) introduces a STRIPS system which rep-
resents a world consisting of a corridor with several rooms and doorways, a robot
and a few boxes and lightswitches. The language contains, in addition to ATR and
AT, some other predicate symbols, for instance:

TYPE(z,y): x is an object of type y,

CONNECTS(z,y, z): door x connects room y with room z,

NEXTTO(z,y): object x is next to object y,

INROOM(z,y): object x is in room y,

STATUS(z,y): the status of lightswitch z is y.

The initial world model in this example consists mostly of ground atoms, such as

TYPE(DOORL1, DOOR),
CONNECTS(DOOR1, ROOM1, ROOMS5),
INROOM(ROBOT, ROOML),
STATUS(LIGHTSWITCHL, OFF).

It contains also one universally quantified formula,
Voyz(CONNECTS(x,y,2) O CONNECTS(x, 2,y)). (1)

3

On the Semantics of STRIPS

Among the operators we find:

gotol(m): robot goes to location m,

goto2(m): robot goes next to item m,

pushto(m,n): robot pushes object m next to object n,

gothrudoor(k,l, m): robot goes through door & from room [to room m,

turnonlight(m): robot turns on lightswitch m,

and a few others.

This system will be subsequently referred to as the “main example”.

Given a STRIPS system Y, we define a plan to be any finite sequence of
its operators. Each plan @ = (aq,...,ay) defines a sequence of world models
Moy, My, ..., My, where My is the initial world model and

M; = (M;_1\ Dy,) U A, (i=1,...,N). (2)
We say that @ is accepted by the system if
M; 1+ P,, (t=1,...,N). (3)

In this case we call My the result of executing @ and denote it by R(@).

In what terms do we want to describe the semantics of STRIPS?

We think of the world described by the language L as being, at any instant of
time, in a certain state; we assume that one of the states, sg, is selected as initial.
We assume that it is defined for each state s which sentences of L are (known to
be) satisfied in this state, and that the set of sentences satisfied in state s is closed
under predicate logic. An action is a partial function f from states to states. If
f(s) is defined then we say that f is applicable in state s, and that f(s) is the result
of the action. We assume that an action f, is associated with each operator a. A
STRIPS system along with this additional information will be called an interpreted
STRIPS system.

A world model M of an interpreted STRIPS system X is satisfied in a state s
if every element of M is satisfied in s. For each plan @ = (aq,...,ay) of X, we
define fg to be the composite action fu, ... fa,-

3. Semantics: A First Attempt

Consider a fixed interpreted STRIPS system X = (Mo, {(Pa, Da, Ac)}tacop)-
Our goal is to define under what conditions ¥ can be considered sound. We start
with the most straightforward formalization of the intuition behind operator de-
scriptions.

On the Semantics of STRIPS

Definition A. An operator description (P, D, A) is sound relative to an action f
if, for every state s such that P is satisfied in s,
(i) f is applicable in state s,
(ii) every sentence which is satisfied in s and does not belong to D is satisfied in
f(s)7
(iii) A is satisfied in f(s).

Y is sound if My is satisfied in the initial state sg, and each operator description
(P,, D,, A,) is sound relative to f,.

Soundness Theorem. If ¥ is sound, and a plan @ is accepted by %, then the
action fz is applicable in the initial state sg, and the world model R(@) is satisfied
in the state fz(so).

Proof. Let @ = (a1,...,an) be a plan accepted by . Let us prove that for every
i=0,...,N action f,, ... fq, is applicable in s, and M; defined by (2) is satisfied
in state fq, . .. fa, (S0). The proofis by induction on i. The basis is obvious. Assume
that M;_; is satisfied in fo,_, ... fa,(S0). By (3), it follows that P,, is satisfied in
this state too. Since (P,,, Dq,, Aq,) is sound relative to f,,, we can conclude that
foa;fo; 1 -+ fay(S0) is defined, and that both M;_; \ D,, and A,, are satisfied in
this state. By (2), it follows then that M; is satisfied in this state too.

There is a serious problem, however, with Definition A: it eliminates all
usual STRIPS systems as “unsound”. Consider, for instance, the description of
push(k, m,n) given in Section 2. The two atoms included in its delete list are ob-
viously not the only sentences which may become false when the corresponding
action is performed. Their conjunction is another such sentence, as well as their
disjunction or, say, any sentence of the form ATR(m) A F, where F' is provable in
predicate logic. To make the delete list complete in the sense of Definition A, we
would have to include all such sentences in it. The delete list will become infinite
and perhaps even non-recursive!

The designer of a STRIPS system cannot possibly include in a delete list all
arbitrarily complex formulas that may become false after the corresponding action
is performed. In our main example, the delete lists of all operator descriptions
contain only atomic formulas. The same can be usually found in other examples of
STRIPS systems. When describing an operator, we can try to make the delete list
complete in the weaker sense that all atoms which may become false are included.
More precisely, we may be able to guarantee condition (ii) for atomic sentences, but
it is not realistic to expect that it will hold for all sentences in the language.

It would be a mistake, however, to restrict (ii) to atoms in Definition A and
make no other changes, because that would make the assertion of the Soundness
Theorem false. World models may include non-atomic sentences, and the weaker

5

On the Semantics of STRIPS

form of (ii) does not guarantee that such sentences are deleted when they become
false. What is the right way to exploit this “atomic completeness” of delete lists?

One possible solution is to change the definition of a world model and require
that it include atomic sentences only. In this case we should also allow only atomic
formulas in add lists (otherwise R(a) will generally include non-atomic formulas
and thus will not be a world model), and there will be no need to allow anything
other than atoms in delete lists. (In this “atomic STRIPS”, logical connectives and
quantifiers would be still allowed in preconditions and in the goal formula).

This somewhat restrictive approach gives a satisfactory interpretation of many
simple STRIPS systems. In fact, the description of STRIPS in (Nilsson 1980), for
ease of exposition, allows only conjunctions of ground literals in world models, which
is almost equally restrictive. But let us remember that our main example contains
a non-atomic formula, (1). Why does that system appear to function correctly?
This question is addressed in the next section.

4. Non-Atomic Formulas in World Models

Consider the description of the operator turnonlight(LIGHTSWITCH]1) in the
main example. Its delete list is {STATUS(LIGHTSWITCH1, OFF)}. When the
operator is applied, the atomic sentence STATUS(LIGHTSWITCH]1, OFF) (which
is a part of the initial world model) will be deleted. Now let us change the example
slightly and replace this atomic sentence in the initial world model by the stronger
assumption that all lightswitches are originally turned off:

Va(TYPE(z, LIGHTSWITCH) > STATUS(z, OFF)). (4)

This formula will not be deleted when turnonlight(LIGHTSWITCH]1) is applied,
which will cause STRIPS to malfunction.

Sentences (1) and (4) have the same logical complexity, and they are assumed
to be both satisfied in the initial state of the world. What is wrong about including
(4) in the initial world model? This example seems to confirm that “the frontier
between “acceptable” and “ridiculous” (STRIPS-like) axiomatizations of the world
is a very tenuous one” (Sikléssy and Roach 1975).

There is, however, an obvious difference between (1) and (4): the former is
satisfied not only in the initial state, but in every state of the world. This difference
is crucial. It is true that in the main example non-atomic formulas are never deleted
from world models; but there can be no need to delete (1). This is why it is safe to
include (1) in Mp.

A similar precaution should be taken with regard to including non-atomic for-
mulas in add lists. We can extend the main example, for instance, by the operator
turnoffalllights, with the add list consisting of one formula (4). If turnonlight(m)

6

On the Semantics of STRIPS

is applied after this operator, we will have a difficulty similar to the one discussed
above. A non-atomic formula may be included in an add list only if it is satisfied
in every state of the world. (Of course, it can be included then in the initial world
model as well.)

This discussion suggests the following modification of Definition A.

Definition B. An operator description (P, D, A) is sound relative to an action f
if, for every state s such that P is satisfied in s,
(1) f is applicable in state s,
(ii) every atomic sentence which is satisfied in s and does not belong to D is satisfied
n f(S),
(iii) A is satisfied in f(s),
(iv) every non-atomic sentence in A is satisfied in all states of the world.

¥ is sound if

(v) Moy is satisfied in the initial state s,

(vi) every non-atomic sentence in My is satisfied in all states of the world,
(vii) every operator description (P,, D,, Ay) is sound relative to f,.

The Soundness Theorem remains valid for the new definition.

Proof. Let @ = (ai,...,an) be a plan accepted by X. Let us prove that for
every ¢ = 0,..., N action f,,...fs, is applicable in sg, M; is satisfied in state
fa; -+ fa,(S0), and every non-atomic formula in M; is satisfied in all states. The
proof is by induction on ¢. The basis is obvious. Assume that M;_; is satisfied in
fai_s -+ fai(S0), and all non-atomic formulas in M;_; are satisfied in all states. It
follows from (3) that P,, is satisfied in state fo,_, ... fa,(S0). Since (P,,;, Dao;, Aa;)
is sound relative to f,,, we can conclude that f,, fa,_, ... fa,(S0) is defined, that
every non-atomic formula in M;_;\ D,, or in A,, is satisfied in this state, and that
every atomic formula in any of these two sets is satisfied in all states. By (2), it
follows then that M; is satisfied in state fq, ... fa,(S0), and that every non-atomic
formula in M; is satisfied in all states.

5. The General Semantics of STRIPS

Our work has not come to an end yet. A careful examination of the main
example reveals a small detail which shows that, in spite of all our efforts, that
system is not sound in the sense of Definition B.

This peculiarity, pointed out in (Sikléssy and Roach 1975), is connected with
the delete lists of some operators which change the position of the robot: gotol(m),
goto2(m), pushto(m,n) and gothrudoor(k,l,m). As can be expected, the delete
lists of these operators contain ground atoms which describe the robot’s current

7

On the Semantics of STRIPS

position. They include all atoms of the form ATROBOT($), where $ is any object
constant. They also include the atoms NEXTTO(ROBOT,$). However, they do
not include NEXTTO($, ROBOT).

This asymmetry is somewhat counterintuitive, because the authors ap-
parently interpret NEXTTO as a symmetric predicate. For instance, the
delete list of pushto(m,n) (the robot pushes object m next to object n) con-
tains both NEXTTO($,m) and NEXTTO(m,$), and its add list contains both
NEXTTO(m,n) and NEXTTO(n,m). One may get the impression that the non-
symmetric treatment of NEXTTO with ROBOT as one of the arguments is an
oversight.

However, this is not an oversight, but rather a trick carefully planned by the
authors in the process of designing the main example. They make sure that asser-
tions of the form NEXTTO($, ROBOT) never become elements of world models in
the process of operation of the system: there are no atoms of this form in M, or
on the add lists of any operators. For example, the add list of goto2(m) contains
NEXTTO(ROBOT, m), but not NEXTTO(m, ROBOT), even though these atomic
sentences both become true and, from the point of view of Definition B, nothing
prevents us from adding both of them to the current world model.

The purpose of this is obvious: storing information on the objects next to the
robot in both forms would have made the operator descriptions longer and would
have led to computational inefficiency. In principle, it is possible to go even further
in this direction and, for instance, store facts of the form NEXTTO(BOXi, BOXj)
only when ¢ < j.

It is easy to accomodate the systems which use tricks of this kind by slightly
generalizing Definition B. Let E be a set of sentences; the formulas from E will be
called essential. Definition B corresponds to the case when E is the set of ground
atoms.

Definition C. An operator description (P, D, A) is sound relative to an action f
if, for every state s such that P is satisfied in s,
(1) f is applicable in state s,
(ii) every essential sentence which is satisfied in s and does not belong to D is
satisfied in f(s),
(iii) A is satisfied in f(s),
(iv) every sentence in A which is not essential is satisfied in all states of the world.
¥ is sound if
(v) Moy is satisfied in the initial state so,

(vi) every sentence in My which is not essential is satisfied in all states of the world,
(vii) every operator description (P,, D, Ay) is sound relative to fy.

It should be emphasized that Definition C defines the soundness of operator
descriptions and STRIPS systems only with respect to a given class of sentences

8

On the Semantics of STRIPS

that are considered essential. The choice of this class E is an integral part of the
design of a STRIPS system, along with its language, its initial model, and the set
of its operators with their descriptions. When a STRIPS system is introduced, it is
advisable to make the choice of E explicit; the description of the main example, for
instance, will be more complete if we specify that a sentence is considered essential
in this system if it is an atom and does not have the form NEXTTO($, ROBOT).
This information will help the user to avoid mistakes when the initial model is
modified to reflect different assumptions about the initial state of the world, or
when new operators are added to the system.

The treatment of NEXTTO in the main example shows that it may be advan-
tageous to make E a proper subset of the set of ground atoms. Sometimes it may be
convenient to include some non-atomic formulas in E. For instance, we may wish
to update negative information by means of adding and deleting negative literals;
then E would be the set of ground literals, both positive and negative.

The proof of the Soundness Theorem given in the previous section can be easily
generalized to soundness in the sense of Definition C.

Acknowledgements

This research was partially supported by DARPA under Contract N0039-82-C-
0250. I would like to thank John McCarthy and Nils Nilsson for useful discussions,
and Michael Gelfond for comments on an earlier draft of this paper.

References
A. Bundy, The Computer Modelling of Mathematical Reasoning, Academic Press,
1983.

R. E. Fikes and N. J. Nilsson, STRIPS: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2 (1971), 189-208.

N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Company, Palo
Alto, Califormia, 1980.

L. Sikléssy and J. Roach, Model verification and improvement using DISPROVER,
Artificial Intelligence 6 (1975), 41-52.

