CS311: Discrete Math for Computer Science, Spring 2015

Additional Exercises

Justify your answers.

- **1.** In this problem, $A = \{1, 2, ..., 10\}$, $B = \{10, 11, ..., 20\}$, $C = \{2, 4, 6, ..., 20\}$. Find the cardinalities of the sets
 - (a) $A \cup C$,
- (b) $A \cap C$,
- (c) $(A \cup B) \setminus C$,
- (d) $(A \cap B) \setminus C$,
- (e) $(A \cap B) \times C$.
- 2. Find the cardinality of the set

$$(\{1, 2, \dots, 100\} \times \{1, 2, \dots, 101\}) \setminus (\{1, 2, \dots, 101\} \times \{1, 2, \dots, 100\}).$$

3. Find sets A and B such that

$$A \setminus B = \{1, 5, 7, 8\},\$$

 $B \setminus A = \{2, 10\},\$
 $A \cap B = \{3, 6, 9\}.$

- **4.** Can you conclude that A = B if A, B, C are sets such that
 - (a) $A \cup C = B \cup C$?
 - (b) $A \cap C = B \cap C$?
- **5.** For any sets A and B, if $|A \times B| = 91$ then at least one of the sets A, B is a singleton. True or false?
- **6.** Consider the relation x = 2y + 1 between real numbers x, y. Is it reflexive? Is it symmetric? Is it transitive?
- **7.** What is the total number of binary relations on the set $\{1, \ldots, 10\}$? How many of them are reflexive?