
Towards Verifying Logic Programs
in the Input Language of clingo

Vladimir Lifschitz1, Patrick Lühne2, and Torsten Schaub2

1 University of Texas at Austin, USA
vl@cs.utexas.edu

2 University of Potsdam, Germany
{patrick.luehne, torsten}@cs.uni-potsdam.de

Abstract. We would like to develop methods for verifying programs in
the input language of the answer set solver clingo using software created
for the automation of reasoning in first-order theories. As a step in this
direction, we extend Clark’s completion to a class of clingo programs
that contain arithmetic operations as well as intervals and prove that
every stable model is a model of generalized completion. The translator
anthem calculates the completion of a program and represents it in
a format that can be processed by first-order theorem provers. Some
properties of programs can be verified by anthem and the theorem prover
vampire, working together.

1 Introduction

Rules in a logic program and axioms in a first-order theory can serve, in many
cases, as alternative mechanisms for expressing the same mathematical idea. For
instance, the rule

q(X)← p(X,Y ) (1)
defines a unary predicate q in terms of a binary predicate p in the language of
logic programs. The same relationship between p and q can be expressed by the
first-order formula

∀X(q(X)↔ ∃Y p(X,Y )). (2)
Software used by practitioners of logic programming performs reasoning

about predicates that are defined by rules. Consider, for instance, the file

q(X) :- p(X, Y).
p(a, b). p(b, c). (3)

Its first line represents rule (1); the second line expresses that p is the set
{⟨a, b⟩, ⟨b, c⟩}. If we feed this file into an answer set solver,3 then the atoms

q(a) q(b)
3 Answer set solvers are logic programming systems that calculate stable models (an-

swer sets) of logic programs. Some of the best-known systems of this kind are clingo
(https://potassco.org/) and dlv (http://www.dlvsystem.com/).



2 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

are generated: The solver tells us that q is the set {a, b}.
The efficiency of answer set solvers and the expressive possibilities of their

input languages make them valuable tools for many applications [2, 6]. On the
other hand, the class of reasoning tasks that they can perform is rather limited.
For instance, it is clear that, under the assumption that q is defined by rule (1),
one of the sets p, q is nonempty if and only if the other is nonempty. But
there seems to be no way to instruct a logic programming system to verify this
assertion. Its syntactic form is not suitable for the forms of automated reasoning
implemented in these systems.

In the world of first-order theorem proving, the situation is different: The
fact that the formula

∃Xq(X)↔ ∃XY p(X,Y )

is entailed by (2) can be easily verified by a theorem prover.
We would like to develop methods for verifying properties of logic programs

using software created for the automation of reasoning in first-order theories. In
particular, we would like to verify the correctness of logic programs with respect
to specifications expressed in traditional logical and mathematical notation. This
paper describes initial steps towards that goal.

As an example, consider the clingo rule

q(X + Y) :- p(X), p(Y). (4)

It describes an operation that transforms a set p of integers into another set q.
The translator anthem [11, 12], implemented as part of this project, turns this
rule into a first-order formula describing the same transformation. The output
of anthem, along with a property of this transformation that we would like to
verify, can be fed into a proof assistant or a theorem prover. In Section 5, we
will see, for instance, that the theorem prover vampire [9] can use the output
of anthem to prove that, for every integer n, if all elements of p are less than
or equal to n, then all elements of q are less than or equal to 2n.

To take another example, the clingo program4

p(X) :- X = 0..n, X * X <= n.
q(X) :- p(X), not p(X + 1). (5)

calculates the floor of
√
n, in the sense that the set q that it defines is the singleton

{⌊
√
n⌋}. When clingo is called to find the stable model of this program, the

value of the placeholder n is specified on the command line. In Section 5, we will
see how the tandem of anthem and vampire can be used to verify the claim
about the relationship between n and q.

The translation performed by anthem is a generalization of the well-known
process of program completion [1, 14]. When applied to rule (1), for instance, it
4 As discussed in Section 2.1, the “interval term” 0..n in the first rule of this program

is an arithmetic expression that has multiple values—all integers from 0 to n. The
equality between a variable and an interval term in the body of a rule expresses that
the value of the variable is equal to one of the values of the term.



Towards Verifying Logic Programs in the Input Language of clingo 3

gives a formula equivalent to (2). This generalization is applicable to programs
containing arithmetic operations and intervals, such as (4) and (5). According
to the theorem stated in Section 4.4 and proved in Section 6, this generalized
completion formula is satisfied by all stable models of the program. It follows
that any assertion that can be derived from it is a common property of all stable
models. This fact is at the root of the verification method proposed in this paper.

2 Programs

2.1 Terms and Their Values

We assume that three countably infinite sets of symbols are selected: numerals,
symbolic constants, and program variables.5 We assume that a 1-to-1 correspon-
dence between numerals and integers is chosen; the numeral corresponding to
an integer n is denoted by n. Program terms are defined recursively:

– Numerals, symbolic constants, program variables, and the symbols inf and
sup are program terms;

– if t1, t2 are program terms and op is one of the operation names

+ − × / \ . . (6)

then (t1 op t2) is a program term.

The expression −t is shorthand for 0− t.
A program term, or another syntactic expression, is ground if it does not

contain variables. A ground expression is precomputed if it does not contain
operation names.

For every ground program term t, the set [t] of its values is defined as follows:

– if t is a numeral, a symbolic constant, inf, or sup, then [t] is {t};
– if t is (t1 + t2), then [t] is the set of numerals i+ j for all integers i, j such

that i ∈ [t1] and j ∈ [t2]; similarly when t is (t1 − t2) or (t1 × t2);
– if t is (t1/t2), then [t] is the set of numerals ⌊i/j⌋ for all integers i, j such

that i ∈ [t1], j ∈ [t2], and j ̸= 0;
– if t is (t1\t2), then [t] is the set of numerals i− j · ⌊i/j⌋ for all integers i, j

such that i ∈ [t1], j ∈ [t2], and j ̸= 0;
– if t is (t1 . . t2), then [t] is the set of numerals k for all integers k such that,

for some integers i, j,

i ∈ [t1], j ∈ [t2], and i ≤ k ≤ j.

5 We talk about program variables and program terms to distinguish them from the
variables and terms that are allowed in formulas (Section 3) and thus can be found
in the output of anthem.



4 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

It is clear that values of a ground program term are precomputed program terms
and that the set of values of any term is finite. It can be empty; for instance, if
c is a symbolic constant, then

[c+ 1] = [1/0] = [1 . . 0] = ∅.

For any ground program terms t1, . . . , tn, we denote by [t1, . . . , tn] the set of
tuples r1, . . . , rn for all r1 ∈ [t1], . . . , rn ∈ [tn].

2.2 Rules and Programs

The programming language defined in this section is a subset of the input lan-
guage of clingo. We write programs in abstract syntax [7] that disregards de-
tails related to representing rules by strings of ASCII characters. For example,
expression (1) is the first rule of program (3) written in abstract syntax.

We assume a total order on precomputed program terms such that

(i) inf is its least element and sup is its greatest element,
(ii) for any integers m and n, m < n iff m < n,
(iii) for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a symbolic constant
and t is a tuple of program terms. The parentheses can be dropped if t is
empty. A literal is an atom possibly preceded by one or two occurrences of not.
A comparison is an expression of the form (t1 ≺ t2), where t1, t2 are program
terms and ≺ is one of the relation names

= ̸= < > ≤ ≥ (7)

A rule is an expression of the form

Head← Body, (8)

where

– Body is a conjunction (possibly empty) of literals and comparisons and
– Head is either an atom (then, we say that (8) is a basic rule), or an atom in

braces (then, (8) is a choice rule), or empty (then, (8) is a constraint).

The arrow can be dropped if Body is empty.
A program is a finite set of rules.
An interpretation is a set of precomputed atoms. The semantics of pro-

grams [7], reviewed in Section 6.1, defines which interpretations are stable models
of a program. We describe here a few features of the semantics that are related
to the topic of this paper.

Terms with multiple values in the head of a rule. A rule of the form
p(t)← Body, where t is a ground term, has the same meaning as the collection
of rules p(r) ← Body over all values r of t. For instance, the one-rule program



Towards Verifying Logic Programs in the Input Language of clingo 5

p(1 . . 3) has the same meaning as the collection of facts p(1), p(2), p(3). A rule
of the form p(1/0) ← Body has the same meaning as the empty program: The
set of stable models of any program would not be affected by adding such a rule.
Using the expression 1/0 in a program is not considered an error.

Terms with multiple values in the body of a rule. Similarly, a rule of the
form Head← p(t), where t is a ground term, has the same meaning as the set of
rules Head ← p(r) over all values r of t. A rule of the form Head ← p(1/0) has
the same meaning as the empty program.

Instances of rules. An instance of a rule R is a ground rule obtained from R by
substituting precomputed program terms for program variables. The semantics
of the language defines the stable models of a program in terms of the set of
instances of its rules. In this sense, program variables are used as variables for
arbitrary precomputed terms. For example, instances of the rule

q(X + 1)← p(X) (9)

are rules of the form
q(r + 1)← p(r), (10)

where r is an arbitrary precomputed term—a numeral, a symbolic constant, inf,
or sup. But if r is not a numeral, then rule (10) is equivalent to the empty
program, as discussed above. In this sense, the possibility of substituting terms
other than numerals for r in the process of constructing instances of rule (9) is
not essential. With the rule q(X)← p(X + 1), the situation is similar.

2.3 Programs with Input

An input can be given to a clingo program in two ways: by specifying the
predicates corresponding to some of the predicate symbols, as in programs (1)
and (4), and by specifying the values of placeholders, as in program (5). The
definition of a program with input [10, Section 3], reproduced below, makes this
idea precise.

A predicate symbol is a pair p/n, where p is a symbolic constant and n is
a nonnegative integer. About a program or another syntactic expression we say
that a predicate symbol p/n occurs in it if it contains an atom of the form
p(t1, . . . , tn).

A program with input is a pair (Π, P ), where Π is a program and P is a finite
set such that each of its elements is

– a symbolic constant or
– a predicate symbol that does not occur in the heads of the rules of Π.

The elements of P are the input symbols of (Π, P ).
An input for (Π, P ) is a function i defined on P such that

– for every symbolic constant c in P , i(c) is a precomputed term, and



6 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

– for every predicate symbol p/n in P , i(p/n) is a finite set of precomputed
atoms containing p/n.

A stable model of (Π, P ) for an input i is a stable model of the program
consisting of

– all atoms in i(p/n) for all predicate symbols p/n in P and
– the rules obtained from the rules of Π by substituting simultaneously the

precomputed terms i(c) for all occurrences of symbolic constants c in P .

We identify (Π, ∅) with Π.

Example 1. The claim about rule (4) made in the introduction can be stated
using this terminology as follows. Consider the program with input that consists
of the rule

q(X + Y )← p(X) ∧ p(Y ) (11)
(which is (4) written in abstract notation) and the input symbol p/1. We want
to verify that

for every integer n,
if I is a stable model of this program for an input i

and every term t such that p(t) ∈ i(p/1) is m
for some integer m such that m ≤ n,

then every term t such that q(t) ∈ I is m
for some integer m such that m ≤ 2n.

(12)

(The program in question has actually a unique stable model for every input i.
Verifying properties of this kind automatically goes beyond the scope of this
paper.) Since p/1 does not occur in the head of (11), the condition p(t) ∈ i(p/1)
in this statement can be replaced by p(t) ∈ I.

Example 2. To reformulate the claim about program (5), consider the program
with input that consists of the rules

p(X)← X = 0 . . n ∧X ×X ≤ n,
q(X)← p(X) ∧ not p(X + 1)

(13)

(program (5) written in abstract notation) and the input symbol n. We want to
verify that

if I is a stable model of this program for an input i
and i(n) is a nonnegative integer,

then the set {t : q(t) ∈ I} is the singleton {⌊
√

i(n)⌋}.
(14)

3 Formulas

In formula (2), the implication left-to-right tells us that X does not belong to q
unless p contains a pair of the form ⟨X,Y ⟩. In program (1), this property of q



Towards Verifying Logic Programs in the Input Language of clingo 7

is not stated explicitly. Rather, we draw this conclusion from the fact that in
the absence of rules other than (1), an element of p that has the form ⟨X,Y ⟩
is the only possible evidence for the claim that X belongs to q. The completion
process, which turns (1) into (2), encodes this form of reasoning, specific for logic
programs, in the language of first-order logic.

The generalization of completion defined in this paper also takes into account
another difference between clingo programs and first-order formulas. In clingo,
a ground term may have several values or no values. In first-order logic, the
value of every ground term is unique. Among the operation names (6) allowed in
programs, not a single one represents a total function on the set of precomputed
terms. Consequently, these operation names cannot be used as function symbols
in a first-order language with variables for precomputed terms.

The formulas introduced in this section are first-order formulas with variables
of two sorts: program variables (the same as in Section 2.1) that range over
precomputed program terms and new integer variables that range over integers.
In the semantics of the language, integers are identified with the corresponding
numerals. The first three of symbols (6) correspond to total functions on integers,
and they are allowed in terms with integer values. The last three are banned from
formulas altogether.

The definitions below follow [12, Section 5]. Arithmetic terms are formed from
numerals and integer variables using the operation symbols +, −, and ×. Arith-
metic terms, symbolic constants, program variables, and the symbols inf and
sup are collectively called formula terms. It is clear that precomputed formula
terms are identical to precomputed program terms. For every ground formula
term, its value is the precomputed term defined recursively in a natural way.

Atomic formulas are expressions of two forms: p(t), where p is a symbolic
constant and t is a tuple of formula terms, and (t1 ≺ t2), where t1 and t2 are
formula terms and ≺ is one of relation names (7). Formulas are formed from
atomic formulas using propositional connectives and quantifiers as usual in first-
order logic.

An interpretation I satisfies a closed atomic formula p(t1, . . . , tn) if the for-
mula p(v1, . . . , vn), where each vi is the value of ti, belongs to I. This relation
is extended to arbitrary closed formulas as usual in first-order logic.

A formula is universally valid if its universal closure is satisfied by all inter-
pretations. For instance, if X is a program variable and I is an integer variable,
then the formula ∃X(X = I) is universally valid because so is its universal clo-
sure ∀I∃X(X = I). The formula ∃I(X = I) expresses that X is an integer. We
denote it by is_int(X).

Formulas F and G are equivalent to each other if F ↔ G is universally valid.
For instance, p(I + J), where I and J are integer variables, is equivalent to
p(J + I).



8 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

4 Completion

4.1 Transforming Program Terms into Formulas

For any program term t, the formula valt(Z), where Z is a program variable that
does not occur in t, expresses, informally speaking, that Z is one of the values
of t [12, Section 6]. It is defined recursively:

– if t is a numeral, a symbolic constant, a program variable, inf, or sup, then
valt(Z) is Z = t;

– if t is (t1 op t2), where op is +, −, or ×, then valt(Z) is

∃IJ(Z = I op J ∧ valt1(I) ∧ valt2(J))

where I, J are fresh integer variables;
– if t is (t1/t2), then valt(Z) is

∃IJQR(I = J ×Q+R ∧ valt1(I) ∧ valt2(J)
∧ J ̸= 0 ∧R ≥ 0 ∧R < Q ∧ Z = Q),

where I, J , Q, R are fresh integer variables;
– if t is (t1\t2), then valt(Z) is

∃IJQR(I = J ×Q+R ∧ valt1(I) ∧ valt2(J)
∧ J ̸= 0 ∧R ≥ 0 ∧R < Q ∧ Z = R),

where I, J , Q, R are fresh integer variables;
– if t is (t1 . . t2), then valt(Z) is

∃IJK(valt1(I) ∧ valt2(J) ∧ I ≤ K ∧K ≤ J ∧ Z = K),

where I, J , K are fresh integer variables.

For example, valX+1(Z) is

∃IJ(Z = I + J ∧ I = X ∧ J = 1),

which is equivalent to
∃I(Z = I + 1 ∧ I = X).

Another example: val1..X(Z) is

∃IJK(I = 1 ∧ J = X ∧ I ≤ K ∧K ≤ J ∧ Z = K),

which is equivalent to

is_int(X) ∧ 1 ≤ Z ∧ Z ≤ X.



Towards Verifying Logic Programs in the Input Language of clingo 9

4.2 Transforming Bodies of Rules into Formulas

The translation τ b transforms bodies of rules into formulas.6 For any atom
p(t1, . . . , tn), each of τ b(p(t1, . . . , tn)), τ b(not not p(t1, . . . , tn)) is defined as

∃Z1 . . . Zn(valt1(Z1) ∧ · · · ∧ valtn(Zn) ∧ p(Z1, . . . , Zn))

(where each Zi is a fresh program variable), and τ b(not p(t1, . . . , tn)) is

∃Z1 . . . Zn(valt1(Z1) ∧ · · · ∧ valtn(Zn) ∧ ¬p(Z1, . . . , Zn)).

For any comparison t1 ≺ t2, τ b(t1 ≺ t2) is

∃Z1Z2(valt1(Z1) ∧ valt2(Z2) ∧ Z1 ≺ Z2).

If each of E1, . . . , Em is a literal or a comparison, then τ b(E1 ∧ · · · ∧Em) stands
for τ b(E1) ∧ · · · ∧ τ b(Em).

For instance, τ b transforms p(1 . . X) into a formula equivalent to

is_int(X) ∧ ∃Z(1 ≤ Z ∧ Z ≤ X ∧ p(Z)).

The expression Y = 1 . . X is transformed into a formula equivalent to

∃Z1Z2(Z1 = Y ∧ is_int(X) ∧ 1 ≤ Z2 ∧ Z2 ≤ X ∧ Z1 = Z2)

and consequently to
is_int(X) ∧ 1 ≤ Y ∧ Y ≤ X.

4.3 Completed Definitions

Given a program with input (Π, P ) and a predicate symbol p/n that occurs in Π
and does not belong to P , we describe a formula called the completed definition
of p/n in (Π, P ).

In completed definitions, the symbolic constants c1, . . . , cl from P are rep-
resented by program variables C1, . . . , Cl, which are assumed to be pairwise
distinct and different from the variables occurring in Π.

The definition of a predicate symbol p/n in (Π, P ) is the set of all rules of Π
that have the forms

p(t1, . . . , tn)← Body (15)
and

{p(t1, . . . , tn)} ← Body . (16)
If the definition of p/n in (Π, P ) consists of the rules R1, . . . , Rk, then the formula
representations F1, . . . , Fk of these rules are constructed as follows. Take fresh
program variables V1, . . . , Vn. If Ri is (15), then Fi is the formula

τ b(Body) ∧ valt1(V1) ∧ · · · ∧ valtn(Vn).

6 It differs from the translation τB [12, Section 6] in that it disregards the combina-
tion not not. Double negations are essential in the formulas that characterize stable
models but not in completion formulas.



10 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

If Ri is (16), then Fi is the formula

τ b(Body) ∧ p(V1, . . . , Vn) ∧ valt1(V1) ∧ · · · ∧ valtn(Vn). (17)

The completed definition of p/n in Π is obtained from the formula

∀V1 · · ·Vn

(
p(V1, . . . , Vn)↔

k∨
i=1

∃UiFi

)
,

where Ui is the list of all variables occurring in rule Ri, by substituting C1, . . . , Cl

for c1, . . . , cl.

Example 1, continued. The completed definition of q/1 in this program is

∀V (q(V )↔ ∃XY (τ b(p(X)) ∧ τ b(p(Y )) ∧ valX+Y (V ))). (18)

It is equivalent to

∀V (q(V )↔ ∃IJ(p(I) ∧ p(J) ∧ V = I + J)). (19)

Example 2, continued. The completed definition of p/1 in this program is

∀V (p(V )↔ ∃X(τ b(X = 0 . . C) ∧ τ b(X ×X ≤ C) ∧ V = X)).

It is equivalent to

∀V (p(V )↔ ∃I(I = V ∧ 0 ≤ I ∧ I ≤ C ∧ I × I ≤ C) ∧ is_int(C)). (20)

The completed definition of q/1 is

∀V (q(V )↔ ∃X(τ b(p(X)) ∧ τ b(not p(X + 1)) ∧ V = X)).

It is equivalent to

∀V (q(V )↔ ∃I(I = V ∧ p(I) ∧ ¬p(I + 1))). (21)

To clarify the role of substituting variables for input symbols in the process
of forming a completed definition, consider the modification of the program from
Example 2 in which n is not treated as an input symbol, so that the set of input
symbols is empty. The completed definition of p/1 is equivalent, in this case, to

∀V (p(V )↔ ∃I(I = V ∧ 0 ≤ I ∧ I ≤ n ∧ I × I ≤ n) ∧ is_int(n)). (22)

The subformula is_int(n) is false because the symbolic constant n is not an
integer. It follows that formula (22) is equivalent to ∀V ¬p(V ).



Towards Verifying Logic Programs in the Input Language of clingo 11

4.4 Soundness of Completion

The completion of a program with input (Π, P ) is the conjunction of the following
formulas:

– for every predicate symbol that occurs in Π and does not belong to P , its
completed definition;

– for every constraint ← Body in Π, the formula obtained from the universal
closure of ¬τ b(Body) by substituting the variables C1, . . . , Cl for c1, . . . , cl.

It is clear that the completion has no free variables other than C1, . . . , Cl.
In the statement of the theorem, (Π, P ) is a program with input; the expres-

sion Comp(C1, . . . , Cl) stands for its completion.

Theorem. Every stable model of (Π, P ) for an input i satisfies the sentence
Comp(i(c1), . . . , i(cl)).

Corollary. For any formula F (C1, . . . , Cl) with all free variables explicitly shown,
if the formula

Comp(C1, . . . , Cl)→ F (C1, . . . , Cl) (23)

is universally valid, then every stable model of (Π, P ) for an input i satisfies
F (i(c1), . . . , i(cl)).

The corollary shows that properties of stable models of a program with input
can be established by proving formulas of form (23) in a first-order theory with
universally valid axioms.

Example 1, continued. Let Comp be formula (19). To establish claim (12), it
is sufficient to prove the universal validity of the formula

Comp→ ∀N(∀X(p(X)→ ∃I(I = X ∧ I ≤ N))

→ ∀X(q(X)→ ∃I(I = X ∧ I ≤ 2×N))),
(24)

where N and I are integer variables and X is a program variable.

Example 2, continued. Let Comp(C) be the conjunction of formulas (20)
and (21). To establish claim (14), it is sufficient to prove the universal validity
of the formula

Comp(C)→ ∀N(N = C ∧N ≥ 0

→ ∃M(∀X(q(X)↔ X = M) ∧M ≥ 0

∧M ×M ≤ N ∧ (M + 1)× (M + 1) > N)),

(25)

where M and N are integer variables and X is a program variable.



12 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

forall X1
(

q(X1)
<-> exists X2, X3
(

exists X4 (X4 = X2 and p(X4))
and exists X5 (X5 = X3 and p(X5))
and exists N1, N2 (X1 = N1 + N2 and N1 = X2 and N2 = X3)

)
)

Fig. 1. Completed definition (18) of q/1 from Example 1 generated by anthem. The
output of anthem is reformatted to improve readability

5 Verifying Properties of Programs

5.1 Generating Completed Definitions

Recall that our goal is to use a reasoning system, such as vampire, for verifying
properties of clingo programs, and that this can be accomplished by proving
formulas of form (23). To prepare an input for such a system, we need to gener-
ate the completed definitions of predicate symbols that occur in the antecedent
of (23). This calculation can be performed by version 0.3 of anthem.7 When in-
structed, for instance, to calculate the completed definition of q/1 in program (4),
anthem generates formula (18) as shown in Figure 1. anthem internally con-
verts the output to the TFF (“typed first-order formula”) format of the TPTP
language [15] and passes it on to vampire as an axiom. Formulas in this format
can be processed by many automated reasoners.

In the following experiments, we used vampire 4.4 with the options --mode
casc and --cores 8.

5.2 Verification of Example 1

The set of axioms that were available to vampire in the experiment with Ex-
ample 1 consists of two parts. One is the collection of properties of predicates
and functions on integers that vampire treats as standard. The other includes
several properties of the set of precomputed terms and of the correspondence
between numerals and integers, such as those expressed by conditions (i)–(iii) in
Section 2.2. All these axioms are universally valid in the sense of Section 3.

The claim about the relationship between p/1 and q/1 that we wanted to
verify in this example is expressed as shown in Figure 2. anthem transformed
this formula into the TFF format, and vampire derived it from the axioms
and the completed definition generated by anthem (Figure 1) in a fraction of a
second.
7 https://github.com/potassco/anthem/releases



Towards Verifying Logic Programs in the Input Language of clingo 13

forall N
(

forall X (p(X) -> exists I (I = X and I <= N))
-> forall X (q(X) -> exists I (I = X and I <= 2 * N))

)

Fig. 2. The claim from Example 1

p(0) and forall N (N >= 0 and p(N) -> p(N + 1))
-> forall N(N >= 0 -> p(N))

Fig. 3. The induction axiom for p/1 from Example 2

5.3 Verification of Example 2

Example 2 was more of a challenge to us as the users of vampire, in two ways.
First, we were unable to prove its claim using only the axiom set described in
Section 5.2. Two more axioms, both expressing properties of numbers, had to be
added. One axiom says that an inequality can be multiplied by a positive integer.
Surprisingly, vampire 4.4, the version we worked with, was not able to prove
this fact. The other axiom expresses induction for the predicate p/1 (Figure 3).

Second, vampire could not prove the conjecture that we are interested in
“with one blow,” at least in reasonable time. We used it as a proof assistant in
a sense that we gave it a sequence of auxiliary conjectures, one by one. As soon
as one of these “lemmas” was verified, we added it to the list of axioms.

Such interactive use of automated reasoners will be necessary, of course, when
working on verifying more complex programs.

6 Proof of the Theorem

6.1 Review: Definition of a Stable Model

For any ground atom p(t),

– τ(p(t)) stands for
∨

r∈[t] p(r);
– τ(not p(t)) stands for

∨
r∈[t] ¬p(r);

– τ(not not p(t)) stands for
∨

r∈[t] ¬¬p(r).

For any ground comparison t1 ≺ t2, τ(t1 ≺ t2) is

– ⊤ if the relation ≺ holds between some r1 from [t1] and some r2 from [t2];
– ⊥ otherwise.

If each of E1, . . . , Em is a ground literal or a ground comparison, then τ(E1 ∧
· · · ∧ Em) stands for τE1 ∧ · · · ∧ τEm.



14 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

The propositional image of a ground rule R is the formula formed as follows.
If R is a ground basic rule p(t)← Body, then its propositional image is

τ(Body)→
∧

r∈[t]
p(r).

If R is a ground choice rule {p(t)} ← Body, then its propositional image is

τ(Body)→
∧

r∈[t]
(p(r) ∨ ¬p(r)).

If R is a ground constraint ← Body, then its propositional image is ¬τ(Body).
For any program Π, its propositional image is the set of the propositional

images of all instances R of its rules. An interpretation is a stable model (or
answer set) of a program Π if it is an answer set of the propositional image
of Π [13].

6.2 Leading Special Case

It is sufficient to prove the theorem for the case when P is empty. To derive the
general case, we can reason as follows. If I is a stable model of (Π, P ), then I is
a stable model of the program Π′ obtained from Π as described in Section 2.3—
by adding some rules of the form p(t) for predicate symbols p/n from P and
by substituting the terms i(c) for all symbolic constants c in P . By the special
case of the theorem with the empty P , I satisfies the completion Comp′ of Π′.
It remains to observe that every conjunctive term of Comp(i(c1), . . . , i(cl)) is a
conjunctive term of Comp′.

To prove the special case when P is empty, we need to justify three claims:

Claim 1. If a program Π contains a constraint← Body, then every stable model
of Π satisfies the universal closure of ¬τ b(Body).

In the statements of Claim 2 and Claim 3, the symbols Fi, Ui, and V1, . . . , Vn

are understood as in Section 4.3.

Claim 2. For every predicate symbol p/n occurring in Π, every stable model
of Π satisfies the universal closure of the formula

k∨
i=1

∃UiFi → p(V1, . . . , Vn).

Claim 3. For every predicate symbol p/n occurring in Π, every stable model
of Π satisfies the universal closure of the formula

p(V1, . . . , Vn)→
k∨

i=1

∃UiFi.



Towards Verifying Logic Programs in the Input Language of clingo 15

6.3 Two Lemmas

The two lemmas below are similar to Propositions 1 and 2 from [12].

Lemma 1. For any ground program term t and any precomputed term r, the
formula valt(r) is equivalent to ⊤ if r ∈ [t] and to ⊥ otherwise.

Proof. The proof is by induction on t. If t is a numeral, a symbolic constant, inf,
or sup, then r ∈ [t] iff r is t. On the other hand, valt(r) is r = t; this formula is
equivalent to ⊤ if r is t and to ⊥ otherwise.

Assume that the assertion of the lemma holds for t1 and t2.
If t is (t1 op t2), where op is +, −, or ×, then valt(r) is

∃IJ(r = I op J ∧ valt1(I) ∧ valt2(J)).

An arbitrary interpretation satisfies this formula iff there exist integers i, j such
that

r is i op j, i ∈ [t1], and j ∈ [t2].

This condition holds iff r ∈ [t].
If t is (t1/t2), then valt(r) is

∃IJQR(I = J ×Q+R ∧ valt1(I) ∧ valt2(J)
∧ J ̸= 0 ∧R ≥ 0 ∧R < Q ∧ r = Q).

An arbitrary interpretation satisfies this formula iff there exist integers i, j, q,
rem such that

i = jq + rem, i ∈ [t1], j ∈ [t2], j ̸= 0, 0 ≤ rem < q, and r is q.

Equivalently: Iff there exist integers i and j such that

i ∈ [t1], j ∈ [t2], j ̸= 0, and r is ⌊i/j⌋.

This condition holds iff r ∈ [t].
If t is (t1\t2), then the proof is similar.
If t is (t1 . . t2), then valt(r) is

∃IJK(valt1(I) ∧ valt2(J) ∧ I ≤ K ∧K ≤ J ∧ r = K).

An arbitrary interpretation satisfies this formula iff there exist integers i, j, k
such that

i ∈ [t1], j ∈ [t2], i ≤ k ≤ j, and r is k.

This condition holds iff r ∈ [t].

Lemma 2. If E is a ground literal or ground comparison, then τ b(E) is equiv-
alent to τE.

Proof. This is immediate from Lemma 1.



16 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

6.4 Proof of Claim 1

Let I be a stable model of a program Π, let ← E1 ∧ · · · ∧ Em be a constraint
from Π, let x be the list of variables occurring in this constraint, and let r be a
list of precomputed terms of the same length as x. Since the rule

← (E1)
x
r ∧ · · · ∧ (Em)

x
r

is an instance of a rule of Π, the propositional image of Π includes the formula

¬(τ((E1)
x
r ) ∧ · · · ∧ τ((Em)

x
r )). (26)

Consequently, I satisfies (26). By Lemma 2, it follows that I satisfies the formula

¬(τ b((E1)
x
r ) ∧ · · · ∧ τ b((Em)

x
r )),

which can be also represented as

¬(τ b(E1)
x
r ∧ · · · ∧ τ b(Em)x

r )

and as
(¬τ b(E1 ∧ · · · ∧ Em))x

r .

Since r here is an arbitrary tuple of precomputed terms, it follows that I satisfies
the universal closure of ¬τ b(E1 ∧ · · · ∧ Em).

6.5 Proof of Claim 2

Let I be a stable model of a program Π, and let p/n be a predicate symbol
occurring in Π. We need to show that I satisfies the universal closure of each of
the formulas

Fi → p(V1, . . . , Vn) (27)

(i = 1, . . . , k). If Fi is a formula of form (17), corresponding to a choice rule,
then p(V1, . . . , Vn) is one of its conjunctive terms so that (27) is universally
valid. Otherwise, Fi is the formula

τ b(E1) ∧ · · · ∧ τ b(Em) ∧ valt1(V1) ∧ · · · ∧ valtn(Vn),

corresponding to a basic rule

p(t1, . . . , tn)← E1 ∧ · · · ∧ Em. (28)

The set of free variables of (27) consists of the variables Ui that occur in rule (28)
and the variables V1, . . . , Vn. We need to prove that for every tuple r of precom-
puted terms of the same length as Ui and every tuple s1, . . . , sn of precomputed
terms, the formula

(τ b(E1))
Ui
r ∧ · · · ∧ (τ b(Em))Ui

r ∧ valt′1(s1)∧ · · · ∧ valt′n(sn)→ p(s1, . . . , sn), (29)



Towards Verifying Logic Programs in the Input Language of clingo 17

where t′j (j = 1, . . . , n) stands for (tj)
Ui

r , is universally valid. By Lemma 1, the
formula valt′j (sj) is equivalent to ⊤ if sj ∈ [t′j ] and to ⊥ otherwise. Consequently,
it is sufficient to consider the case when

s1 ∈ [t′1], . . . , sn ∈ [t′n] (30)

(otherwise, (29) is universally valid). It remains to show that, under condi-
tion (30), I satisfies the formula

(τ b(E1))
Ui
r ∧ · · · ∧ (τ b(Em))Ui

r → p(s1, . . . , sn).

This formula can be represented also as

τ b
(
(E1)

Ui

r

)
∧ · · · ∧ τ b

(
(Em)

Ui

r

)
→ p(s1, . . . , sn).

By Lemma 2, it is equivalent to

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)

Ui

r

)
→ p(s1, . . . , sn). (31)

To show that I satisfies (31), consider the instance

p(t′1, . . . , t
′
n)← (E1)

Ui
r ∧ · · · ∧ (Em)

Ui

r

of rule (28). The propositional image of that instance has the form

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)

Ui

r

)
→ C, (32)

where C is a conjunction containing the conjunctive term p(s1, . . . , sn). Since the
interpretation I is a stable model of Π, it satisfies (32) and, consequently, (31).

6.6 Proof of Claim 3

Consider the set Γ of formulas that includes

– for every instance p(t)← Body of a basic rule of Π, the formulas

τ(Body)→ p(r)

for all r in [t], and
– for every instance {p(t)} ← Body of a choice rule of Π, the formulas

τ(Body) ∧ ¬¬p(r)→ p(r)

for all r in [t].

This set is strongly equivalent [13] to the propositional image of the program
obtained from Π by removing all constraints. It follows that every stable model I
of Π is a stable model of Γ and, consequently, is supported by Γ [3, Proposition 2].



18 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

In other words, every element A of I is the consequent of an implication from Γ
such that its antecedent is satisfied by I.

To prove Claim 3, we need to show that for every predicate symbol p/n
occurring in Π and every tuple s1, . . . , sn of precomputed terms, every stable
model I of Π satisfies the formula

p(s1, . . . , sn)→
k∨

i=1

∃Ui(Fi)
V1,...,Vn

s1,...,sn
. (33)

Assume that p(s1, . . . , sn) is an element of I; we need to show that I satisfies
the consequent of (33). Consider an implication from Γ with the consequent
p(s1, . . . , sn) such that its antecedent is satisfied by I.

Case 1. This implication is the formula

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)

Ui

r

)
→ p(s1, . . . , sn) (34)

corresponding to an instance

p
(
(t1)

Ui
r , . . . , (tn)

Ui
r
)
← (E1)

Ui
r ∧ · · · ∧ (Em)

Ui

r

of a basic rule
p(t1, . . . , tn)← E1 ∧ · · · ∧ Em

such that
s1 ∈

[
(t1)

Ui
r
]
, . . . , sn ∈

[
(tn)

Ui
r
]
. (35)

By Lemma 2, the antecedent of (34) is equivalent to the formula

τ b
(
(E1)

Ui

r

)
∧ · · · ∧ τ b

(
(Em)

Ui

r

)
,

which can be also represented as

(τ b(E1))
Ui
r ∧ · · · ∧ τ b((Em))Ui

r .

On the other hand, from conditions (35) and Lemma 1, we conclude that each
of the formulas

valt1(s1)Ui
r , . . . , valtn(sn)Ui

r

is equivalent to ⊤. It follows that I satisfies the conjunction

(τ b(E1))
Ui
r ∧ · · · ∧ τ b((Em))Ui

r ∧ valt1(s1)Ui
r ∧ · · · ∧ valt1(s1)Ui

r ,

which can be written as
(Fi)

V1,...,Vn,Ui

s1,...,sn,r .

It follows that I satisfies the consequent of (33).



Towards Verifying Logic Programs in the Input Language of clingo 19

Case 2. The implication from Γ with the consequent p(s1, . . . , sn) such that its
antecedent is satisfied by I is the formula

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)

Ui

r

)
∧ ¬¬p(s1, . . . , sn)→ p(s1, . . . , sn)

corresponding to an instance{
p
(
(t1)

Ui
r , . . . , (tn)

Ui
r
)}
← (E1)

Ui
r ∧ · · · ∧ (Em)

Ui

r

of a choice rule
{p(t1, . . . , tn)} ← E1 ∧ · · · ∧ Em

such that the terms t1, . . . , tn satisfy condition (35). The proof is similar.

7 Related Work

From early research on the relationship between stable models and completion
for programs without arithmetic [5], we know that every stable model of such
a program is a model of its completion and that the converse holds under a
syntactic condition that is now called tightness [3, 4]. That work has been ex-
tended to clingo programs with arithmetic [8], but completed definitions as
defined in that paper are not expressed in a standard first-first order language
and, consequently, cannot be processed by existing theorem provers.

The definition of a formula proposed in earlier work on anthem [12] does not
suffer from that defect. vampire is used there to verify the strong equivalence
relation between logic programs.

Acknowledgements

We are grateful to Laura Kovács, Giles Reger, and Martin Suda for taking the
time to answer our questions about the use of vampire. Also, we would like to
thank the anonymous referee for giving us useful suggestions.

References

1. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1978)

2. Erdem, E., Gelfond, M., Leone, N.: Applications of ASP. AI Magazine 37(3), 53–68
(2016)

3. Erdem, E., Lifschitz, V.: Fages’ theorem for programs with nested expressions. In:
Codognet, P. (ed.) Proceedings of the Seventeenth International Conference on
Logic Programming (ICLP’01). Lecture Notes in Computer Science, vol. 2237, pp.
242–254. Springer-Verlag (2001)

4. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Pro-
gramming 3(4-5), 499–518 (2003)



20 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

5. Fages, F.: Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science 1, 51–60 (1994)

6. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.: Industrial appli-
cations of answer set programming. Künstliche Intelligenz 32(2-3), 165–176 (2018)

7. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
Theory and Practice of Logic Programming 15(4-5), 449–463 (2015), http://arxiv.
org/abs/1507.06576

8. Harrison, A., Lifschitz, V., Raju, D.: Program completion in the input language of
GRINGO. Theory and Practice of Logic Programming 17(5-6), 855–871 (2017)

9. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) Proceedings of the Twenty-fifth International Conference
on Computer Aided Verification (CAV’13). Lecture Notes in Computer Science,
vol. 8044, pp. 1–35. Springer-Verlag (2013)

10. Lifschitz, V.: Achievements in answer set programming. Theory and Practice of
Logic Programming 17(5-6), 961–973 (2017)

11. Lifschitz, V., Lühne, P., Schaub, T.: anthem: Transforming gringo programs into
first-order theories (preliminary report). In: Fandinno, J., Fichte, J. (eds.) Proceed-
ings of the Eleventh Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’18) (2018)

12. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in
the input language of GRINGO. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.)
Proceedings of the Fifteenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’19). Lecture Notes in Artificial Intelligence,
vol. 11481, pp. 270–283. Springer-Verlag (2019)

13. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526–541 (2001)

14. Lloyd, J., Topor, R.: Making Prolog more expressive. Journal of Logic Program-
ming 1(3), 225–240 (1984)

15. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning 59(4), 483–502 (2017)


