
CS395T, Spring 2011

Program Completion

The definitions below are based on [Clark, 1978] and [Lloyd and Topor, 1984]. We
begin with a finite signature σ (in the sense of first-order logic) that has no function
constants of arity > 0.

A rule is a first-order formula of σ that has the form

F → P (t), (1)

where F is a formula, P a predicate constant, and t a tuple of terms. We will usually
write (1) as

P (t)← F

and call P (t) the head of the rule, and F its body. We will identify an atomic
formula P (t) with the rule P (t)← >.

A logic program is a finite set of rules.
The completion formula for an n-ary predicate constant P relative to a logic

program Π is the sentence obtained as follows:

(i) choose n variables x1, . . . , xn that are pairwise distinct and do not occur in Π;

(ii) for each rule
P (t1, . . . , tn)← F

of Π containing P in the head, form the rule

P (x1, . . . , xn)← F ∧ x1 = t1 ∧ · · · ∧ xn = tn;

(iii) for each of the rules
P (x)← F

obtained on the previous step, make the list y of all variables that occur in its
body F but do not occur in its head P (x), and replace the body F of the rule
with ∃yF ;

(iv) take all rules
P (x)← Fi (i = 1, . . . , k)

obtained on the previous step, and form the sentence

∀x(P (x)↔ F1 ∨ · · · ∨ Fk).

1



The completion of a logic program Π is the set consisting of the completion
sentences for all predicate constants of σ relative to Π and the formulas

ci 6= cj (1 ≤ i < j ≤ m),

where c1, . . . , cm are the object constants of σ. (These formulas are said to express
the unique name assumption.)

Problem 13. (a) Form the completion of the program consisting of the rules

P (a), Q(b). (2)

(b) Show that the formulas ¬P (b), ¬Q(a) are not entailed by the rules of this
program, but are entailed by its completion.

Problem 14. (a) Form the completion of the program consisting of the rules

R(x)← P (x),
R(x)← Q(x)

(3)

and simplify it as much as possible. (b) Do the same for the program consisting of
rules (2) and (3).

Problem 15. For each of the given logic programs, find all models of its completion:

(a) P ← ¬Q;

(b) P ← ¬Q, Q← ¬R;

(c) P ← ¬Q, Q← ¬P .

References

[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[Lloyd and Topor, 1984] John Lloyd and Rodney Topor. Making Prolog more
expressive. Journal of Logic Programming, 3:225–240, 1984.

2


