
Developing a Delarative Rule Language forAppliations in Produt Con�gurationTimo Soininen1 and Ilkka Niemel�a21 Helsinki University of Tehnology, TAI Researh Center and Lab. of InformationProessing Siene, P.O.Box 9555, FIN-02015 HUT, FinlandTimo.Soininen�hut.fi2 Helsinki University of Tehnology, Dept. of Computer Siene and Eng.,Laboratory for Theoretial Computer Siene,P.O.Box 5400, FIN-02015 HUT, FinlandIlkka.Niemela�hut.fi

 Springer-Verlag. To appear in the Proeedings of the First InternationalWorkshop on Pratial Aspets of Delarative Languages (PADL'99). Jan 18{19,1999, San Antonio, Texas. Leture Notes in Computer Siene, Springer-Verlag.

Abstrat. A rule-based language is proposed for produt on�gurationappliations. It is equipped with a delarative semantis providing formalde�nitions for main onepts in produt on�guration, inluding on�gu-ration models, requirements and valid on�gurations. The semantis usesHorn lause derivability to guarantee that eah element in a on�gura-tion has a justi�ation. This leads to favorable omputational properties.For example, the validity of a on�guration an be deided in linear timeand other omputational tasks remain in NP. It is shown that CSP anddynami CSP an be embedded in the proposed language whih seems tobe more suitable for representing on�guration knowledge. The rule lan-guage is losely related to normal logi programs with the stable modelsemantis. This onnetion is exploited in the �rst implementation whihis based on a translator from rules to normal programs and on an exist-ing high performane implementation of the stable model semantis, theSmodels system.1 IntrodutionProdut on�guration has been a fruitful topi of researh in arti�ial intelligenefor the past two deades (see, e.g. [10, 15, 1, 8℄). In the last �ve years produton�guration has also beome a ommerially suessful appliation of arti�ialintelligene tehniques. Knowledge-based systems (KBS) employing tehniquessuh as onstraint satisfation (CSP) [19℄ have been applied to produt on�g-uration. However, the produt on�guration problem exhibits dynami aspetswhih are diÆult to apture in, e.g., the CSP formalism. The hoies formhains where previous hoies a�et the set of further hoies that need to bemade. In addition, making a hoie needs to be justi�ed by a hain of previoushoies. This has led to the development of extensions of the CSP formalism,suh as dynami onstraint satisfation (DCSP) [11℄ and generative onstraintsatisfation (GCSP) [7℄.In this paper, whih is a revised version of [17℄, we present work-in-progresson developing a logi programming like rule language for produt on�guration

appliations. The rule language is de�ned with the goal that relevant knowledgein the on�guration domain an be represented ompatly and onveniently.We provide a simple delarative semantis for the language whih guarantees ajusti�ation for eah hoie.We study the omplexity of the relevant omputational tasks for this lan-guage. The main result is that the task of �nding a on�guration isNP-ompleteand that the validity of a on�guration an be heked in linear time. We alsoshow that our language an be seen as a generalization of the CSP and DCSPformalisms. There are loal and linear solution preserving mappings from theCSP and DCSP formalisms to the language, but mapping in the other diretionis diÆult. This is due to the diÆulty of apturing justi�ations in CSP and tomore expressive rules that seem diÆult to apture in DCSP.The semantis of the rule language is losely related to the delarative seman-tis of logi programs. This relation is exploited in developing the �rst implemen-tation of the language. We present a solution preserving loal and polynomialtranslation from the rule language to normal logi programs with the stablemodel semantis [6℄. Our implementation is based on an existing high perfor-mane implementation of the stable model semantis for normal logi programs,the Smodels system [12, 13℄. For the implementation it is enough to build afront-end to the Smodels system realizing the translation to normal programs.In order to estimate the feasibility of our approah we study two simple on�g-uration problems. We observe that suh examples are straightforward to modelin our language and that our implementation exhibits reasonable performane.2 Produt Con�guration DomainProdut on�guration is roughly de�ned as the problem of produing a spei�a-tion of a produt individual as a olletion of prede�ned omponents. The inputsof the problem are a on�guration model, whih desribes the omponents thatan be inluded in the on�guration and the rules on how they an be ombinedto form a working produt, and requirements that speify some properties thatthe produt individual should have. The output is a on�guration, an aurateenough desription of a produt individual to be manufatured. The on�gura-tion must satisfy the requirements and be valid in the sense that it does notbreak any of the rules in the on�guration model and it onsists only of theomponents that have justi�ations in terms of the on�guration model.This de�nition of produt on�guration does not adequately apture all as-pets of on�guration problems. Missing features inlude representing and rea-soning about attributes, struture and onnetions of omponents, resoure pro-dution and use by omponents [15, 1, 7℄ and optimality of a on�guration. Ourde�nition is a simpli�ation that nonetheless ontains the ore aspets of on-�guration problem solving. It is intended as the foundation on whih furtheraspets of produt on�guration an be de�ned. Correspondingly, we use theterm element to mean any relevant piee of information on a on�guration. Anelement an be a omponent or information on, e.g., the struture of a produt.

A produt on�gurator is a KBS that is apable of representing the knowledgeinluded in on�guration models, requirements and on�gurations. In addition,it is apable of (i) heking whether a on�guration is valid with respet to theon�guration model and satis�es a set of requirements and/or (ii) generating oneor all valid on�guration(s) for a on�guration model and a set of requirements.Example 1. As an example of a on�gurable produt, onsider a PC. The om-ponents in a typial on�guration model of a PC inlude di�erent types of dis-play units, hard disks, CD ROM drives, oppy drives, extension ards and soon. These have rules on how they an be ombined with eah other to form aworking produt. For example, a PC would typially be de�ned to have a massstorage whih must be hosen from a set of alternatives, e.g. an IDE hard disk,SCSI hard disk and a oppy drive. A omputer would also need a keyboard,whih ould have either a Finnish or United Kingdoms layout. Having a SCSIhard disk in the on�guration of a PC would typially require that an additionalSCSI ontroller is inluded in the on�guration as well. In addition, a PC mayoptionally have a CD ROM drive. A on�guration model for a PC might alsode�ne that unless otherwise spei�ed, an IDE hard disk will be the default hoiefor mass storage.The fundamental form of knowledge in a on�guration model is that of ahoie [18℄. There are basially two types of hoies. Either at least one or exatlyone of alternative elements must be hosen. Whether a hoie must be made maydepend on some set of elements. Other forms of on�guration knowledge inludethe following:{ A set of elements in the on�guration requires some set of elements to be inthe on�guration as well [18, 8℄.{ A set of elements are inompatible with eah other [18, 8℄.{ An element is optional. Optional elements an be hosen into a on�gurationor they an be left out.{ An element is a default. It is in the on�guration unless otherwise spei�ed.3 Con�guration Rule LanguageIn this setion we de�ne a on�guration rule language CRL for representingon�guration knowledge. The idea is to fous on interations of the elementsand not on details of a partiular on�guration knowledge modeling language.For simpliity, we have kept the number of primitives in the language low byfousing on hoies and requires and inompatibility interations. Extending thelanguage with optional and default hoies is straightforward (see Example 4).The basi onstrution bloks of the language are propositional atoms, whihare ombined through a set of onnetives into rules. We assume for simpliitythat atoms an be used to represent elements adequately. We de�ne a on�gu-ration model and requirements as sets of CRL rules. A on�guration is de�nedas a set of atoms.

The syntax of CRL is de�ned as follows. The alphabet of CRL onsists ofthe onnetives \,", \ ", \j", \�", \not", parentheses and atomi propositions.The onnetives are read as \and", \requires", \or", \exlusive or" and \not",respetively. The rules in CRL are of the forma1� � � � �al b1; : : : ; bm; not(1); : : : ; not(n)where � 2 fj;�g, a1,. . . ,al, b1,. . . ,bm, 1,. . . ,n are atoms and l � 0, m � 0,n � 0. We refer to the subset of a set of rules R with exatly one atom in thehead as requires-rules, Rr, rules with more than one atom in the head separatedby \j" as hoie-rules, rules with more than one atom in the head separatedby \�" as exlusive hoie-rules Re, and rules with no atoms in the head asinompatibility-rules, Ri. In the de�nitions below we treat requires-rules as aspeial ase of hoie-rules with only one alternative in the head.Example 2. A very simple on�guration model RPC of the PC in Example 1(without the optional CD-ROM and default mass storage) ould onsist of thefollowing rules:omputer IDEdisk j SCSIdisk j floppydrive omputerF innishlayoutKB� UKlayoutKB omputerSCSIontroller SCSIdiskNext we de�ne when a on�guration satis�es a set of rules and is valid withrespet to a set of rules. We say that a on�guration satis�es requirements if itsatis�es the orresponding set of rules.De�nition 1. A on�guration C satis�es a set of rules R in CRL, denoted byC j= R, i� the following onditions hold:(i) If a1 j � � � j al b1; : : : ; bm; not(1); : : : ; not(n) 2 Rr[R, fb1; : : : ; bmg �C, and f1; : : : ng \ C = ;, then fa1; : : : ; alg \ C 6= ;.(ii) If a1�� � ��al b1; : : : ; bm; not(1); : : : ; not(n) 2 Re, fb1; : : : ; bmg � C,and f1; : : : ng \ C = ;, then for exatly one a 2 fa1; : : : ; alg, a 2 C.(iii) If b1; : : : ; bm; not(1); : : : ; not(n) 2 Ri, then it is not the ase thatfb1; : : : ; bmg � C and f1; : : : ng \ C = ; hold.In order to de�ne the validity of a on�guration, we employ an operator RC thatis a transformation of a set of rules R in CRL.De�nition 2. Given a on�guration C and a set of rules R in CRL, we denoteby RC the set of rulesfai b1; : : : ; bm : a1� � � � �al b1; : : : ; bm; not(1); : : : ; not(n) 2 R; � 2 fj;�g;ai 2 C; 1 � i � l; f1; : : : ng \ C = ;gThe result of the transformation is a set of Horn lauses if we interpret the sym-bols \ \ and \," as lassial impliation and onjuntion, respetively. Underthis interpretation the redut RC has a unique least model, whih we denote by

MM(RC). Notie that the least model of a set of Horn lauses oinides with theset of atoms logially entailed by them and also with the set of atoms derivableby interpreting them as inferene rules. The intuition behind the transformationis that, given a hoie-rule, if any of the alternatives in the head of the rule arehosen, then the redut of the transformation inludes a rule that an justifythe hoie (if the body of the rule an be justi�ed). If some alternative is nothosen, then there is no need for the hoie to be justi�ed and onsequently noorresponding rules are inluded. The default negation \not(�)" is handled usinga tehnique similar to that in the stable model semantis of logi programs [6℄.De�nition 3. Given a on�guration C and a set of rules R in CRL, C isR-valid i� C = MM(RC) and C j= R.The idea of the de�nition is as follows: the �rst �x-point ondition guaranteesthat a on�guration must be justi�ed by the rules. All the things in the on�g-uration are derivable from (the redut of) the on�guration rules. On the otherhand, everything that an be derived using (the redut of) the rules must be inthe on�guration. The seond ondition ensures that all the neessary hoieshave been made and all the requires and inompatibility-rules are respeted.Example 3. Consider the on�guration model RPC in Example 2, the simple setof requirements fFinnishlayoutKB g and the on�gurationsC1 = fomputer; SCSIdisk; UKlayoutKBgC2 = fomputer; IDEdisk; F innishlayoutKB; SCSIontrollergC3 = fomputer; SCSIdisk; F innishlayoutKB; SCSIontrollergThe on�guration C1 does not satisfy the on�guration model nor the require-ments aording to De�nition 1 and thus it is not RPC-valid, either. The on�g-uration C2 does satisfy the on�guration model and the requirements. However,it is not RPC-valid beause the redut RPCC2 isfomputer ; IDEdisk omputer;FinnishlayoutKB omputer;SCSIontroller SCSIdiskgThe minimal model MM(RPCC2) = fomputer; IDEdisk; F innishlayoutKBgdoes not ontain SCSIontroller and thus it is not equal to C2. The on�gura-tion C3 is RPC -valid and satis�es the requirements.Example 4. Consider the following sets of rules:R1 :a j b R2 :a j b � 0 dd R3 :a j b � 0 da not(b); dd The valid on�gurations with respet to R1 are f; ag, f; bg and f; a; bg. Thereduts of R1 with respet to these on�gurations are fa ; g, fb ; g

and fa ; b ; g, respetively. Clearly, the minimal models of thesereduts oinide with the on�gurations and the on�gurations satisfy the rulesin R1. On the other hand, if the latter rule is omitted, the only valid on�gurationis the empty on�guration fg, sine a and b annot have a justi�ation.Although CRL does not inlude primitives for some typial forms of on�g-uration knowledge suh as optional hoies and default alternatives, they an beaptured fairly straightforwardly. The �rst two rules in R2 demonstrate how torepresent an optional hoie-rule whose head onsists of the atoms a and b andwhose body is d. The valid on�gurations with respet to R2 are f0; dg, fa; ; dg,fb; ; dg and fa; b; ; dg. In this example either or 0 must be in a on�guration.These additional atoms represent the ases where the hoie is made and notmade, respetively. Now, onsider the rule set R3 obtained by adding the rulea not(b); d to R2. The valid on�gurations are now f0; a; dg, f; a; dg, f; b; dgand f; a; b; dg. This rule set represents a default hoie (a is the default) whihis made unless one of the alternatives is expliitly hosen.4 Relationship to Logi Programming SemantisThe on�guration rule language CRL resembles disjuntive logi programs anddedutive databases. The main syntati di�erene is that two disjuntive oper-ators are provided whereas in disjuntive logi programming typially only oneis o�ered. The semantis is also similar to logi programming semantis. Themain di�erene is that leading disjuntive semantis (see, e.g., [3, 5℄) have min-imality of models as a built-in property whereas our semantis does not implysubset minimality of on�gurations. The rule set R1 above is an example of this.However, there are semantis allowing non-minimal models and, in fat, if weonsider the sublass with one disjuntive operator, i.e. ordinary hoie-rules,our notion of a valid on�guration oinides with possible models introdued bySakama and Inoue [14℄ for disjuntive programs. They observed that possiblemodels of disjuntive programs an be aptured with stable models of normalprograms by a suitable translation of disjuntive programs to non-disjuntiveprograms [14℄. Here we extend this idea to exlusive hoie-rules and present aslightly di�erent, more ompat and omputationally oriented translation.Given a set of rules R inCRL the orresponding normal logi program is on-struted as follows. The requires-rules Rr are taken as suh. The inompatibility-rules Ri are mapped to logi program rules with the same body but a head f anda new rule f 0 not(f 0); f is inluded where f; f 0 are new atoms not appearingin R. For eah hoie-rulea1 j � � � j al b1; : : : ; bm; not(1); : : : ; not(n)in R we inlude a rule f b1; : : : ; bm; not(1); : : : ; not(n); â1; : : : ; âl and for alli = 1; : : : ; l, two rulesai not(âi); b1; : : : ; bm; not(1); : : : ; not(n) and âi not(ai)

where â1; : : : ; âl are new atoms. Eah exlusive hoie-rule is translated the sameway as an ordinary hoie-rule exept that we inlude additionally the set of rulesof the form f b1; : : : ; bm; not(1); : : : ; not(n); a0; a00 where a0 = ai; a00 = aj forsome i; j, 1 � i < j � l. Note that the number of the additional rules is quadratiin the number of head atoms, but for ordinary hoie-rules the translation islinear. Now the stable models of the program provide the valid on�gurationsfor the rules. The lose orrespondene implies that an implementation of thestable model semantis an be used for on�guration tasks.5 Complexity IssuesIn this setion we briey onsider the omplexity of the following key deisionproblems in on�guration: (i) C-SAT: deide whether a on�guration satis�esa set of rules, (ii) EXISTS: determine whether there is a valid on�guration fora set of rules, and (iii) QUERY: deide whether there is a valid on�gurationC for a set of rules satisfying a set of requirements Q (C j= Q).First, we observe that C-SAT is deidable in linear time. Seond, we notethat heking whether a set of atoms is a valid on�guration an be done inlinear time. This holds as for a set of rules and a andidate on�guration, theredut an be omputed in linear time and, similarly, the unique least model of aset of Horn lauses is omputable in linear time [4℄. This implies that the majoromputational tasks in on�guration using our semantis are in NP.For EXISTS and QUERY, we onsider some sublasses of CRL to showthe boundary for NP-ompleteness. For example, CRLr is the subset whereonly requires-rules are allowed, CRLrd permits additionally default negations,CRLre allows exlusive hoie-rules in addition to requires-rules andCRLri ad-mits requires-rules, hoie-rules and inompatibility-rules. The results are sum-marized in Table 1. They are fairly straightforward to demonstrate (see [17℄ formore details). Most of the results an also be established from the omplexityresults for the possible model semantis [14, 5℄.Table 1. Complexity results for on�guration tasksLanguage C-SAT EXISTS QUERYCRLr Poly Poly PolyCRLri Poly Poly PolyCRLr Poly Poly NP-ompl.CRLrd Poly NP-ompl. NP-ompl.CRLre Poly NP-ompl. NP-ompl.CRLri Poly NP-ompl. NP-ompl.

6 Relation to Constraint SatisfationCon�guration is often ast as a onstraint satisfation or dynami onstraintsatisfation problem. In this setion we aim to show that CRL ontains CSPand DCSP as speial ases and is an extension of these two approahes. We notethat for all the formalisms dealt with in this setion the problem orrespondingto generating a on�guration is NP-omplete.6.1 Mapping Constraint Formalisms to CRLWe �rst reall that a CSP onsists of a set of variables, a set of possible valuesfor eah variable, alled the domain of the variable, and a set of onstraints.We assume in the following that the domains are �nite. A onstraint de�nes theallowed ombinations of values for a set of variables by speifying a subset ofthe Cartesian produt of the domains of the variables. A solution to a CSP is anassignment of values to all variables suh that the onstraints are satis�ed, i.e.,the value ombinations are allowed by at least one tuple of eah onstraint.A DCSP is an extension of a CSP that also has of a set of variables, domains,and onstraints (alled here ompatibility onstraints). However, all the variablesneed not be given a value, i.e., be ative in a solution. A DCSP additionallyde�nes a set of initial variables that must be ative in every solution and aset of ativity onstraints. An ativity onstraint states either that if a givenondition is true then a ertain variable is ative, or that if a given ondition istrue, then a ertain variable must not be ative. The ondition may be expressedas a ompatibility onstraint (require and require not ativity onstraints) or itmay state that some other variable is ative (always require and always requirenot ativity onstraints). A solution to a DCSP is an assignment of values tovariables suh that it (i) ful�lls the ompatibility and ativity onstraints, (ii)ontains assignments for the initial variables, and (iii) is minimal.We next de�ne a mapping from the DCSP formalism to CRL. We notethat as CSP is a speial ase of DCSP with no ativity onstraints and withall variables in the set of initial variables, the same mapping an be used for aCSP. In the mapping from a DCSP to CRL representation we introdue (i) anew distint atom for eah variable, vi, to enode its ativity, (ii) a new distintatom sat(i) for eah ompatibility onstraint i, and (iii) a new distint atomvi(vali;j) for eah variable vi and value vali;j in the domain of vi.Eah initially ative variable vi is mapped to a fat vi . Eah variable viand its domain fvali;1; : : : ; vali;ng is mapped to an exlusive hoie-rule of thefollowing form: vi(vali;1) � � � � � vi(vali;n) vi. A ompatibility onstraint onvariables v1; : : : ; vn is represented using a set of requires-rules of form sat(i) v1(val1;j); v2(val2;k); � � � ; vn(valn;l), one rule for eah allowed value ombinationval1;j ; : : : ; valn;l. An inompatibility-rule of the form v1; : : : ; vn; not(sat(i))is inluded to enfore the onstraint.Example 5. Given a CSP with two variables, pakage and frame with do-mains fluxury; deluxe; standardg and fonvertible; sedan; hathbakg, respe-tively, and a onstraint 1 = ffluxury; onvertibleg; fstandard; hathbakgg on

pakage and frame, the following rule set is produed by the mapping:pakage frame pakage(luxury)� pakage(deluxe)� pakage(standard) pakageframe(onvertible)� frame(sedan)� frame(hathbak) framesat(1) pakage(luxury); frame(onvertible)sat(1) pakage(standard); frame(hathbak) pakage; frame; not(sat(1))An always require ativity onstraint is mapped to a requires-rule v2 v1where v2 is the ativated variable and v1 is the ondition variable. An alwaysrequire not ativity onstraint is mapped to an inompatibility-rule v1; v2where v1 and v2 are the ondition and deativated variables, respetively. A re-quire variable ativity onstraint is mapped to a set of requires-rules, one ruleof the form u v1(val1;j); : : : ; vn(valn;k) for eah allowed value ombinationfval1;j ; : : : ; valn;kg of variables v1; : : : ; vn, where u is the ativated variable. A re-quire not ativity onstraint is mapped to a set of inompatibility-rules, one ruleof the form u; v1(val1;j); : : : ; vn(valn;k) for eah allowed value ombinationfval1;j ; : : : ; valn;kg of variables v1; : : : ; vn where u is the deativated variable.Example 6. Given a DCSP with two variables, pakage and sunroof , whosedomains are fluxury; deluxe; standardg and fsr1; sr2g, respetively, a set ofinitial variables fpakageg and a require ativity onstraint that if pakage hasvalue luxury, then sunroof is ative, the following rule set is produed:pakage pakage(luxury)� pakage(deluxe)� pakage(standard) pakagesunroof(sr1)� sunroof(sr2) sunroofsunroof pakage(luxury)It is easy to see that eah valid on�guration is a solution to the DCSP andvie versa. The minimality of solutions an be shown by noting that the rulesthat an ause a variable to be ative an be translated to normal logi programs.For this sublass of rules the on�gurations oinide with stable models whihare subset minimal [6℄. The size of the resulting rule set is linear in the size ofthe DCSP problem instane. The mapping is loal in the sense that eah variableand its domain, initial variable, ompatibility onstraint and ativity onstraintan be mapped separately from the other elements of the problem instane.6.2 Expressiveness of CRL vs. CSPNext we argue that CRL is stritly more expressive than CSP by using theonept of modularity. A modular representation in some formalism is suh thata small, loal hange in the knowledge results in a small hange in the represen-tation. This property is important for easy maintenane of a knowledge base.

We show that under mild assumptions the CSP formalism annot modularlyapture the justi�ations of a on�guration. We say that CRL is modularlyrepresentable by CSP i� for every set of CRL rules there is a CSP suh thatrules are represented in the CSP independent of the representation of the basifats (i.e. requires-rules with empty bodies) so that a hange in the fats doesnot lead to a hange involving both additions and removals of either allowedtuples, onstraints, variables or values. In addition, the solutions to the CSPmust agree with the CRL on�gurations in that (i) the truth values of theatoms in a on�guration an be read from the values of Boolean CSP variablesrepresenting the atoms and (ii) these variables have the same truth values as theorresponding atoms.Theorem 1. CRL is not modularly representable by CSP.Proof. Consider the set of rules R = f bg and assume that it an be mod-ularly represented by a CSP. Hene, there is a CSP T(R) suh that in all thesolutions of T(R) the variables representing atoms b and in the on�gurationlanguage have the value false as R has the empty set as its unique valid on-�guration. Consider now a set of fats F = fb g. The on�guration modelR [F has a unique valid on�guration fb; g. This means that T(R) updatedwith F must not have a solution in whih variables enoding b and have thevalue false. In addition, T(R) updated with F must have at least one solu-tion in whih the atoms enoding b and have the value true. It an be shownthat hanges inluding either only additions or only removals of either allowedtuples, onstraints, variables or values annot both add solutions and removethem, whih is a ontradition and hene the assumption is false.The fat that there is no modular representation of CRL in the CSP for-malism is aused by the justi�ation property of CRL whih introdues a non-monotoni behavior. A similar argument an therefore be used for showing a sim-ilar result for, e.g., propositional logi [17℄. We note that the question whetherthere is a modular representation of a on�guration model given in CRL asa DCSP is open. The DCSP formalism exhibits a non-monotoni behavior, soa similar argument annot be used for this ase. It an be used, however, toshow that there is no modular representation of a DCSP as a CSP. RepresentingCRL as DCSP does not seem straightforward, as the DCSP approah does notdiretly allow ativity onstraints that have a hoie among a set of variables toativate or default negation in the ondition part.7 ImplementationIn this setion we desribe briey our implementation of CRL, demonstrate theuse of CRL with a ar on�guration problem from [11℄ and provide informationon performane of the implementation for the ar problem.Our implementation of CRL is based on the translation of CRL to normallogi programs presented in Set. 4 and on an existing high performane im-plementation of the stable model semantis, the Smodels system [12, 13℄. This

system seems to be the most eÆient implementation of the stable model se-mantis urrently available. It is apable of handling large programs, i.e. over100 000 ground rules, and has been applied suessfully in a number of areasinluding planning [2℄, model heking for distributed systems [9℄, and proposi-tional satis�ability heking [16℄.We have built a front-end to Smodels whih takes as input a slightly modi�ed(see below) set of CRL rules and transforms it to a normal logi program whosestable models orrespond to valid on�gurations. Then Smodels is employed forgenerating stable models. The implementation an generate a given number ofon�gurations, all of them, or the on�gurations that satisfy requirements givenas a set of literals.Smodels is publily available at http://www.ts.hut.fi/pub/smodels/.The front-end is inluded in the new parser of Smodels, lparse, whih aeptsin addition to normal program rules (requires-rules) also \inlusive" hoie-rulesand inompatibility-rules. Exlusive hoie-rules are supported by rules of theform nfa1; : : : ; alg where n is an integer. The rule ats like an integrity on-straint eliminating models, i.e. on�gurations, with n or more of the atoms fromfa1; : : : ; alg. This allows a suint oding of, e.g., exlusiveness without thequadrati overhead whih results when using normal rules. Hene, an exlusivehoie-rule a1 � � � � � al Body an be expressed as a ombination of an \in-lusive" hoie-rule a1 j � � � j al Body and the rule Body; 2fa1; : : : ; alg.Our �rst example, CAR, was originally de�ned as a DCSP [11℄. In Fig. 1the problem is translated to CRL using the mappings de�ned in the previoussetion with the exeption that the ompatibility onstraints are given a simplerule form similar to that in [11℄. There are several hoies of pakages, frames,engines, batteries and so on for a ar. At least a pakage (pak), frame and enginemust be hosen from the alternatives spei�ed for them. Choosing a partiularalternative in a hoie-rule an make other hoies neessary. For example, ifthe pakage is hosen to be luxury (l), then a sunroof and an aironditioner(airond) must be hosen as well. In addition, some ombinations of alternativesare mutually exlusive, e.g., the luxury alternative for pakage annot be hosenwith the a1 alternative for aironditioner. The seond example, CARx2, ismodi�ed from CAR by doubling the size of the domain of eah variable. Inaddition, for eah new value and eah ompatibility and ativity onstraint inthe original example a new similar onstraint referring to the new value is added.We did some experiments with the two problems inCRL form. The tests wererun on a Pentium II 233 MHz with 128MB of memory, Linux 2.0.35 operatingsystem, smodels version 1.12 and lparse version 0.9.19. The test ases are avail-able at http://www.ts.hut.fi/pub/smodels/tests/padl99.tar.gz. Table 2presents the timing results for omputing one and all valid on�gurations, thenumber of valid on�gurations found and the size of the initial searh spaewhih is alulated by multiplying the number of alternatives for eah hoie.The exeution times inlude reading and parsing the set of input rules, its trans-lation to a normal program as well as outputting the on�gurations in a �le. Thetimes were measured using the Unix time ommand and they are the sum of

pak(l)� pak(dl)� pak(std) pakframe(onv)� frame(sedan)� frame(hb) frameengine(s)� engine(m)� engine(l) enginebattery(s)� battery(m)� battery(l) batterysunroof(sr1)� sunroof(sr2) sunroofairond(a1)� airond(a2) airondglass(tinted)� glass(nottinted) glassopener(auto)� opener(manual) openerbattery(m) opener(auto); airond(a1)battery(l) opener(auto); airond(a2) sunroof(sr1); airond(a2); glass(tinted) pak(std); airond(a2) pak(l); airond(a1) pak(std); frame(onv)
pak frame engine sunroof pak(l)airond pak(l)sunroof pak(dl)opener sunroof(sr2)airond sunroof(sr1)glass sunroofbattery enginesunroof openersunroof glass sunroof(sr1); opener frame(onv); sunroof battery(s); engine(s);airondFig. 1. Car on�guration exampleuser and system time. The test results show that for this small problem instanethe omputation times are aeptable for interative appliations. For example,in the larger test ase it takes on average less than 0.0004 s to generate a on-�guration. We are not aware of any other reported test results for solving thisproblem in the DCSP or any other form.Table 2. Results from the ar exampleProblem Initial Valid one allsearh spae on�gurationsCAR 1 296 198 0.06 s 0.15 sCARx2 331 776 44456 0.1 s 15.5 s8 Previous Work on Produt Con�gurationIn Set. 6 we ompared our approah to the CSP and DCSP formalisms. In thissetion we provide brief omparisons with several other approahes.The generative CSP (GCSP) [7℄ approah introdues �rst-order onstraintson ativities of variables, on variable values and on resoures. Constraints usingarithmeti are also inluded. Resoures are aggregate funtions on intensionallyde�ned sets of variables. They may restrit the set of variables ative in a solutionor generate new variables into a solution, thus providing a justi�ation for thevariables. In addition, a restrited form of DCSP ativity onstraints is usedto provide justi�ations for ativity of variables. CRL allows more expressive

ativity onstraints than DCSP and a uniform representation of ativity andother onstraints. However, �rst-order rules, arithmeti and resoure onstraintsare still missing from CRL.Our approah �ts broadly within the framework of onstrutive problem solv-ing (CPS) [8℄. In CPS the on�gurations are haraterized as (possibly partial)Herbrand models of a theory in an appropriate logi language. The CPS ap-proah does not require that elements in a on�guration must have justi�ationsbut the need for a meta-level minimality riterion is mentioned.Some implementations of on�gurators based on logi programming systemshave been presented [15, 1℄. In these approahes, similarly to our approah, aon�guration domain oriented language is de�ned and the problem solving taskis implemented on a variant of Prolog based on a mapping from the high-levellanguage to Prolog. The languages are more omplex and better suited for realmodeling tasks. However, they are not provided a lear delarative semantis andthe implementations use non-logial extensions of pure Prolog suh as objet-oriented Prolog and the ut. In ontrast, we provide a simple delarative seman-tis and a sound and omplete implementation for CRL.9 Conlusions and Future WorkWe have de�ned a rule-based language for representing typial forms of on-�guration knowledge, e.g., hoies, dependenies between hoies and inom-patibilities. The language is provided with a delarative semantis based on astraightforward �x-point ondition employing a simple transformation operator.The semantis indues formal de�nitions for the main onepts in produt on-�guration, i.e., on�guration models, requirements, on�gurations, valid ondig-urations and on�gurations that satisfy requirements. A novel feature of thesemantis is that justi�ability of a on�guration (i.e., that eah element in aon�guration has a justiation in terms of the on�guration rules) is apturedby Horn lause derivability but without resorting to a minimality ondition onon�gurations. This approah has not been onsidered in previous work on prod-ut on�guration. The semantis is losely related to well-known non-monotoniformalisms suh as the stable model semantis [6℄ and the possible model se-mantis [14℄.Avoiding minimality onditions in the semantis has a favorable e�et onthe omplexity of the on�guration tasks. The basi problems, i.e. validity ofa on�guration and whether a on�guration satis�es a set of requirements, arepolynomially deidable. This is important for pratial on�guration problems.It also implies that the other relevant deision problems are in NP.We argue that the rule language is more expressive than onstraints by show-ing that it annot be modularly represented as CSP. The diÆulty lies in aptur-ing the justi�ations for a on�guration using onstraints. In addition, we showthat the dynami onstraint satisfation formalism an be embedded in our lan-guage but note that there is no obvious way of representing default negation andinlusive hoies of CRL in that formalism.

There are indiations that the proposed formal model provides a basis forsolving pratially relevant produt on�guration problems. An implementationof the rule language based on a translator to normal logi programs with thestable model semantis was tested on a small on�guration problem. The resultssuggest that this approah is worth further researh. Moreover, experienes inother domains show that eÆient implementations of the stable model semantisare apable of handling tens of thousands of ground rules. Compiling a pratiallyrelevant on�guration model from a high level representation into our languagewould seem to generate rule sets of approximately that size. Further researh isneeded to determine how our implementation sales for larger problems.It may be possible to develop a more eÆient algorithm that avoids the over-head inurred by the additional atoms and loss of information on the strutureof the rules aused by the mapping to normal programs. Devising suh an al-gorithm is an interesting subjet of further work. A pratially important taskwould be to identify additional syntatially restrited but still useful subsets ofthe language that would allow more eÆient omputation. Interative produton�guration where user makes hard deisions and omputer only tratable onesmay be the only feasible alternative for very large or omplex problems. Thistype of on�guration would be failitated by devising polynomially omputableapproximations for valid on�gurations in CRL. Suh approximations ould alsobe used to prune the searh spae in an implemention of CRL.It should be noted that the model does not adequately over all the aspets ofprodut on�guration. Further work should inlude generalizing the rules to the�rst-order ase, adding arithmeti operators to the language and de�ning on-struts important for the domain suh as optional hoie diretly in the language.These extensions are needed to onveniently represent resoure onstraints, at-tributes, struture and onnetions of omponents. Another important extensionwould be to de�ne the notion of an optimal on�guration (suh as subset mini-mal, ardinality minimal or resoure minimal on�guration) and to analyze theomplexity of optimality-related deision problems.Aknowledgements. The work of the �rst author has been supported by theHelsinki Graduate Shool in Computer Siene and Engineering (HeCSE) andthe Tehnology Development Centre Finland and the work of the seond authorby the Aademy of Finland through Projet 43963. We thank Tommi Syrj�anenfor implementing the translation of CRL to normal logi programs.Referenes1. T. Axling and S. Haridi. A tool for developing interative on�guration applia-tions. Journal of Logi Programming, 19:658{679, 1994.2. Y. Dimopoulos, B. Nebel, and J. Koehler. Enoding planning problems in non-monotoni logi programs. In Proeedings of the Fourth European Conferene onPlanning. Springer-Verlag, 1997.

3. J. Dix. Semantis of logi programs: Their intuitions and formal properties. InLogi, Ation and Information | Essays on Logi in Philosophy and Arti�ialIntelligene, pages 241{327. DeGruyter, 1995.4. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�abilityof propositional Horn formulae. Journal of Logi Programming, 3:267{284, 1984.5. T. Eiter and G. Gottlob. On the omputational ost of disjuntive logi pro-gramming: Propositional ase. Annals of Mathematis and Arti�ial Intelligene,15:289{323, 1995.6. M. Gelfond and V. Lifshitz. The stable model semantis for logi programming.In Proeedings of the 5th International Conferene on Logi Programming, pages1070{1080. The MIT Press, 1988.7. A. Haselb�ok and M. Stumptner. An integrated approah for modelling omplexon�guration domains. In Proeedings of the 13th International Conferene onExpert Systems, AI, and Natural Language, 1993.8. R. Klein. A logi-based desription of on�guration: the onstrutive problemsolving approah. In Con�guration|Papers from the 1996 AAAI Fall Symposium.Tehnial Report FS-96-03, pages 111{118. AAAI Press, 1996.9. X. Liu, C Ramakrishnan, and S. Smolka. Fully loal and eÆient evaluation ofalternating �xed points. In Proeedings of 4th International Conferene on Toolsand Algorithms for the Constrution and Analysis of Systems, pages 5{19. Springer-Verlag, 1998.10. J. MDermott. R1: a rule-based on�gurer of omputer systems. Arti�ial Intel-ligene, 19(1):39{88, 1982.11. S. Mittal and B. Falkenhainer. Dynami onstraint satisfation problems. In Pro.of the Eighth National Conferene on Arti�ial Intelligene (AAAI-90), pages 25{32. AAAI, MIT Press, 1990.12. I. Niemel�a and P. Simons. EÆient implementation of the well-founded and sta-ble model semantis. In Proeedings of the Joint International Conferene andSymposium on Logi Programming, pages 289{303. The MIT Press, 1996.13. I. Niemel�a and P. Simons. Smodels { an implementation of the stable modeland well-founded semantis for normal logi programs. In Proeedings of the 4thInternational Conferene on Logi Programming and Non-Monotoni Reasoning,pages 420{429. Springer-Verlag, 1997.14. C. Sakama and K. Inoue. An alternative approah to the semantis of disjuntivelogi programs and dedutive databases. Journal of Automated Reasoning, 13:145{172, 1994.15. D. Searls and L. Norton. Logi-based on�guration with a semanti network.Journal of Logi Programming, 8(1):53{73, 1990.16. P. Simons. Towards onstraint satisfation through logi programs and the stablemodel semantis. Researh report A47, Helsinki University of Tehnology, Helsinki,Finland, 1997. Available at http://saturn.hut.�/pub/reports/A47.ps.gz.17. T. Soininen and I. Niemel�a. Formalizing on�guration knowledge using rules withhoies. Researh report TKO-B142, Helsinki University of Tehnology, Helsinki,Finland, 1998. Presented at the Seventh International Workshop on NonmonotoniReasoning (NM'98), 1998.18. J. Tiihonen, T. Soininen, T. M�annist�o, and R. Sulonen. State-of-the-pratie inprodut on�guration|a survey of 10 ases in the Finnish industry. In KnowledgeIntensive CAD, volume 1, pages 95{114. Chapman & Hall, 1996.19. E. Tsang. Foundations of Constraint Satisfation. Aademi Press, London, 1993.

