CS311: Discrete Math for Computer Science, Spring 2015

Homework Assignment 9, with Solutions

1. Find the total number of functions from $\{1, \ldots, 10\}$ onto $\{1, 2\}$.

Solution. The total number of functions from $\{1, ..., 10\}$ to $\{1, 2\}$ is 2^{10} , or 1024. Among these functions, 2 are not onto: the function that maps every element of the domain to 1, and the function that maps every element of the domain to 2. So the total number of functions from $\{1, ..., 10\}$ onto $\{1, 2\}$ is 1022.

2. Recall that by S we denote the set of all bit strings:

$$S = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots\},\$$

and that we introduced the following functions:

- Function l from **S** to **N**: l(x) is the length of x.
- Function e from S to S: e(x) is the string 1x.
- Function r from S to S: r(x) is the string x reversed.

Determine which of the following formulas are true.

(i) $l \circ e = l$.

Solution: False; for instance, l(e(1)) = l(11) = 2 but l(1) = 1.

(ii) $l \circ r = l$.

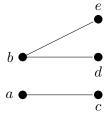
Solution: True; l(r(x)) is the length of x reversed, which is the same as the length of x.

(iii) $e \circ r = r \circ e$.

Solution: False; for instance, e(r(001)) = e(100) = 1100 but r(e(001)) = r(1001) = 1001.

3. (a) Draw a bipartite graph with 5 vertices. (b) Find the adjacency matrix of this graph. (c) Determine whether this graph is a tree. (d) How many simple paths are there in this graph?

Possible solution:



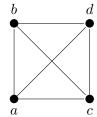
The adjacency matrix is as follows:

	a	b	\mathbf{c}	d	e
a	0	0	1	0	0
b	0	0	0	1	1
$\overline{\mathbf{c}}$	1	0	0	0	0
d	0	1	0	0	0
е	0	1	0	0	0

This graph is not a tree since it is not connected. There are 5 paths consisting of a single vertex, 6 paths consisting of two vertices, and 2 simple paths consisting of 3 vertices, so that the total number of simple paths is 13.

4. How many cycles are there in the complete graph on 4 vertices?

Solution. Let the vertices of the graph be a, b, c, d:

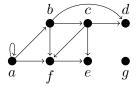


There are 6 cycles that include the vertices a, b, c:

$$a, b, c, a;$$
 $a, c, b, a;$ $b, c, a, b;$ $b, a, c, b;$ $c, a, b, c;$ $c, b, a, c.$

Similarly, there are 6 cycles including a, b, d, 6 cycles including a, c, d and 6 cycles including b, c, d. So the total number of cycles including three vertices out of four is 24. There are also 24 cycles including all four vertices: one per each permutation of a, b, c, d. So the total number of cycles is 48.

5. (a) Find the in-degree and the out-degree of each vertex in the graph shown in the picture. (b) Find the strongly connected components of this graph.



Answer:

Vertex	Indegree	Outdegree
a	1	3
b	1	3
c	1	3
d	2	0
e	2	0
f	3	1
g	0	0

The strongly connected components are $\{a\},\ \{b\},\ \{c\},\ \{d\},\ \{e\},\ \{f\},\ \{g\}.$