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SUMMARY

Logic programming requires that the programmer convert a problem into a set of constraints based on
predicates. Choosing the predicates and introducing appropriate constraints can be intricate and error
prone. If the problem domain is structured enough, we can let the programmer express the problem in terms
of more abstract, higher-level constraints. A compiler can then convert the higher-level program into a logic-
programming formalism. The compiler writer can experiment with alternative low-level representations of
the higher-level constraints in order to achieve a high-quality translation. The programmer can then take
advantage of both a reduction in complexity and an improvement in runtime speed for all problems within
the domain. We apply this analysis to the domain of tabular constraint-satisfaction problems. Examples of
such problems include logic puzzles solvable on a hatch grid and combinatorial problems such as graph
coloring and independent sets. The proper abstractions for these problems are rows, columns, entries,
and their interactions. We present a higher-level language, Constraint Lingo, dedicated to problems in
this domain. We also describe how we translate programs from Constraint Lingo into lower-level logic
formalisms such as the logic of propositional schemata. These translations require that we choose among
competing lower-level representations in order to produce efficient results. The overall effectiveness of our
approach depends on the appropriateness of Constraint Lingo, our ability to translate Constraint Lingo
programs into high-quality representations in logic formalisms, and the efficiency with which logic engines
can compute answer sets. We comment on our computational experience with these tools in solving both
graph problems and logic puzzles. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Logic programming was introduced in the mid-1970s as a way to facilitate computational problem
solving and software development [1]. The idea was to regard logic theories as programs and
formulas as representations of computational tasks, and to apply automated reasoning techniques, most
notably, resolution with unification, as the computational mechanism. Researchers expected that logic
programming would quickly become a dominant programming paradigm because of its declarative
nature. It allows programmers to focus on modeling problem specifications in a declarative way as
theories and frees them from the need to describe control. These expectations were reinforced by the
emergence of Prolog [2]. However, despite the initial excitement generated by logic programming and
its prominent role in the fifth-generation computing initiative in Japan, logic programming has been
slow in winning broad acceptance and has yet to live up to early expectations.

This paper presents our attempt to address this problem. Logic programming requires the
programmer to cast a problem into the language of predicates and their interrelations, a task that is
often intricate and error prone. It is more productive to program with domain-appropriate abstractions
that are automatically compiled into efficient and correct low-level logic programs.

We demonstrate this thesis in the restricted domain of constraint-satisfaction problems whose
solutions have the structure of a table. In this paper, we describe the Constraint Lingo language for
expressing these tabular constraint-satisfaction problems. We show how to translate programs in this
language into a variety of lower-level logic programs that can be run on standard logic engines.

Low-level approaches to constraint-satisfaction problems have been investigated for several years.
First, constraint-logic programming [3] has been used with great success. Solvers such as ECLiPSe [4]
can be used to represent and solve such problems. Second, recent research has modeled constraint-
satisfaction problems as DATALOG¬ programs for which stable models represent solutions [5,6].
Programs such as smodels [7] compute stable models [8] of such programs. Third, constraint-
satisfaction problems can be modeled as disjunctive logic programs; dlv [9] can compute answer sets
of those programs. Fourth, the logic of propositional schemata forms an answer-set programming
formalism that can be used for solving constraint-satisfaction problems [10]. Fifth, optimization
programming solvers such as OPL [11] deal primarily with techniques such as linear and integer
programming, but also incorporate constraint programming and scheduling. Together, we call programs
that compute solutions to logic programs in any of these formalisms ‘logic engines’, even though
solvers in the fifth class can be based on C++ or Java, and do not present a predicate-logic view to
programmers.

While these logic-based formalisms for specifying constraints are expressive, they all suffer from
the fact that they are awkward even for experienced programmers and logicians to use. The problem
is that the connectives offered by logic do not correspond well to high-level constraints occurring in
actual problems, even when connectives include the extended syntax implemented by smodels or by
ECLiPSe.

Solving a constraint-satisfaction problem should be a three-step process. (1) Represent a statement
of the problem (often given informally as free text) in some high-level modeling language. We refer
to this step as modeling or programming. (2) Translate this representation into a target formalism for
which good automated reasoning techniques are available. We refer to this step as compilation; it is
usually fully automated. (3) Apply automated reasoning techniques to the compiled representation in
order to construct solutions to the original problem if they exist. We refer to this step as computation.
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The following figure summarizes the flow of solving constraint-satisfaction problems and introduces
some of our notation. A programmer represents problem � as program P . An automatic translator con-
verts P into Tr(P ). A logic engine computes the solution set Sol(Tr(P )) for Tr(P ). Each model M ∈
Sol(Tr(P )) represents a solution to the Constraint Lingo program and hence to the original problem.

�

1
��

Specification Solution set

�� Sol(�) Tabular constraint-satisfaction problem

P

2
��

�� Sol(P )

��

Constraint-Lingo program

Tr(P )
3 �� Sol(Tr(P )))

��

Answer-set programming formalism

This three-step approach is not unique to constraint satisfaction; it is quite common in all
computational areas. (1) Using programming languages to solve problems follows the same general
pattern of programming, compiling, and computing. (2) To retrieve information from a database, we
first write a query in some query language (programming). This query is then analyzed, optimized, and
transformed into a computational plan, such as an expression in relational algebra. Finally, this plan
is executed and the answer is computed. (3) A concrete example of the use of this approach in AI is
propositional satisfiability planning [12]. In the BlackBox approach [13], to solve a planning problem
we first build its formal representation in a high-level planning language such as STRIPS [14,15] or
PDDL [16], then compile it into a propositional CNF theory, and finally solve the original planning
problem by using these propositional satisfiability programs to find models of the compiled theory.

From this perspective, due to its limited repertoire of means to express constraints, logic formalisms
should rather be viewed as low-level constraint-modeling languages. In order to use them for
solving constraint problems, one needs a high-level modeling formalism tailored to the actual
problems, coupled with techniques to translate theories in this high-level formalism into logic
programs. An expressive language for representing constraints should facilitate programming, and
good compilation techniques should result in code amenable to efficient processing by any logic engine.

In this paper we present a new constraint-modeling language, Constraint Lingo, well suited for
modeling tabular constraint-satisfaction problems. To demonstrate its utility, we show (1) how to
encode logic puzzles and several graph problems in Constraint Lingo, (2) how to compile Constraint
Lingo programs into several logic formalisms, and (3) how well logic engines compute answer sets for
the compiled programs.

Our experience with Constraint Lingo (the current implementation, problem suite, and
documentation are available [17]) supports our thesis. Although we find it hard to program constraint-
satisfaction problems directly in logic formalism, we find that (1) it is quite easy (and even fun) to
program these problems in Constraint Lingo, (2) compilation is completely automated, and (3) the
resulting programs are efficient to run.

This paper makes three contributions.

1. It proposes a technique for using logic formalisms as computational tools. We contend that
logic formalisms should preferably be used as computational back-ends accompanying a more
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user-friendly high-level programming language. Programming ought to be done in this higher-
level language; programs need to be compiled to low-level representations and then processed.

2. We illustrate our proposal by developing a specific language for modeling constraint problems.
We also illustrate compilers into several computational logic-based back-ends and demonstrate
the viability of our approach.

3. Our approach opens interesting research directions for constraint-satisfaction programming:

• design of high-level languages for logic-programming application areas;
• design of compilers and their optimizations;
• design of software-development tools.

This paper is organized as follows. We present tabular constraint-satisfaction problems and a
particular logic puzzle in Section 2. We introduce the syntax of Constraint Lingo and its semantics
in Section 3, applying it to a specific logic puzzle. We apply Constraint Lingo to graph problems in
Section 4. We show how Constraint Lingo is translated into smodels in Section 5 and show some
compiler optimizations for that translation in Section 6. We show how compiled code differs from
smodels for other logic engines, in particular, dlv in Section 7.1 and ECLiPSe in Section 7.2. We present
results of timing studies in Section 8 and final remarks in Section 9.

2. TABULAR CONSTRAINT-SATISFACTION PROBLEMS

The Constraint Lingo language is tuned to tabular constraint-satisfaction problems (tCSPs), in which
it is convenient to think about solutions as having a two-dimensional array structure. Such problems
specify columns in the tables by assigning them names and by indicating the domain of each column,
that is, the set of elements that can appear in the column. They also specify the number of rows.
Further constraints typically relate entries in a single row or column, but more complex constraints are
also possible.

An attribute means a pair (a,Da), where a is the name of the attribute and Da is its domain, a
non-empty set of elements. For our purposes, all attribute domains are finite. We commonly refer to an
attribute by its name. A table schema is a sequence of attributes with distinct names.

Let S = 〈a1, . . . , an〉 be a table schema. We call any subset T ⊆ Da1 × · · · × Dan a table in
schema S. We use the term table rather than relation, the standard term for a subset of a Cartesian
product, to emphasize intuitions arising in the context of tCSPs. In particular, we regard a table as a
two-dimensional structure consisting of all its tuples written sequentially as rows. Likewise, a column
is the sequence of elements from the domain of an attribute appearing in the appropriate position in all
rows of the table. We denote the set of all tables in S by Tab(S).

A constraint c on tables in S is any subset of Tab(S)‡. We say a table satisfies a constraint if
it is a member of the subset. A tabular constraint satisfaction problem (tCSP) consists of a table
schema S and a collection C of constraints on tables in Tab(S). Given a tCSP �, the set of solutions
to � consists of all those tables in Tab(S) that satisfy all the constraints in C. We denote this set as

‡Usually such a constraint is not given explicitly as a set of relations but rather as a formula in some language.
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Sol(�) = ⋂
c∈C c. A constraint c serves as a basic building block for constraints on tables. While we

only admit conjunctions of such constraints, it is possible to consider ‘second-order SQL’, in which
answers to queries are sets of tables (rather than sets of records, as in ordinary SQL). A similar idea
has been pursued by others [18].

The most common table constraints are all-different and all-used. A table T ∈ Tab(S) satisfies the
all-different property with respect to the attribute a ∈ S if no element of Da appears more than once
in the column a of T . A table T ∈ Tab(S) satisfies the all-used property with respect to the attribute
a ∈ S if each element of Da appears at least once in the column a of T . We say that an attribute a ∈ S
is a key for a table T in S if T satisfies both the all-different and all-used constraints§ with respect to a.

We are only interested in tCSPs with at least one key attribute. Without loss of generality, we assume
that the first attribute in the schema, say a1, is so distinguished. This requirement implies that the
number of rows in solution tables is the cardinality of Da1 .

This assumption is motivated by the following considerations. First, it is often satisfied by problems
appearing in practice, in particular, by the puzzle and graph problems discussed in this paper. Second,
general constraint-satisfaction problems assume a fixed set of variables. In tCSPs, variables whose
values need to be established correspond to individual table entries. The schema determines the
number of columns. In order to fix the number of variables of a tCSP, we have to fix the number
of rows. Designating an attribute as a key is one way of doing so. Third, a class of tables satisfying
our assumption can be uniquely decomposed into collections of two-column projections on pairs of
attributes. This property has implications for translations of Constraint Lingo programs into low-level
logic formalisms. We discuss this matter in more detail in Section 5.

Scheduling problems are examples of tCSPs, with each row in a solution table representing a single
item of the schedule (such as time, location, resources needed). Graph problems can also often be cast
as tCSPs. For instance, a solution to a graph-coloring problem is a table consisting of two columns, one
for vertices and the other for colors. The rows in the table specify the assignment of colors to vertices.

Logic puzzles are good examples of tCSPs. Throughout this paper, we use the ‘French Phrases,
Italian Soda’ puzzle (or French puzzle, for short)¶ as a running example to illustrate the syntax and the
semantics of Constraint Lingo:

Claude looks forward to every Wednesday night, for this is the night he can speak in his native
language to the other members of the informal French club. Last week, Claude and five other people
(three women named Jeanne, Kate, and Liana, and two men named Martin and Robert) shared a
circular table at their regular meeting place, the Café du Monde. Claude found this past meeting to
be particularly interesting, as each of the six people described an upcoming trip that he or she is
planning to take to a different French-speaking part of the world. During the discussion, each person
sipped a different flavor of Italian soda, a specialty at the café. Using [. . . ] the following clues, can
you match each person with his or her seat (numbered one through six [circularly]) and determine
the flavor of soda that each drank, as well as the place that each plans to visit?

1. The person who is planning a trip to Quebec, who drank either blueberry or lemon soda,
didn’t sit in seat number one.

2. Robert, who didn’t sit next to Kate, sat directly across from the person who drank peach soda.

§We differ here from database terminology, in which only the all-different constraint is required for an attribute to be a key.
¶ c©1999, Dell Magazines, quoted by permission. We present only four of the nine clues.
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3. The three men are the person who is going to Haiti, the one in seat number three, and Claude’s
brother.

4. The three people who sat in even-numbered seats are Kate, Claude, and a person who didn’t
drink lemon soda, in some order.

This puzzle can be viewed as a tCSP with the schema consisting of five attributes: name, gender,
position, soda and country (each with its associated domain). The space of possible solutions
to this puzzle is given by the set of tables whose rows describe people and whose columns describe
relevant attributes. The attributes name, position, soda and country are implicitly required to
be key, but gender is not (it does not satisfy the all-different property). There is only one solution
satisfying all nine clues of the French puzzle:

Name Gender Position Soda Country

claude man 6 tangelo haiti
jeanne woman 1 grapefruit ivory
kate woman 4 kiwi tahiti
liana woman 5 peach belgium
martin man 3 lemon quebec
robert man 2 blueberry martinique

3. SYNTAX AND SEMANTICS OF CONSTRAINT LINGO

The syntax of Constraint Lingo is line oriented. Every non-empty line of Constraint Lingo constitutes
a declaration or a constraint. For better readability, declarations usually precede constraints, but
Constraint Lingo only requires that every atom be declared before use. Comments are prefixed with
the # character.

The goal of a Constraint Lingo program P is to specify a tCSP �. Declarations of the program P

describe the schema of the problem � and impose all-different and all-used constraints. Constraints
of the program P describe all other constraints of the problem �. By specifying a tCSP, a Constraint
Lingo program P can be regarded as a representation of all tables in Sol(�).

To describe the set of tables that are solutions to a Constraint Lingo program P we proceed as
follows. We first specify the set of tables that is determined by B, the declaration part of P . We then
describe, for each constraint C in the rest of P , which of the tables specified by the B satisfy it.
Those tables that satisfy all constraints constitute solutions to P .

3.1. Declarations

Two different types of attributes (columns) can be declared in Constraint Lingo.

• CLASS classname: member1 member2 . . . memberk

This syntax declares a class attribute (column) with the name classname and the domain consisting of
elements member1, member2, . . . , memberk . Classes are columns in which every element is different.
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For the French puzzle, for example, we have

CLASS name: claude jeanne kate liana martin robert
CLASS soda: blueberry lemon peach tangelo kiwi grapefruit
CLASS visits: quebec tahiti haiti martinique belgium ivory

If the domain elements are all integers (our parser only allows non-negative integers) in a range from
first to last, we may specify the class by writing

CLASS classname: first .. last [circular]

In the French puzzle, we write

CLASS position: 1 .. 6 circular

The optional circular keyword indicates that the range is intended to be treated with modular
arithmetic so that last + 1 = first. We refer to classes all of whose members are numeric as numeric
classes; the others are list classes.

• PARTITION partitionname: member1 member2 . . . memberk

This syntax declares a partition attribute (column) with the name partitionname and the domain
consisting of elements member1, member2, . . . , memberk . Members of a partition attribute may occur
any number of times (even 0) in their column.

In the French puzzle, we write

PARTITION gender: men women

We require that all class and partition names be distinct. We also require at least one list class
(so we can be sure how many rows there are) and that the domains of all list-class attributes be of the
same cardinality. This requirement corresponds to the restriction we impose on tCSPs that at least one
attribute must be key. However, we often find it useful to let numeric classes include values that turn
out not to appear in the solution. We therefore let numeric classes have more values than other classes.

Each attribute constitutes a disjoint domain of elements. If we need the same element (such as a
number) in two attribute domains, we disambiguate the domains in the constraint part of the program
by qualifying the element: attributename.element.

Let B be the declarations of a Constraint Lingo program P . These declarations define a table schema,
say SB , which consists of all class and partition attributes. In addition, B imposes all-different and
all-used constraints by designating some attributes as list- and numeric-class attributes. Specifically,
B restricts the space of tables in Tab(SB) to those that satisfy the all-different constraint with respect
to class attributes and also the all-used constraint with respect to list-class attributes. Neither restriction
applies to partition attributes. We denote this set of tables, which constitutes the solution space,
as SS(B). We regard each table in this set as a model of declarations in B and view the set SS(B)

as providing the semantics for B.

3.2. Constraints

The schema defined by declarations B introduces identifiers (such as class names and domain
members) that are then used in the constraints found in the rest of the Constraint Lingo program.
We discuss this syntax now. For each constraint we introduce, we define its semantics in the terms of
tables in the set SS(B).
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3.2.1. Rownames

Constraints often concern properties of table columns and rows. To refer to columns we use their class
or partition names. To refer to a row we use a rowname. A rowname may be any element of a class
domain, which uniquely refers to one row because of the all-different constraint and the disjoint nature
of domain elements (ensured if necessary by qualifying them). In addition, we may introduce a variable
as a rowname:

• VAR variablename

Variables must be distinct from each other and from all domain elements to avoid ambiguity.
We now give the syntax and semantics of the constraints in Constraint Lingo given the set of

declarations B. When describing the semantics we assume for now that constraints do not involve
variables. We later lift this assumption.

3.2.2. REQUIRED and CONFLICT

• REQUIRED rowname1 rowname2 . . .

A table from SS(B) satisfies a REQUIRED constraint if the given rownames specify the same row, that
is, if they appear in the same row of the table.

We would encode a clue ‘The person traveling to Quebec drank blueberry soda’ as

REQUIRED quebec blueberry

• REQUIRED rowname1 rowname2 [OR | XOR | IFF] rowname3 rowname4

This embellished REQUIRED constraint is satisfied only by those tables from SS(B) in which
rowname1 and rowname2 specify the same row {or, xor, iff} rowname3 and rowname4 specify the
same row, depending on the connective used. This constraint gives the Constraint Lingo programmer a
limited amount of propositional logic. The effect of the AND connective is achieved by writing separate
constraints, so we do not include it in Constraint Lingo.

For the French puzzle, we encode part of the first clue as

REQUIRED quebec blueberry OR quebec lemon

• CONFLICT rowname1 . . . [partitionelement1 . . . ]

The CONFLICT constraint excludes those tables in SS(B) in which any two of the given rownames
specify the same row. If partitionelements are specified, the constraint also disallows tables in which
those partitionelements are found in any rows specified by the given rownames.

We partially encode the first French puzzle clue as

CONFLICT quebec 1

We could use a partition element, for example, to stipulate that neither the person drinking kiwi soda
nor the person going to Belgium is a man:

CONFLICT kiwi belgium men

We find that we use REQUIRED and CONFLICT most heavily. We now turn to less-frequently used
constraint types.
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3.2.3. Other constraint types

• AGREE partitionelement: rowname1 . . .

The AGREE constraint is satisfied by those tables in SS(B) in which the rows specified by the given
rownames have the given partitionelement in the column associated with partitionelement.

We use AGREE to indicate the genders of the six people:

AGREE men: claude martin robert
AGREE women: jeanne kate liana

We also use AGREE along with VAR and CONFLICT for clue 3:

VAR brother
CONFLICT brother claude
AGREE men: haiti 3 brother
CONFLICT haiti 3 brother

• DIFFER partitionname: rowname1 rowname2 . . .

This constraint allows only those tables in SS(B) in which the rows specified by the given rownames
have different elements in the column associated with partitionname.

For example, we could have a clue stating that the person visiting the Ivory Coast and the one
drinking blueberry soda are of different genders; we would encode that clue as

DIFFER gender: ivory blueberry

• SAME partitionname: rowname1 rowname2 . . .

This constraint allows only those tables in SS(B) in which the rows specified by the given rownames
have the same elements in the column associated with partitionname.

To represent, for instance, that the person visiting the Ivory Coast has the same gender as the one
drinking kiwi soda, we would write

SAME gender: ivory kiwi

• USED element

This constraint disallows all those tables in SS(B) in which the given element does not appear in its
associated column. We employ this constraint to force a particular partition element or numeric-class
element to be used in a solution.

The French puzzle tells us who are the men and who are the women, but if it only told us that there
is at least one man, we would encode that clue as

USED men

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1481–1504
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• USED n <= partitionelement <= m

In this constraint, n and m must be non-negative integers. Either the n <= or the <= m or both may
be absent. The default value for n is 1, and the default value of m is ∞. This constraint allows only
those tables in SS(B) where the partitionelement appears (in its associated column) a number of times
k such that n ≤ k ≤ m.

To encode a clue telling us there are at least two but not more than three women, we would write

USED 2 <= women <= 3

• MATCH rowname1 . . . rownamek, rowname′
1 . . . rowname′

k

This constraint allows only those tables in SS(B) in which (1) all the rows specified by the first set of
rownames are distinct, (2) all the rows specified by the second set of rownames are distinct, (3) those
two sets of rows are identical.

We encode the fourth clue by a combination of MATCH and VAR:

VAR unlemon
MATCH 2 4 6, kate claude unlemon
CONFLICT unlemon lemon

• BEFORE classname: rowname1 rowname2

The given classname must be a non-circular numeric class. Let v1 and v2 be the elements in the
column specified by classname and in the rows specified by rowname1 and rowname2, respectively.
The constraint allows only those tables in SS(B) in which v1 < v2.

We cannot use BEFORE in the French puzzle, because a circular numeric class implements a simple
cycle (the largest element is followed by the least one) and hence does not inherit the order from the
underlying set of numbers. Ignoring circularity, we could indicate that Jeanne is sitting in an earlier-
numbered position than the person going to Haiti by saying

BEFORE position: jeanne haiti

• OFFSET [ + | ∗ | +- | > | ! | !+- ] n classname: rowname1 rowname2

The given classname must again be a non-circular numeric class. Let v1 and v2 be the elements in the
column specified by classname and in the rows specified by rowname1 and rowname2, respectively.
The six variants of this constraint allow only such tables in SS(B) where v1 + n = v2, v1 ∗ n = v2,
v1 ± n = v2, v1 + n > v2, v1 + n 
= v2, or v1 ± n 
= v2, respectively.

Again, OFFSET makes no sense in the French puzzle because position is a circular numeric
class, but ignoring circularity, we could say that Kate is sitting in a position twice as large as Robert’s
by saying

OFFSET ∗2 position: robert kate
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3.2.4. Variables

We have used variables intuitively in some of our examples above; we now extend the description
of Constraint Lingo semantics when variables appear in constraints. Let P be a Constraint Lingo
program with variables x1, . . . , xk . We say that a table T , of the type specified by the declarations
of P , satisfies P if there is a list class C and elements v1, . . . , vk (not necessarily distinct) from the
domain of this class such that the table T satisfies the Constraint Lingo program obtained by removing
all variable declaration statements from P and by instantiating in P every occurrence of xi with vi .
In other words, we can associate each variable with some row, represented by a value in a list class.
In the French puzzle, the variables unlemon and brother used in the examples above both turn
out to be associated with Robert; we could call that row robert, blueberry, or martinique,
depending what list class we wish to use as our class C.

3.2.5. French puzzle

A complete translation of the French puzzle clues is as follows.

#1
REQUIRED quebec blueberry OR quebec lemon
CONFLICT quebec 1

#2
OFFSET !+-1 position: robert kate
OFFSET 3 position: peach

#3
VAR brother
AGREE men: haiti 3 brother
CONFLICT brother claude

#4
VAR unlemon
MATCH 2 4 6, kate claude unlemon
CONFLICT unlemon lemon

3.2.6. Solutions

Let P be a Constraint Lingo program and let B denote all declarations in P . A table T ∈ SS(B)

is a solution to P if it satisfies all constraints in P . We denote the set of all solution tables for a
Constraint Lingo program P by Sol(P ). A Constraint Lingo program encodes a tCSP problem � if
Sol(P ) = Sol(�).

Let P be a finite Constraint Lingo program with the declaration component B. One can show, based
on our discussion above, that given a table T ∈ SS(B), checking whether T satisfies all constraints
in P can be accomplished in time polynomial in the size of P and T . However, the tables in the set
SS(B) have dimensions that are polynomial in the size of B (and so, in the size of P ). It follows that
deciding whether a finite Constraint Lingo program has solutions is in the class NP. In the next section,
we show a polynomial reduction of the graph three-colorability problem to that of deciding whether
a Constraint Lingo program has solutions. The problem to decide whether a finite Constraint Lingo
program has solutions is therefore NP-complete.
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4. APPLYING CONSTRAINT LINGO TO GRAPH PROBLEMS

Despite a restricted repertoire of operators aimed initially at solving logic problems, Constraint Lingo
is sufficient to model such important combinatorial problems as independent sets, graph coloring, and
finding Hamiltonian cycles.

An independent set of size k in a graph G = 〈V,E〉 is a subset of V of size k no two of whose
elements share an edge in E. Given a positive integer k, the independent-set problem of size k in
〈V,E〉 is to find an independent set of size at least k in 〈V,E〉. We represent the problem in the
following Constraint Lingo program, setting, for concreteness, v = |V | = 100 and k = 30, with edges
E = {(2, 5), (54, 97)}. There are two attributes: a class vertex, to represent vertices of the graph
(line 1 below) and a partition status, to indicate the membership of each vertex in an independent
set (line 2). We employ USED to constrain the independent set to have at least k elements (line 3).
The REQUIRED constraints in lines 4 and 5 enforce the independent-set constraint.

1 CLASS vertex: 1..100 # v = 100
2 PARTITION status: in out
3 USED 30 <= in # k = 30
4 REQUIRED 2 out OR 5 out # edge (2,5): at least one vertex is out
5 REQUIRED 54 out OR 97 out # edge (54,97): at least one vertex is out

The k-graph-coloring problem is to find an assignment of k colors to vertices such that vertices
sharing an edge are assigned different colors. We use two attributes, vertex and color, to define
the set of vertices and the colors to use. The following Constraint Lingo program encodes the three-
coloring problem for the same graph as before. We enforce the coloring condition by means of DIFFER
constraints (lines 3 and 4). We use qualified notation in lines 3 and 4 to disambiguate vertex.2
from color.2. The other numbers in the program are already unambiguous, but qualified notation
improves clarity.

1 CLASS vertex: 1..100
2 PARTITION color: 1..3 # looking for 3-coloring
3 DIFFER color: vertex.2 vertex.5 # edge (2,5)
4 DIFFER color: vertex.54 vertex.97 # edge (54,97)

The Hamiltonian-cycle problem is to enumerate, without repetition, all the vertices of an undirected
graph in an order such that adjacent vertices in the list share an edge, as do the first and last vertices in
the list. We use two numeric attributes: vertex and index. We enforce the Hamiltonicity condition
using the construct OFFSET: for every edge not in the graph, the positions of its end vertices in
the enumeration must not be consecutive integers (with the last and the first vertices also regarded
as consecutive). For a specific example, let us consider a graph missing only two edges: (2, 5) and
(54, 97). The corresponding Constraint Lingo program follows.

1 CLASS vertex: 1..100
2 CLASS index: 1..100 circular
3 OFFSET !+-1 index: vertex.2 vertex.5 # no edge (2,5)
4 OFFSET !+-1 index: vertex.54 vertex.97 # no edge (54,97)

Other combinatorial problems can often be posed in a similar fashion in Constraint Lingo.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1481–1504



CONSTRAINT LINGO: TOWARDS HIGH-LEVEL CONSTRAINT PROGRAMMING 1493

5. TRANSLATION OF CONSTRAINT LINGO INTO SMODELS

We demonstrate compiling Constraint Lingo programs into the formalism of smodels [7], that is, we
construct an smodels program Tr(P ). All our code for translating Constraint Lingo, along with over
150 Constraint Lingo programs, are available to the interested reader [17].

Smodels is an extension of logic programming with negation with the semantics of stable models.
We assume that the reader is familiar both with the syntax of smodels and with its semantics.

Following our earlier discussion, solutions to a Constraint Lingo program P are tables in the schema
defined by P . The set of all tables determined by the declaration part B of P is denoted by SS(B).
To capture the semantics of P , we need to represent tables from SS(P ).

Tables with n columns correspond naturally to n-ary predicates, so a straightforward approach is to
use an n-ary predicate symbol, say sol, and to design Tr(P ) so that extensions of sol in stable models
of Tr(P ) correspond precisely to tables in SS(P ).

Although straightforward, this approach has a disadvantage. The arity of sol is the number of
attributes of �, which can be very high. Smodels programs involving predicates of high arity lead
to ground programs whose size makes processing impractical. Happily, n-ary tables can be represented
by collections of their two-column subtables if the tables have at least one key attribute. Tables specified
by Constraint Lingo programs fall into this category. We take advantage of this representation to design
the translation Tr(P ). We now describe this translation; for reasons of space, we omit formal statements
of its key properties and outlines of correctness proofs.

Let P be a Constraint Lingo program with declarations B. We assume that B specifies a schema
S = (a1, . . . , an) where, for some 1 ≤ � ≤ k ≤ n, a1, . . . , a� are list-class attributes, a�+1, . . . , ak are
numeric-class attributes, and the remaining ak+1, . . . , an are partition attributes. In particular, a1 is a
list-class attribute.

We now specify the translation Tr(P ). The language of Tr(P ) is given by (1) the constants forming
the domains of attributes of the schema S, (2) the predicate symbols domai , 1 ≤ i ≤ n, and (3) the
predicate symbols crossai ,aj , 1 ≤ i ≤ k and i < j ≤ n. The predicate symbols domai represent
attribute domains in Tr(P ), and the predicate symbols crossai ,aj represent two-column subtables of
the solution table (which together determine the solution table). In the case of the French puzzle, for
example, the domain predicates include name(·) and soda(·); the cross-class predicates include
name soda(·,·) and visits position(·,·).

(1) For every class and partition attribute a ∈ P we introduce the corresponding predicate doma and
include in Tr(P ) facts doma(v) for every element v from the domain of a as described by P .
For example, we include the fact name(claude).

(2) For every two list-class attributes ai , aj , 1 ≤ i < j ≤ �, we include in the program Tr(P ) the
following rules:

1{crossai ,aj (Vi, Vj ) : domaj (Vj )}1 :– domai (Vi)

1{crossai ,aj (Vi, Vj ) : domai (Vi)}1 :– domaj (Vj )

Informally, the first of these two rules states that for every element vi of the domain of ai there
is exactly one element vj from the domain of aj such that crossai ,aj (vi , vj ) holds (belongs to a
stable model). The second rule states the symmetric constraint.
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For instance, we have

1 {visits_position(Visits,X):visits(Visits)} 1 :- position(X).

This rule means that given a position (such as 2), there is at least and at most one location (it turns
out to be Martinique) such that the person in that position (it turns out to be Robert) plans to visit
that location.

(3) For every list-class attribute ai , 1 ≤ i ≤ �, and numeric-class attribute aj , � + 1 ≤ j ≤ k, we
include in the program Tr(P ) the following rules:

1{crossai ,aj (Vi, Vj ) : domaj (Vj )}1 :– domai (Vi)

0{crossai ,aj (Vi, Vj ) : domai (Vi)}1 :– domaj (Vj )

The first of these two rules states that for every element vi of the domain of ai there is exactly
one element vj from the domain of aj such that crossai ,aj (vi , vj ) holds (belongs to a stable
model). The second rule states that for every element vj of the domain of aj there is at most one
element vi from the domain of ai such that crossai ,aj (vi, vj ) holds (belongs to a stable model).
This requirement is weaker then the previous one, a result of the fact that aj is a numeric-class
attribute. We do not require that every element of a numeric-class domain have a match in the
domain of ai in crossai ,aj , but we still need to require that no element has more than one match.

(4) For every two numeric-class attributes ai , aj , � + 1 ≤ i < j ≤ k we include in the program
Tr(P ) the following rules:

0{crossai ,aj (Vi, Vj ) : domaj (Vj )}1 :– domai (Vi)

0{crossai ,aj (Vi, Vj ) : domai (Vi)}1 :– domaj (Vj )

Informally, these clauses enforce the all-different constraint for ai and aj in the two-column
table represented by crossai ,aj (the only constraint required of numeric-class attributes).

(5) For every list-class attribute a and every partition attribute p, we need to guarantee that atoms
of the form crossa,p(va, vp) define a function (not necessarily a bijection) that maps elements of
the domain of a to elements from the domain of p. The following rule embodies this guarantee.

1{crossa,p(A, P ) : domp(P )}1 :– doma(A)

(6) For every numeric-class attribute a and every partition attribute p, the atoms crossa,p(va, vp)

need only define a partial function. We include in Tr(P ) the clause

0{crossa,p(A, P ) : domp(P )}1 :– doma(A)

(7) Not every collection of two-column tables can be consistently combined into a single table.
In order to achieve consistency, we enforce a transitivity property. For every three class attributes
ah, ai and aj , 1 ≤ h < i < j ≤ k, we include in Tr(P ) the rules

crossah,ai (Vh, Vi) :– crossah,aj (Vh, Vj ), crossai ,aj (Vi, Vj ),

domah(Vh), domaj (Vj ), domaj (Vj )

crossah,aj (Vj , Vj ) :– crossah,ai (Vh, Vi), crossai ,aj (Vi, Vj ),

domah(Vh), domaj (Vj ), domaj (Vj )

crossai ,aj (Vh, Vj ) :– crossah,ai (Vh, Vi), crossah,aj (Vh, Vj ),

domah(Vh), domaj (Vj ), domaj (Vj )
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For instance, we include the rule

name_visits(Name,Visits) :-
name(Name), visits(Visits), position(Position),
name_position(Name,Position),
position_visits(Position,Visits).

This rule says that if a person (like Robert) is in some position (like 2), and that position is
associated with some planned destination to visit (like Martinique), then that person plans to
visit that destination.
Partitions require a more permissive version of the transitivity property. For every two classes
ai , ai , and every partition attribute p, we include in Tr(P ) only two rules:

crossai ,p(Vi, Vp) :– crossai ,aj (Vi, Vj ), crossaj ,p(Vj , Vp)

domai (Vi), domaj (Vj ), domp(Vp)

crossaj ,p(Vj , Vp) :– crossai ,aj (Vi, Vj ), crossai ,p(Vi, Vp)

domai (Vi), domaj (Vj ), domp(Vp)

Given these definitions and constraints, the attribute and cross-class predicates appearing in
a stable model of Tr(P ) uniquely determine a table that satisfies the requirements of the
declarations given by the Constraint Lingo program P . Conversely, each such table determines
a stable model of the program Tr(P ).
The remaining part of the Constraint Lingo program consists of constraints specified by
keywords such as REQUIRED and CONFLICT. To continue the description of the translation,
we specify how these individual constraints are represented in the syntax of smodels.

(8) CONFLICT ma mb, where ma mb are elements of the domains of classes a and b, respectively.
The role of this constraint in Constraint Lingo is to eliminate tables that contain rows with
elements ma and mb in their corresponding columns. For each such constraint, we add the
following rule to Tr(P ):

:– crossa,b(ma,mb)

In our case, we have

:- position_visits(1,quebec) .

This rule means that no solution (the left-hand side is empty) may place 1 and quebec in the
same row.
We extend this translation when the list of conflicting elements is longer than two elements; each
pair of elements on the list gives rise to a constraint on the relevant cross-class predicate.

(9) REQUIRED ma mb. For each such constraint, we add the following rule to Tr(P ):

crossa,b(ma,mb)

For instance, REQUIRED quebec blueberry would be translated as

soda_visits(blueberry,quebec) .

This fact indicates that any solution must place blueberry and quebec in the same row.
Again, we extend this translation when more than two members are listed.
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(10) VAR x. One list class, say a, is selected arbitrarily. The variable x is meant to represent exactly
one (unspecified as yet) element of that class. We introduce a new predicate variablex that holds
just for that one element and build a rule that enforces that constraint:

1{variablex(X) : doma(X)}1
We represent the unlemon variable by using name as the arbitrarily chosen class and translating
to

1 {variable_unlemon(X):name(X)} 1 .

(11) USED n <= partitionelement <= m. One list class, say a, is selected arbitrarily. There must be
between n and m elements ma in the domain of class a for which crossa,p(ma, partitionelement)
holds, where p is the partition to which partitionelement belongs. We build the following rule
to enforce this constraint:

n{crossa,p(A, partitionelement) : doma(A)}m
For instance, we would translate USED 2 <= women <= 3 as

2 {gender_visits(women,Visits) : visits(Visits)} 3 .

(12) Similar translations are easy to design for all the remaining constructs of Constraint Lingo.
For the sake of brevity, we do not discuss them here. The interested reader may acquire our
compiler [17] and inspect its output.
We believe our translation is correct: let P be a Constraint Lingo program. For every table
T ∈ Sol(P ), there is a stable model M of Tr(P ) such that M represents T . Conversely, for
every stable model of Tr(P ) there is a table T ∈ Sol(P ) such that M represents T .

6. OPTIMIZING THE SMODELS TRANSLATION

As compiler writers have known for years, there are many different correct translations for a given
code fragment. High-quality compilers attempt to generate code that is especially efficient (in space
and/or in time). Code optimization is also possible for Constraint Lingo. As we developed our
compiler, we tried various alternative translations, settling on ones that give the fastest execution under
smodels. In addition to minor adjustments to the translated code, we have also experimented with two
fundamentally different approaches to Tr(P ).

We call the first new approach the prime-class representation. We arbitrarily choose the first list
class as ‘prime’. We generate cross-class predicates in Tr(P ) only for pairs one of whose members is
the prime class. We no longer need rules for transitivity, reducing the number of rules in the theory.
However, constraints between elements of non-prime (‘oblique’) attributes generate more complex
rules, because they must be related via the prime class.

In the French puzzle, if name is prime, we translate CONFLICT quebec 1 to

:- position_name(1, N), visits_name(quebec, N), name(N) .
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In other words, instead of using the atom position visits(1,quebec) (which is
no longer available) we represent this constraint by joining position name(1, N) and
visits name(quebec, N). We can directly specify constraints involving members of the prime
class and members of oblique classes. Our compiler uses a 3 × 3 case statement to cover all cases
where the two members participating in a constraint belong to the prime class, an oblique class, or are
variables.

Instead of choosing the prime class arbitrarily, we have implemented a variant called the special-
handle translation in which the prime class is chosen after a first pass through the Constraint Lingo
program to derive a weighted value for each class based on how often it is referenced and in what
ways. This translation often generates the fastest code. We have tried other representations as well, but
they do not behave as well as the ones we have introduced.

We present some comparisons of these optimizations with our original code in Section 8.

7. OTHER LOGIC ENGINES

We have described the smodels translation in some detail. Constraint Lingo is not specific, however,
to smodels; we also have translators that convert programs into other logic formalisms. Each logic
formalism requires that the translator writer study its syntax and semantics in order to generate a
quality translation. This effort is often quite extensive. We claim that the person trying to solve a tCSP
should not be required to expend this effort; it is all done once and is embedded in the translators.

We now touch on two of the logic engines beside smodels that we have used: disjunctive-logic
programming and constraint-logic programming. Due to space limitations, we do not discuss a third
logic engine: the logic of propositional schemata and its solver aspps [10].

7.1. Translation into disjunctive logic programming

The dlv logic engine [19] accepts much the same syntax as smodels, so our translation into dlv looks
similar for most of Constraint Lingo. However, dlv does not have cardinality constraints, so the rules
that guarantee uniqueness of cross-class predicate solutions are more complex than the one shown in
Section 5 for smodels. For instance, we would translate USED 3 <= men in the French puzzle as:

counter(0) .
counter(1) .
counter(2) .
counter(3) .
counter(4) .
counter(5) .
atleastmen(none, 0) .
atleastmen(claude, N) :- atleastmen(none, N), N < 1, counter(N) .
atleastmen(claude, M) :- atleastmen(none, N), M = N+1,

gender_person(men,claude), N < 1, counter(N) .
atleastmen(jeanne, N) :- atleastmen(claude, N), N < 2, counter(N) .
atleastmen(jeanne, M) :- atleastmen(claude, N), M = N+1,

gender_person(men,jeanne), N < 2, counter(N) .
atleastmen(kate, N) :- atleastmen(jeanne, N), N < 3, counter(N) .
atleastmen(kate, M) :- atleastmen(jeanne, N), M = N+1,
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gender_person(men,kate), N < 3, counter(N) .
atleastmen(liana, N) :- atleastmen(kate, N), N < 4, counter(N) .
atleastmen(liana, M) :- atleastmen(kate, N), M = N+1,

gender_person(men,liana), N < 4, counter(N) .
atleastmen(martin, N) :- atleastmen(liana, N), N < 5, counter(N) .
atleastmen(martin, M) :- atleastmen(liana, N), M = N+1,

gender_person(men,martin), N < 5, counter(N) .
atleastmen(robert, N) :- atleastmen(martin, N), N < 6, counter(N) .
atleastmen(robert, M) :- atleastmen(martin, N), M = N+1,

gender_person(men,robert), N < 6, counter(N) .
:- not atleastmen(robert, 3) .

We have sorted the people; Robert turns out to be the last one. So the predicate
atleastmen(robert,N) indicates that at least N of the people were men. The last rule then
constrains this count.

Existence is assured by disjunctive rules, such as

position_visits(1, quebec) v position_visits(1, tahiti) v
position_visits(1, haiti) v position_visits(1, martinique) v
position_visits(1, belgium) v position_visits(1, ivory).

Disjunctions also assist in generating good code for the MATCH constraint.
The prime-class and special-handle compile-time optimizations of Section 6 also apply to disjunctive

logic programming. Further details of the translation can be found in our compiler [17].

7.2. Translation into constraint-logic programming

Our approach to solving tabular CSP problems is different from the classical approach in the logic
community, which is to directly represent such problems as constraints in constraint-programming
languages. The logic puzzles solved by Doug Edmunds [20], for example, are all hand coded.
Our experience, however, is that it is far easier to program such problems in Constraint Lingo and
then translate them into whatever form is appropriate for the computational engine. In keeping with
that approach, we have built a translator from Constraint Lingo to ECLiPSe. Complete details can be
found in our compiler [17].

The resulting ECLiPSe program is a single rule with many clauses on its right-hand side.
We represent each row of the result table by an integer index ranging from 1 to the number of rows.
In the French puzzle, the classes name, visits, and position are represented as multiple clauses
of a single rule, as follows:

Name = [Claude, Jeanne, Kate, Liana, Martin, Robert],
Name :: 1..6,
alldifferent(Name),
Visits = [Quebec, Tahiti, Haiti, Martinique, Belgium, Ivory],
Visits :: 1..6,
alldifferent(Visits),
Position = [Position1, Position2, Position3, Position4, Position5,

Position6],
Position :: 1..6,
alldifferent(Position),
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If there is no numeric class, we break symmetry by selecting one class (such as name) as prime and
assigning each member to a particular row:

Claude = 1, Jeanne = 2, Kate = 3, Liana = 4, Martin = 5, Robert = 6,

If one is available, we select a numeric class as prime and use its elements as row numbers.
(A numeric class is only available if all its elements are used.) In the case of the French puzzle,
position, which is numeric, is a better prime class than name, which is not. Order constraints
involving a numeric class are much more efficient to represent if that class is prime.

Complex Constraint Lingo constraints such as

REQUIRED quebec blueberry OR quebec lemon

are represented simply as

Quebec #= Blueberry #\/ Quebec #= Lemon

Because position is the prime class,

CONFLICT quebec 1

is represented as

1 #\= Quebec

If we select name as the prime class instead, then this constraint becomes

Position1 #\= Quebec

Ordering relations involving a numeric prime class are quite easy. For instance,

OFFSET !+-1 position: robert kate

becomes

Robert + 1 #\= Kate #/\ Robert - 1 #\= Kate #/\
Robert + 1 - 6 #\= Kate #/\ Robert - 1 + 6 #\= Kate

If the ordering relation is with respect to an oblique class, the code is clumsier and lengthier, including
parts like this:

(Robert #= Position1 #/\ Kate #= Position1) #\/
(Robert #= Position1 #/\ Kate #= Position3) #\/
(Robert #= Position1 #/\ Kate #= Position4) #\/
(Robert #= Position1 #/\ Kate #= Position5) #\/
(Robert #= Position2 #/\ Kate #= Position2) #\/
(Robert #= Position2 #/\ Kate #= Position4) #\/
(Robert #= Position2 #/\ Kate #= Position5) #\/
(Robert #= Position2 #/\ Kate #= Position6) #\/ ...
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Partitions are clumsy to represent. For gender, we introduce the following:

Gender = [Gender1, Gender2, Gender3, Gender4, Gender5, Gender6],
Gender :: [’Men’, ’Women’]

Then we translate constraints such as

AGREE men: claude

into

(Claude #= 1 #/\ Gender1 #= ’Men’ #\/
Claude #= 2 #/\ Gender2 #= ’Men’ #\/
Claude #= 3 #/\ Gender3 #= ’Men’ #\/
Claude #= 4 #/\ Gender4 #= ’Men’ #\/
Claude #= 5 #/\ Gender5 #= ’Men’ #\/
Claude #= 6 #/\ Gender6 #= ’Men’)

The efficiency of ECLiPSe is quite sensitive to the heuristics explicitly indicated in the translated
program; we have found that the best all-around choice is to use the fd global library and to specify
the ‘occurrence/indomain/complete’ heuristic combination. It is likely that hand-tuning the programs
would make them faster.

8. EFFICIENCY TESTS

We have experimented with the following logic engines and representations: smodels‖ (cross-class,
prime-class, special-handle), dlv∗∗ (cross-class, special-handle), ECLiPSe††, and aspps (cross-class,
special-handle). Our tests include (1) about 150 puzzles from Dell Logic Puzzles and Randall L.
Whipkey [21] encoded in Constraint Lingo, (2) the independent-set graph problem on random graphs
with 52 vertices and 100 edges, looking for 25 independent vertices, and (3) the three-coloring problem
on large random graphs.

All our tests ignore the time to compile Constraint Lingo programs (the compiler takes negligible
time) and the grounding time for the logic engine (usually also negligible).

Our first conclusion is that the special-handle translation is usually far better than the cross-class
translation. The following shows a few extreme examples of this trend; times are in seconds:

Puzzle Logic engine Cross-class Special-handle

comedian aspps 33 0.1
foodcourt dlv 117 0.4
employee smodels 38 0.4

Choosing the right translation is a matter of optimization. Even an expert logic programmer might
create cross-class programs, because they often lead to shorter rules. Automatically performing this
optimization leads to far more efficient code. We continue to find new optimizations.

‖lparse version 1.0.11; smodels version 2.27.
∗∗Version BEN/Apr 18 2002. This version of dlv does not include cardinality constraints, unlike smodels and aspps.
††Version 5.4, build 41.
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Our second conclusion is that no one logic engine consistently outperforms the others, although
aspps tends to be slightly faster than the others, and ECLiPSe tends to be slightly slower, failing
to finish in a reasonable amount of time on a few puzzles. The following table compares the logic
engines on our hardest puzzles; in all cases we show times for the special-handle translation, except for
ECLiPSe, where the translation is completely different. We mark the ‘winner’ in each case with a box;
differences in time less than 0.05 s are most likely insignificant. We make no claim that our translations
are optimal. These tests are not meant to demonstrate superiority of one logic engine over another, only
to show the feasibility of our approach.

Puzzle aspps smodels dlv ECLiPSe

card 0.00 0.01 0.01 0.02

comedian 0.05 0.12 2.29 0.78

employee 0.24 0.44 3.12 —

flight 0.01 0.00 0.01 0.04

foodcourt 0.17 0.54 0.41 3.13

french 0.00 0.03 0.08 0.13

jazz 0.00 0.04 0.03 0.02

molly 0.03 0.04 0.15 0.33

post 0.00 0.02 0.04 0.51

ridge 11.56 8.14 0.76 —

sevendates 0.03 0.05 0.05 0.04

The independent-set problem is represented, as shown in Section 4, by a REQUIRED constraint
for each edge and a single USED constraint. Both aspps and smodels provide a notation that allows
us to translate USED in P into a single cardinality constraint in Tr(P ). These logic engines enforce
cardinality constraints during the search process, which leads to a very efficient search. In contrast,
neither dlv nor ECLiPSe provides cardinality constraints, so we program USED by explicitly counting
how many times the desired member is used and then constraining that total. We can count directly
in ECLiPSe and indirectly by extra rules in dlv. In both cases, this generate-and-check strategy
(as opposed to a built-in construct) leads to slower searches.

The following table shows the number of seconds for several logic engines to compute the first model
of a theory representing the independent-set problem looking for I independent vertices on a random
graph with a V vertices and E edges. Again, we ignore compilation and grounding time.

V E I aspps smodels dlv ECLiPSe

100 200 40 0.01 1.08 1.61 60
100 200 44 18.99 25.19 148.6 394

We continue to search for translations that perform better than our current ones. Our experience
reinforces our belief that efficient solution of constraint-satisfaction problems depends on a carefully
designed compilation; even experienced logic programmers are unlikely to achieve efficient programs
without enormous effort.
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9. DISCUSSION AND CONCLUSIONS

Logic programming was introduced with a promise of dramatically changing the way we program.
Logic programming is declarative. The programmer can solve a problem by encoding its specifications
in some logic formalism and then invoking automated reasoning techniques for that logic to produce a
solution. Control details are no longer the programmer’s responsibility.

However, despite attractive features stemming from its declarative nature, logic programming has
not yet gained a widespread acceptance in the programming world. This disappointing result seems to
hold both for logic-programming implementations based on proof-finding techniques (Prolog and its
extensions that handle constraint programming, such as ECLiPSe) and to newly emerging approaches
based on satisfiability testing and model computation (answer-set programming [5,6]).

This state of affairs is due to the fact that logic-programming formalisms are too low level to be
used without great effort and require that programmers have a significant logic background. In order to
be successful, a declarative programming language should be aligned with language constructs often
used when problems are described in free text. We suggest that programs in such a high-level language
should be automatically compiled to programs in low-level languages such as current implementations
of logic programming (Prolog, ECLiPSe, smodels, and so forth) and then solved by the corresponding
solvers.

Our main contribution is a high-level declarative language, Constraint Lingo, designed to capture
tabular constraint-satisfaction problems. Constraint Lingo is simple. It uses two constructs, CLASS
and PARTITION, to define the framework in which a given problem is described, and 10 constructs to
describe constraints, all of them well attuned to free-text descriptions of constraint problems.

We do not claim that Constraint Lingo is the best possible language for this purpose. Its line-oriented
commands, each starting with a capitalized keyword, may appear to be a throwback to languages like
Basic. Constraint Lingo has a limited repertoire of connectives and arithmetic operations; it has no
general-purpose arithmetic or Boolean expressions.

Despite these limitations, Constraint Lingo is an expressive language in which one can describe a
diverse collection of tabular constraint-satisfaction problems. We have used it to represent over 150
logic puzzles ranging in difficulty from one to five stars and involving a large variety of constraints,
as well as several graph problems over randomly generated graphs of various sizes. Thanks to its
simplicity and affinity to free-text constraint specifications, programming in Constraint Lingo is easy
and frees the programmer from many tedious and error-prone tasks.

Constraint Lingo provides a computational as well as a descriptive facility. We compile Constraint
Lingo programs into executable code in a variety of low-level logic programming languages.

Evidence shows that our approach is practical. Programs we obtain by automatically compiling
Constraint Lingo programs closely resemble those that programmers have written directly.
Our computational results are encouraging and show that programs produced by compiling Constraint
Lingo programs perform well when processed by various computational engines.

We continue to evolve Constraint Lingo and its associated tools. Recent developments include the
following, all available in the most recent release of the software [17].

• Other constraints. New syntax allows mappings between rows; these mappings can be declared
to be non-reflexive, symmetric, asymmetric, and/or onto. This facility lets us represent some
complex constraints, such as ‘Everyone has a hero in the room; Jeanne’s hero is Kate, but
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Kate’s hero is not Jeanne’. Two maps can be declared to differ on every row, so we can indicate
constraints such as ‘Nobody’s hero is his or her tennis partner’. We also have introduced syntax to
indicate that the values of two partitions taken together act as a key, so we can indicate constraints
such as ‘although every floor has several rooms and every wing has several rooms, each room
has a unique combination of floor and wing’.

• Problem-construction tools. We have built a Tcl/Tk [22] front end to our Constraint Lingo
package that allows us to build problems by (1) constructing the desired solution, (2) introducing
constraints, (3) ensuring that the constraints so far are not contradictory (leading to no solutions)
and are consistent with the desired solution, (4) identifying undesired solution components,
(5) identifying superfluous constraints. We have used these tools to build extremely difficult
puzzles, perhaps beyond human ability to solve.

• Explanations. We have instrumented the grounder and solver of aspps to generate a log file that
we then convert into a set of steps that a human can follow to solve the problem. We have
introduced new Constraint Lingo syntax that allows the programmer to specify how cross-
class predicates are to be expressed in English. An explanation of the French puzzle includes
deriving a conflict between martinique and 6, and the English expression is ‘to be consistent
[explaining how this result follows from the previous results], the person sitting in seat 6 doesn’t
plan to visit Martinique [an English clause]’.

We are considering other enhancements as well. The current support for variables is limited and
might be extended to support universal quantification. Our implementation does not support data-
input operations. It provides only restricted support for logical and arithmetic operations. We need
better support for arithmetic if Constraint Lingo is to be applicable in modeling and solving real-life
operations-research problems. However, as we contemplate extensions to Constraint Lingo, we want
to be careful to preserve its simplicity, which, we believe, is its main strength.

A similar approach, finding helpful higher-level abstractions, might well be helpful in other
structured domains, such as planning and scheduling. We have begun to look at both.
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