CS311: Discrete Math for Computer Science, Spring 2015

Test 2, with Solutions

Open notes. No books, no calculators.

- 1. Determine whether the given formula is true or false. Justify your answers.
 - (a) $\forall m \exists n (2 \mid m+n)$. Solution: True. Choose n=-m. Then m+n=0; 0 is even.
 - (b) $\exists m \forall n(m-5 \mid n)$. Solution: True. Choose m=6. Then m-5=1; every integer is a multiple of 1.
- **2.** Function f is defined by the formulas

$$f(x) = \begin{cases} x, & \text{if } x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Find numbers a, b such that for all values of x

$$f(x) = ax + b|x|.$$

Prove that your formula is correct.

Solution. If f(x) = ax + b|x| for all x then 0 = f(-1) = -a + b and 1 = f(1) = a + b. Solving gives us $a = \frac{1}{2}$ and $b = \frac{1}{2}$. To prove the formula

$$f(x) = \frac{x}{2} + \frac{|x|}{2},$$

consider two cases. Case 1: x < 0. Then |x| = -x, so that

$$\frac{x}{2} + \frac{|x|}{2} = \frac{1}{2}x - \frac{1}{2}x = 0 = f(x).$$

Case 2: $x \ge 0$. Then |x| = x, so that

$$\frac{x}{2} + \frac{|x|}{2} = \frac{1}{2}x + \frac{1}{2}x = x = f(x).$$

3. Prove that for every positive integer n

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}.$$

Solution: We will prove the formula by induction. Basis: n=1. The given formula turns into the correct equality $\frac{1}{1\cdot 3} = \frac{1}{2\cdot 1+1}$. Induction step: Assuming that the given formula is true for n, we can prove that

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} + \frac{1}{(2n+1)(2n+3)} = \frac{n+1}{2n+3}$$

as follows:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} + \frac{1}{(2n+1)(2n+3)}$$

$$= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)}$$

$$= \frac{n(2n+3)+1}{(2n+1)(2n+3)}$$

$$= \frac{2n^2 + 3n + 1}{(2n+1)(2n+3)}$$

$$= \frac{(n+1)(2n+1)}{(2n+1)(2n+3)}$$

$$= \frac{n+1}{2n+3}.$$

4. Prove that for every positive integer n, 43 divides $6^{n+1} + 7^{2n-1}$.

Solution. We will prove this assertion by induction. Basis: n = 1. Then

$$6^{n+1} + 7^{2n-1} = 6^2 + 7^1 = 43.$$

Induction step: Suppose that 43 divides $6^{n+1} + 7^{2n-1}$. To prove that 43 divides $6^{n+2} + 7^{2n+1}$, we rewrite this expression as follows:

$$6^{n+2} + 7^{2n+1} = 6^{n+1} \cdot 6 + 7^{2n-1} \cdot 49 = (6^{n+1} + 7^{2n-1}) \cdot 6 + 7^{2n-1} \cdot 43.$$

In the last expression, each of the two summands is a multiple of 43.

5. The numbers A_0, A_1, A_2, \ldots are defined by the formulas

$$A_0 = 0,$$

$$A_{n+1} = n \cdot (A_n + 1).$$

Prove that $A_n < n!$.

Solution. Consider two cases. Case 1: n = 0. Then $A_n = A_0 = 0 < 1 = 0! = n!$. Case 2: n > 0. We will prove the inequality $A_n < n!$ by induction. Basis: n = 1. Then $A_n = A_1 = 0 < 1 = 1! = n!$. Induction step: Assuming that $A_n < n!$ for some positive n, we can prove that $A_{n+1} < (n+1)!$ as follows:

$$A_{n+1} = n \cdot (A_n + 1) < n \cdot (n! + 1) = n \cdot n! + n \le n \cdot n! + n! = (n+1)n! = (n+1)!.$$