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Abstra
t

STRIPS is a problem solver whi
h operates with world models represented by

sets of formulas of �rst-order logi
. A STRIPS system des
ribes the e�e
t of an a
-

tion by a rule whi
h de�nes how the 
urrent world model should be 
hanged when

the a
tion is performed. The explanations of the meaning of these des
riptions in the

literature are very informal, and it is not obvious how to make them more pre
ise.

Moreover, it has been observed that minor and seemingly harmless modi�
ations in

standard examples of STRIPS systems 
ause STRIPS to produ
e in
orre
t results.

In this paper we study the diÆ
ulties with interpreting STRIPS operator des
rip-

tions and de�ne a semanti
s whi
h draws a 
lear line between \good" and \bad"

uses of the language of STRIPS.
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1. Introdu
tion

STRIPS (Fikes and Nilsson 1971) is a problem solver whi
h operates with world

models, represented by sets of formulas of �rst order-logi
. A STRIPS system is

de�ned by an initial world model, whi
h des
ribes the initial state of the world, and

by a set of operators, whi
h 
orrespond to a
tions 
hanging the 
urrent state. Using

means-ends analysis, STRIPS attempts to �nd a sequen
e of operators transforming

the initial world model into a model whi
h satis�es a given goal formula.

The des
ription of ea
h operator 
onsists of its pre
ondition (the appli
ability


ondition, expressed by a �rst-order formula), its add list (the list of formulas that

must be added to the 
urrent world model), and its delete list (the list of formulas

that may no longer be true and therefore must be deleted). A resolution theorem

prover is used for the veri�
ation of operator pre
onditions, for establishing the

validity of the goal formula in the last world model, and also for dire
ting the

sear
h.

The explanation of the meaning of operator des
riptions in (Fikes and Nils-

son 1971) is very brief and is almost 
ompletely reprodu
ed in the parenthesized


omments above. It is not immediately 
lear how to make this explanation more

pre
ise; more spe
i�
ally, it turns out to be a non-trivial task to de�ne under what


onditions the delete list of an operator may be 
onsidered suÆ
iently 
omplete.

Moreover, some minor and seemingly harmless modi�
ations in the main example

of (Fikes and Nilsson 1971) 
ause STRIPS to produ
e in
orre
t results (see Se
-

tions 4 and 5 below). Alan Bundy observes that the AI literature \abounds with

plausible looking formalisms, without a proper semanti
s. As soon as you depart

from the toy examples illustrated in the paper, it be
omes impossible to de
ide how

to represent information in the formalism or whether the pro
esses des
ribed are

reasonable or what these pro
esses are a
tually doing" (Bundy 1983). Is STRIPS

a formalism of this sort?

In this paper we do the additional theoreti
al work needed to make sure that

this is not the 
ase. We study the diÆ
ulties with interpreting STRIPS operator

des
riptions and de�ne a semanti
s whi
h draws a 
lear line between \good" and

\bad" uses of the language of STRIPS.

2. Operators and Plans

We start with an arbitrary �rst-order language L. A world model is any set of

senten
es of L. An operator des
ription is a triple (P;D;A), where P is a senten
e

of L (the pre
ondition), and D and A are sets of senten
es of L (the delete list and

the add list).

Consider an example from Se
tion 3.2 of (Fikes and Nilsson 1971). In this

example, the language 
ontains some obje
t 
onstants and two predi
ate symbols,

2



On the Semanti
s of STRIPS

unary ATR and binary AT. Intuitively, the language is designed for des
ribing the

lo
ations of a robot and of other obje
ts. We think of the universe of the intended

model as 
onsisting of these obje
ts and their possible lo
ations. ATR(x) means

that the robot is at lo
ation x. AT(x; y) means that the obje
t x is at lo
ation y.

Let now k, m, n be obje
t 
onstants of this language. The operator push(k;m; n)

for pushing obje
t k from m to n is des
ribed by the triple:

Pre
ondition: ATR(m) ^AT(k;m).

Delete list: fATR(m);AT(k;m)g.

Add list: fATR(n);AT(k; n)g.

What we have de�ned here is a family of operator des
riptions, one for ea
h

triple of 
onstants k, m, n. The pre
ondition shows that the 
orresponding a
tion

is possible whenever the robot and obje
t k are both at lo
ation m. The delete list

tells us that these two fa
ts should be removed from the 
urrent world model when

the operator push(k;m; n) is applied. The add list requires that the information

about the new lo
ation of the robot and of obje
t k, represented by the formulas

ATR(n) and AT(k; n), be added to the model.

A STRIPS system � 
onsists of an initial world model M

0

, a set Op of symbols


alled operators, and a family of operator des
riptions f(P

�

; D

�

; A

�

)g

�2Op

.

Se
tion 4 of (Fikes and Nilsson 1971) introdu
es a STRIPS system whi
h rep-

resents a world 
onsisting of a 
orridor with several rooms and doorways, a robot

and a few boxes and lightswit
hes. The language 
ontains, in addition to ATR and

AT, some other predi
ate symbols, for instan
e:

TYPE(x; y): x is an obje
t of type y,

CONNECTS(x; y; z): door x 
onne
ts room y with room z,

NEXTTO(x; y): obje
t x is next to obje
t y,

INROOM(x; y): obje
t x is in room y,

STATUS(x; y): the status of lightswit
h x is y.

The initial world model in this example 
onsists mostly of ground atoms, su
h as

TYPE(DOOR1;DOOR);

CONNECTS(DOOR1;ROOM1;ROOM5);

INROOM(ROBOT;ROOM1);

STATUS(LIGHTSWITCH1;OFF):

It 
ontains also one universally quanti�ed formula,

8xyz(CONNECTS(x; y; z) � CONNECTS(x; z; y)): (1)
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Among the operators we �nd:

goto1(m): robot goes to lo
ation m,

goto2(m): robot goes next to item m,

pushto(m;n): robot pushes obje
t m next to obje
t n,

gothrudoor(k; l;m): robot goes through door k from room l to room m,

turnonlight(m): robot turns on lightswit
h m,

and a few others.

This system will be subsequently referred to as the \main example".

Given a STRIPS system �, we de�ne a plan to be any �nite sequen
e of

its operators. Ea
h plan � = (�

1

; : : : ; �

N

) de�nes a sequen
e of world models

M

0

;M

1

; : : : ;M

N

, where M

0

is the initial world model and

M

i

= (M

i�1

nD

�

i

) [A

�

i

(i = 1; : : : ; N): (2)

We say that � is a

epted by the system if

M

i�1

` P

�

i

(i = 1; : : : ; N): (3)

In this 
ase we 
all M

N

the result of exe
uting � and denote it by R(�).

In what terms do we want to des
ribe the semanti
s of STRIPS?

We think of the world des
ribed by the language L as being, at any instant of

time, in a 
ertain state; we assume that one of the states, s

0

, is sele
ted as initial.

We assume that it is de�ned for ea
h state s whi
h senten
es of L are (known to

be) satis�ed in this state, and that the set of senten
es satis�ed in state s is 
losed

under predi
ate logi
. An a
tion is a partial fun
tion f from states to states. If

f(s) is de�ned then we say that f is appli
able in state s, and that f(s) is the result

of the a
tion. We assume that an a
tion f

�

is asso
iated with ea
h operator �. A

STRIPS system along with this additional information will be 
alled an interpreted

STRIPS system.

A world model M of an interpreted STRIPS system � is satis�ed in a state s

if every element of M is satis�ed in s. For ea
h plan � = (�

1

; : : : ; �

N

) of �, we

de�ne f

�

to be the 
omposite a
tion f

�

N

: : : f

�

1

.

3. Semanti
s: A First Attempt

Consider a �xed interpreted STRIPS system � = (M

0

; f(P

�

; D

�

; A

�

)g

�2Op

).

Our goal is to de�ne under what 
onditions � 
an be 
onsidered sound. We start

with the most straightforward formalization of the intuition behind operator de-

s
riptions.

4



On the Semanti
s of STRIPS

De�nition A. An operator des
ription (P;D;A) is sound relative to an a
tion f

if, for every state s su
h that P is satis�ed in s,

(i) f is appli
able in state s,

(ii) every senten
e whi
h is satis�ed in s and does not belong to D is satis�ed in

f(s),

(iii) A is satis�ed in f(s).

� is sound if M

0

is satis�ed in the initial state s

0

, and ea
h operator des
ription

(P

�

; D

�

; A

�

) is sound relative to f

�

.

Soundness Theorem. If � is sound, and a plan � is a

epted by �, then the

a
tion f

�

is appli
able in the initial state s

0

, and the world model R(�) is satis�ed

in the state f

�

(s

0

).

Proof. Let � = (�

1

; : : : ; �

N

) be a plan a

epted by �. Let us prove that for every

i = 0; : : : ; N a
tion f

�

i

: : : f

�

1

is appli
able in s

0

, and M

i

de�ned by (2) is satis�ed

in state f

�

i

: : : f

�

1

(s

0

). The proof is by indu
tion on i. The basis is obvious. Assume

that M

i�1

is satis�ed in f

�

i�1

: : : f

�

1

(s

0

). By (3), it follows that P

�

i

is satis�ed in

this state too. Sin
e (P

�

i

; D

�

i

; A

�

i

) is sound relative to f

�

i

, we 
an 
on
lude that

f

�

i

f

�

i�1

: : : f

�

1

(s

0

) is de�ned, and that both M

i�1

n D

�

i

and A

�

i

are satis�ed in

this state. By (2), it follows then that M

i

is satis�ed in this state too.

There is a serious problem, however, with De�nition A: it eliminates all

usual STRIPS systems as \unsound". Consider, for instan
e, the des
ription of

push(k;m; n) given in Se
tion 2. The two atoms in
luded in its delete list are ob-

viously not the only senten
es whi
h may be
ome false when the 
orresponding

a
tion is performed. Their 
onjun
tion is another su
h senten
e, as well as their

disjun
tion or, say, any senten
e of the form ATR(m) ^ F , where F is provable in

predi
ate logi
. To make the delete list 
omplete in the sense of De�nition A, we

would have to in
lude all su
h senten
es in it. The delete list will be
ome in�nite

and perhaps even non-re
ursive!

The designer of a STRIPS system 
annot possibly in
lude in a delete list all

arbitrarily 
omplex formulas that may be
ome false after the 
orresponding a
tion

is performed. In our main example, the delete lists of all operator des
riptions


ontain only atomi
 formulas. The same 
an be usually found in other examples of

STRIPS systems. When des
ribing an operator, we 
an try to make the delete list


omplete in the weaker sense that all atoms whi
h may be
ome false are in
luded.

More pre
isely, we may be able to guarantee 
ondition (ii) for atomi
 senten
es, but

it is not realisti
 to expe
t that it will hold for all senten
es in the language.

It would be a mistake, however, to restri
t (ii) to atoms in De�nition A and

make no other 
hanges, be
ause that would make the assertion of the Soundness

Theorem false. World models may in
lude non-atomi
 senten
es, and the weaker
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form of (ii) does not guarantee that su
h senten
es are deleted when they be
ome

false. What is the right way to exploit this \atomi
 
ompleteness" of delete lists?

One possible solution is to 
hange the de�nition of a world model and require

that it in
lude atomi
 senten
es only. In this 
ase we should also allow only atomi


formulas in add lists (otherwise R(�) will generally in
lude non-atomi
 formulas

and thus will not be a world model), and there will be no need to allow anything

other than atoms in delete lists. (In this \atomi
 STRIPS", logi
al 
onne
tives and

quanti�ers would be still allowed in pre
onditions and in the goal formula).

This somewhat restri
tive approa
h gives a satisfa
tory interpretation of many

simple STRIPS systems. In fa
t, the des
ription of STRIPS in (Nilsson 1980), for

ease of exposition, allows only 
onjun
tions of ground literals in world models, whi
h

is almost equally restri
tive. But let us remember that our main example 
ontains

a non-atomi
 formula, (1). Why does that system appear to fun
tion 
orre
tly?

This question is addressed in the next se
tion.

4. Non-Atomi
 Formulas in World Models

Consider the des
ription of the operator turnonlight(LIGHTSWITCH1) in the

main example. Its delete list is fSTATUS(LIGHTSWITCH1;OFF)g. When the

operator is applied, the atomi
 senten
e STATUS(LIGHTSWITCH1;OFF) (whi
h

is a part of the initial world model) will be deleted. Now let us 
hange the example

slightly and repla
e this atomi
 senten
e in the initial world model by the stronger

assumption that all lightswit
hes are originally turned o�:

8x(TYPE(x;LIGHTSWITCH) � STATUS(x;OFF)): (4)

This formula will not be deleted when turnonlight(LIGHTSWITCH1) is applied,

whi
h will 
ause STRIPS to malfun
tion.

Senten
es (1) and (4) have the same logi
al 
omplexity, and they are assumed

to be both satis�ed in the initial state of the world. What is wrong about in
luding

(4) in the initial world model? This example seems to 
on�rm that \the frontier

between \a

eptable" and \ridi
ulous" (STRIPS-like) axiomatizations of the world

is a very tenuous one" (Sikl�ossy and Roa
h 1975).

There is, however, an obvious di�eren
e between (1) and (4): the former is

satis�ed not only in the initial state, but in every state of the world. This di�eren
e

is 
ru
ial. It is true that in the main example non-atomi
 formulas are never deleted

from world models; but there 
an be no need to delete (1). This is why it is safe to

in
lude (1) in M

0

.

A similar pre
aution should be taken with regard to in
luding non-atomi
 for-

mulas in add lists. We 
an extend the main example, for instan
e, by the operator

turno�alllights, with the add list 
onsisting of one formula (4). If turnonlight(m)
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is applied after this operator, we will have a diÆ
ulty similar to the one dis
ussed

above. A non-atomi
 formula may be in
luded in an add list only if it is satis�ed

in every state of the world. (Of 
ourse, it 
an be in
luded then in the initial world

model as well.)

This dis
ussion suggests the following modi�
ation of De�nition A.

De�nition B. An operator des
ription (P;D;A) is sound relative to an a
tion f

if, for every state s su
h that P is satis�ed in s,

(i) f is appli
able in state s,

(ii) every atomi
 senten
e whi
h is satis�ed in s and does not belong toD is satis�ed

in f(s),

(iii) A is satis�ed in f(s),

(iv) every non-atomi
 senten
e in A is satis�ed in all states of the world.

� is sound if

(v) M

0

is satis�ed in the initial state s

0

,

(vi) every non-atomi
 senten
e in M

0

is satis�ed in all states of the world,

(vii) every operator des
ription (P

�

; D

�

; A

�

) is sound relative to f

�

.

The Soundness Theorem remains valid for the new de�nition.

Proof. Let � = (�

1

; : : : ; �

N

) be a plan a

epted by �. Let us prove that for

every i = 0; : : : ; N a
tion f

�

i

: : : f

�

1

is appli
able in s

0

, M

i

is satis�ed in state

f

�

i

: : : f

�

1

(s

0

), and every non-atomi
 formula in M

i

is satis�ed in all states. The

proof is by indu
tion on i. The basis is obvious. Assume that M

i�1

is satis�ed in

f

�

i�1

: : : f

�

1

(s

0

), and all non-atomi
 formulas in M

i�1

are satis�ed in all states. It

follows from (3) that P

�

i

is satis�ed in state f

�

i�1

: : : f

�

1

(s

0

). Sin
e (P

�

i

; D

�

i

; A

�

i

)

is sound relative to f

�

i

, we 
an 
on
lude that f

�

i

f

�

i�1

: : : f

�

1

(s

0

) is de�ned, that

every non-atomi
 formula in M

i�1

nD

�

i

or in A

�

i

is satis�ed in this state, and that

every atomi
 formula in any of these two sets is satis�ed in all states. By (2), it

follows then that M

i

is satis�ed in state f

�

i

: : : f

�

1

(s

0

), and that every non-atomi


formula in M

i

is satis�ed in all states.

5. The General Semanti
s of STRIPS

Our work has not 
ome to an end yet. A 
areful examination of the main

example reveals a small detail whi
h shows that, in spite of all our e�orts, that

system is not sound in the sense of De�nition B.

This pe
uliarity, pointed out in (Sikl�ossy and Roa
h 1975), is 
onne
ted with

the delete lists of some operators whi
h 
hange the position of the robot: goto1(m),

goto2(m), pushto(m;n) and gothrudoor(k; l;m). As 
an be expe
ted, the delete

lists of these operators 
ontain ground atoms whi
h des
ribe the robot's 
urrent
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position. They in
lude all atoms of the form ATROBOT($), where $ is any obje
t


onstant. They also in
lude the atoms NEXTTO(ROBOT; $). However, they do

not in
lude NEXTTO($;ROBOT).

This asymmetry is somewhat 
ounterintuitive, be
ause the authors ap-

parently interpret NEXTTO as a symmetri
 predi
ate. For instan
e, the

delete list of pushto(m;n) (the robot pushes obje
t m next to obje
t n) 
on-

tains both NEXTTO($;m) and NEXTTO(m; $), and its add list 
ontains both

NEXTTO(m;n) and NEXTTO(n;m). One may get the impression that the non-

symmetri
 treatment of NEXTTO with ROBOT as one of the arguments is an

oversight.

However, this is not an oversight, but rather a tri
k 
arefully planned by the

authors in the pro
ess of designing the main example. They make sure that asser-

tions of the form NEXTTO($;ROBOT) never be
ome elements of world models in

the pro
ess of operation of the system: there are no atoms of this form in M

0

or

on the add lists of any operators. For example, the add list of goto2(m) 
ontains

NEXTTO(ROBOT;m), but not NEXTTO(m;ROBOT), even though these atomi


senten
es both be
ome true and, from the point of view of De�nition B, nothing

prevents us from adding both of them to the 
urrent world model.

The purpose of this is obvious: storing information on the obje
ts next to the

robot in both forms would have made the operator des
riptions longer and would

have led to 
omputational ineÆ
ien
y. In prin
iple, it is possible to go even further

in this dire
tion and, for instan
e, store fa
ts of the form NEXTTO(BOXi;BOXj)

only when i < j.

It is easy to a

omodate the systems whi
h use tri
ks of this kind by slightly

generalizing De�nition B. Let E be a set of senten
es; the formulas from E will be


alled essential. De�nition B 
orresponds to the 
ase when E is the set of ground

atoms.

De�nition C. An operator des
ription (P;D;A) is sound relative to an a
tion f

if, for every state s su
h that P is satis�ed in s,

(i) f is appli
able in state s,

(ii) every essential senten
e whi
h is satis�ed in s and does not belong to D is

satis�ed in f(s),

(iii) A is satis�ed in f(s),

(iv) every senten
e in A whi
h is not essential is satis�ed in all states of the world.

� is sound if

(v) M

0

is satis�ed in the initial state s

0

,

(vi) every senten
e inM

0

whi
h is not essential is satis�ed in all states of the world,

(vii) every operator des
ription (P

�

; D

�

; A

�

) is sound relative to f

�

.

It should be emphasized that De�nition C de�nes the soundness of operator

des
riptions and STRIPS systems only with respe
t to a given 
lass of senten
es
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that are 
onsidered essential. The 
hoi
e of this 
lass E is an integral part of the

design of a STRIPS system, along with its language, its initial model, and the set

of its operators with their des
riptions. When a STRIPS system is introdu
ed, it is

advisable to make the 
hoi
e of E expli
it; the des
ription of the main example, for

instan
e, will be more 
omplete if we spe
ify that a senten
e is 
onsidered essential

in this system if it is an atom and does not have the form NEXTTO($;ROBOT).

This information will help the user to avoid mistakes when the initial model is

modi�ed to re
e
t di�erent assumptions about the initial state of the world, or

when new operators are added to the system.

The treatment of NEXTTO in the main example shows that it may be advan-

tageous to make E a proper subset of the set of ground atoms. Sometimes it may be


onvenient to in
lude some non-atomi
 formulas in E. For instan
e, we may wish

to update negative information by means of adding and deleting negative literals;

then E would be the set of ground literals, both positive and negative.

The proof of the Soundness Theorem given in the previous se
tion 
an be easily

generalized to soundness in the sense of De�nition C.
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