Logic Programs with Constraints

According to our definition of a rule, the head of a rule is an atomic formula \(P(t) \). We will now relax this condition and allow the head of a rule to be also the symbol \(\bot \). Rules of the form

\[
\bot \leftarrow F
\]

(1)

are called constraints. Including constraints in a logic program does not affect its stability formulas. The definition of a stable model in the presence of constraints is stated as follows: A stable model of a logic program is an Herbrand interpretation that satisfies all its stability formulas and the universal closures of all its constraints. Since implication (1) is equivalent to \(\neg F \), we could say alternatively: “and the universal closure of \(\neg F \) for each of its constraints (1).”

Consider, for example, the program

\[
P(a),
P(b),
P(c),
\{Q(x)\} \leftarrow P(x),
\{R(x)\} \leftarrow P(x),
\bot \leftarrow Q(x) \land R(x).
\]

Its stable models are the Herbrand interpretations such that

(i) the extent of \(P \) is the universe \(\{a, b, c\} \),
(ii) \(Q \) is a subset of \(P \),
(iii) \(R \) is a subset of \(P \),
(iv) \(Q \) is disjoint from \(R \).

Here is how we can write this program in the language of CLINGO:

\[
p(a;b;c).
\{q(X)\} :- p(X).
\{r(X)\} :- p(X).
:- q(X), r(X).
\]
Problem 30. We would like to replace condition (iv) by the weaker condition: Q and R have at most one common element. Modify the CLINGO program above accordingly.

Problem 31. A clique in a graph is a subset of its vertices such that every two vertices in the subset are connected by an edge. Write a CLINGO program such that its stable models represent all cliques in a given graph. To test your program, use the graph with the vertices a, b, c, d and the edges

$$\{a, b\}, \{b, c\}, \{c, d\}, \{d, a\}, \{a, c\}.$$

Satisfying interpretations for a propositional formula in conjunctive normal form can be computed by running CLINGO on a program consisting of choice rules and constraints. For instance, the formula

$$(\neg p \lor q) \land (\neg p \lor r) \land (q \lor r) \land (\neg q \lor \neg r)$$

can be represented by the file

{p,q,r}.
:- p, not q.
:- p, not r.
:- not q, not r.
:- q, r.