Lecture Notes:
Discrete Mathematics for Computer Science

Vladimir Lifschitz
University of Texas at Austin

Part 9. Annotated Programs

A Toy Programming Language

In our toy programming language, all variables are integer variables, so that there is no
need to declare them. Integer expressions are formed from variables and integer con-
stants using the operators +, — and x. Boolean expressions are formed from equalities
and inequalities between integer expressions using the propositional connectives A, V,
. Assignments are expressions of the form V « [F where V is a variable and IF is an
integer expression. Programs are formed from assignments using three constructs:

e sequential composition
P:Q
where P and @ are programs,
e conditional composition
if BE then P else () endif

where BF is a Boolean expression and P, () are programs,

e loop
while BE do P enddo

where BF is a Boolean expression and P is a program.

For instance,

ifm>n
then p — m
else p«—n

endif

is a program. We will denote it by P1. Another example:

p—1

1« 0

while i < n do
1—1+1;
p<+—pX 2

enddo

We will call this program P2.



Partial Correctness and Annotated Programs

An assertion is a condition that may be true or false depending on the values of variables.
For example, every Boolean expression is an assertion. An assertion may include symbols
that are not allowed in programs. For instance, the equalities p = max(m,n) and
p = 2" are assertions, even though the espressions max(m,n) and 2" are not part of our
programming language.

We will describe properties of programs using formulas of the form

{A} P {B} (1)

where A and B are assertions and P is a program. Assertion A is called the precondition
of formula (1), and B is called its postcondition. Formula (1) expresses that if the values
of variables satisfy condition A then their new values after the execution of P will satisfy
condition B, provided that the execution terminates. For instance, the formula

{m=3}n—m+5{m=3An=_8} (2)
is true. Formulas
{m=3An=>5} P1{p=>5} (3)
and
{n=>5} P2 {p=32} (4)

are true as well. On the other hand, formula
{n=5} P1 {p=5}

is false. (Couterexample: before the execution of P1, n =5 and m = 6.)

If formula (1) is true, we say that program P is partially correct for the precondi-
tion A and postcondition B.

An annotated program is a program with assertions, enclosed in braces, possibly
added to its text at various points. For instance, every program is an annotated program
(no assertions added). Every formula of the form (1) is an annotated program also
(the precondition and postcondition are added). We define below rules for constructing
“complete” annotated programs. If we can turn a formula (1) into a complete annotated
program by inserting additional assertions between its precondition and postcondition
then we can say that the formula is proved.

Substitution

The following notation will be useful. If A is a condition, V is a variable, and IFE
is an integer expression, then by A‘I/E we denote the condition obtained from A by
substituting IE for V. For instance,

(m=3An=8),,5 is m=3Am+5=_8.



If V occurs in A several times then A‘[/E is obtained from A by substituting IF for all
occurrences of V' simultaneously. For instance,

(m<nAn=8),,, is m<n+1lAn+1=8.
If V doesn’t occur in A at all then A}/E is the same as A:

(m=3)mis is m=3.

Rule of Assignment

Any annotated program of the form
{Alg
V — IE
{4}

is complete.

For instance, the annotated program

{m=3Am+5=28}
n<—m-+>
{m=3An=28}

is complete.

Rules of Consequence

1. An annotated program of the form

{A}
{B}
P

is complete if A implies B and the annotated program

{B}
P
is complete.
2. An annotated program of the form
P

{A}
{B}

is complete if A implies B and the annotated program

P
{A}



is complete.

For instance, the annotated program

{m =3}
{m=3A"Am+5=28}
n«—m-+5
{m=3An=28}

is complete, because the assertion m = 3 implies m = 3 A m + 5 = 8. This annotated
program justifies formula (2).

Rule of Composition

An annotated program of the form
P;
{A}
Q

is complete if each of the annotated programs

P
{A}

and
{A}
Q

is complete.

For example, the annotated program

{m =12}
{m+1=3}
m<«—m+1;

{m =3}
{m=3Am+5=_8}
n«—m-+>
{m=3An=28}

is complete. It justifies the formula

{m =2}
m—m+1;
n«—m-+3>5

{m =3 An=_8}.



Conditional Rule

An annotated program of the form

{4}
if BE
then {A A BE}
P
(B}
else {AN-BE}

Q

{B}
endif
{B}

is complete if the annotated programs

{A N BE}
P

{B}

and
{AAN-BE}

Q
{B}
are complete.

For instance, the annotated program

{m=3An=>5}
if m>n
then {m=3An=5Am>n}
{false}
{m =5}
pb<—m
{p =15}
else {m=3An=5Am<n}
{n =5}
bp—n
{p =15}
endif
{p=>5}

is complete. It justifies formula (3).



While Rule

An annotated program of the form

{4}
while BE
do {A A BE}
P
{4}
enddo
{AAN-BFE}

is complete if the annotated program

{A A BE}
P

{4}
is complete.

For instance, the annotated program

{n=5Ni=0Ap=1}

{n=5Ai<nAp=2"

whilei<ndo{n=5Ai<nAp=2"Ni<n}
{n=5Ap=2"ANi<n}
n=5ANi+1<nApx2=2"

1— 1+ 1;

{n=5Ai<nApx2=2"}

p<—p><2

{n=5Ai<nAp=2"}
enddo

{n=5Ai<nAp=2"Ai>n}
{n=5Ai=nAp=2"}
{i=5Ap=2%

{p=32}

is complete. It justifies the formula

{n=5ANi=0Ap=1}
while i < n do
1—1+1;
p—ax X2
enddo
{z = 32}.



