
Web Services versus Distributed Objects:
A Case Study of Performance and Interface Design

William R. Cook, Janel Barfield
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

Email: {wcook,janelbarfield}@cs.utexas.edu

Abstract— Web services are promoted as a new model for
distributed systems, yet many skeptics see them as simply a poor
implementation of traditional remote procedure calls (RPC) or
distributed objects. Previous comparisons support the skeptics:
web services are shown to be significantly slower than RPC,
and they lack features like automatic proxies. However, these
studies are biased because they are based on an RPC communi-
cation style. Web services support a document-oriented style of
communication that performs well even in the face of the high
latency found in internet or business transactions. We investigate
these issues by comparing the design and implementation of a
small file server application implemented using RMI and web
services. For this application, using the most straightforward im-
plementation in both technologies, web services outperform RMI
when accessing multiple/deeply nested files, especially over high-
latency channels. However, the default web services interfaces
are awkward to use, so we develop a technique for wrapping
the web service to make it as easy to use as the distributed
object implementation. The same wrappers are then used to
implement the document-oriented communication style in RMI,
which improves performance but significantly complicates the
design. This case study provides a more detailed comparison of
the relationship between web services and distributed objects.

I. INTRODUCTION

There is significant debate on the relationship between web
services and distributed objects [1], [2], [3]. Concrete case
studies can help to clarify and quantify these differences. In
this paper, we take a step toward this goal by examining
the performance and design of an example application using
distributed objects and web services.

Previous approaches to comparing performance of distrib-
uted objects and web service have focused on the ability of
web services to perform traditional RPC-style interactions:
invoking a single method whose arguments are simple primi-
tive values or arrays [4], [5], [6], [7]. Given the overhead of
encoding and decoding XML, it is not surprising that web
services are an order of magnitude slower than distributed
object implementations in CORBA [8], DCOM [9], or RMI
[10]. However, these studies are biased because they only
measure RPC-style communication. They do not consider the
possibilities of document-oriented designs that demonstrate the
strengths of web services.

In this paper we do the opposite: consider a scenario
that is better suited for web service implementation. The
example application is a remote file server based on the
HTTP protocol [11]. The question considered is: what if

HTTP had been defined using distributed object middleware
(RMI/DCOM/CORBA) or as a web service? The resulting
designs are implemented and evaluated for performance and
usability.

Object-oriented analysis and design [12] of this application
produces a clean object-oriented interface to the repository of
files. The interface is easily converted to remote invocation
over RMI using automatic proxies. There is a tight coupling
between clients and servers, since the client must also have
access to the interfaces used to program the server. More
significant, the design results in a large number of round-trips
to the server, causing poor performance as client transactions
become more complex – for example, in downloading multiple
files or increasing path length.

The web service implementation is defined by creating a
service object and java classes describing the request and result
XML documents. These classes a translated to a WSDL (Web
Service Description Language) file and corresponding server-
side wrappers using Apache Axis in the Eclipse Web Tools
Project [13], [14], [15]. The client was created similarly by
importing the WSDL. The web service approach naturally
reduces the number of round-trips.

We evaluate the performance of each implementation in
loading batches of files over networks with a range of la-
tencies. The pure-object RMI implementation is faster for
small batches of documents and low-latency networks, but
performance degrades rapidly with larger batches and higher
latency. The web services has a high initial cost but shows
little or no change with larger batches. Higher latency creates
a greater initial cost, but performance is still independent of
batch size. As latency increases, the performance benefits of
the document-oriented approach increase significantly. This
is relevant when in some real world scenarios, latency may
even be minutes, hours, or days, as for disconnected or
asynchronous workflow processes.

Unfortunately, the web service client code is awkward to
use: the programmer must manipulate request and response
structures, rather than directly perform operations on server
objects as in the RMI implementation.

In short, the most natural designs for distributed objects
are easy to use but scale poorly, while web services have
good scaling properties but are awkward to use. To address
this problem, we create better client wrappers for the web



public interface Container {
Container sub(String name) throws FileNotFound;
File get();
File invoke(HashMap params);
}

public interface File {
String getRequest();
long getModified();
int getLength();
String getText();
String getType();
String getEncoding();

}

Fig. 1. Object-oriented file-server interface.

Container file;
file = root.sub("base").sub("index.htm");
String s = file.get().getText();

Fig. 2. Example client using the object-oriented interface

service, which implement the same interfaces used in the
distributed object model, with one additional call and a slight
change in semantics. We also show how these wrappers can
be reused to convert the RMI solution to use a document-
oriented communication style based on mobile code and value
objects. The resulting RMI implementation is very fast – but
it is also quite complex, does not make significant use of
automatic proxies (it is stateless except for a connection to
a singleton server object), and is still platform-specific. The
resulting implementations use the communication style that is
natural to web services, but use wrappers to provide a user-
friendly object-oriented facade.

II. FILE SERVER INTERFACES AND IMPLEMENTATIONS

As a traditional network protocol, HTTP [11] is defined
by commands and responses that are formatted as strings of
characters. The syntax of the commands and legal responses
are defined by a grammar in RFC 2616 [11]. While this
is a reasonable approach for specifying network protocols
based on TCP, the specification does not provide a high-level
programming model.

For a programming model, high-level concepts should be
represented as explicit data abstractions with appropriate op-
erations and consistency checking. A programming interface
that captures elements of the HTTP protocol would allow
clients and servers to traverse a hierarchical namespace to
access files and file properties, and invoke actions that create
dynamic files. Thus, the object-oriented file server interface
is significantly different from the protocol-oriented HTTP
interface.

A. Object-Oriented Interface for File Server

Our goal is to design a clean object-oriented interface for a
file server that is easy to use for programmers. Since the server

presents a hierarchical view of a collection of files, the primary
interface is that of a Container. This interface is defined
in Fig. 1. The user can access a subcontainer with the sub
method. If the named item does not exist, and error is returned.
The get method retrieves a file and its attributes. Finally, the
invoke method performs an action with a specified set of
parameters and returns a dynamically created file as a result.
When get or invoke are executed on the server, a File
object is returned. A file object contains information about the
file and a method to return the text of the file. As in HTTP,
the file server API does not distinguish between directories
and files. A call to get on a directory could return an error,
or produce a file containing a listing of the contents of the
directory.

This interface is similar to many other interfaces for hier-
archical structures. For example, the FileSystemObject
in Microsoft Windows has a similar structure [16]. One
difference is that it uses explicit collection objects for folders
(subcontainers) and files (documents). The directory APIs for
Java, javax.naming, are also similar, although much more
complex.

A client can easily traverse the hierarchy and access files.
An example is given in Fig. 2. This code gets the text of a file
named “index.htm” within a “base” folder. It is equivalent to
the HTTP operation GET /base/index.htm.

B. Distributed Object Implementation: an RMI File Server

The RMI file-server classes implement the Container
and File interfaces shown in Fig. 1. To support remote
access, they also implement the Remote interface of RMI.
When Container or File objects are returned by a server
operations, they are converted to proxies in the client. Oper-
ations on proxies are sent back to the server for processing,
which may create more proxies. One proxy is created for each
container in the file path. When more files are retrieved, more
calls to the server take place.

The client code to access a remote server is the same as
the code to access the server locally. This also applies to error
conditions: if the name passed to the sub call is not a valid
name in a given container on the server, the error will be
reported immediately.

Registering the server is also simple:

ContainerImpl server = new ContainerImpl();
Naming.rebind("docServer", server);

C. Document-Oriented Interface for File Server

In a document-oriented interface, the operations to be per-
formed on the server are described in a request document,
and the results from the server are contained in a response
document. The document-oriented interfaces are defined in
Fig. 3. The server exports a single operation to perform
a request and return a set of responses.

The request object reifies, or makes concrete, a set of
calls to a container. There are significant differences between
the Container interface in Fig. 1 and the Request in-
terface: sub-containers are returned by the sub method of



// server processes requests and returns files
public interface ResourceServer {
public FileResult[] perform(Request doc);

}

// hierarchical requests can specify multiple
// files in different directories
public interface Request {
String getName();
void setName(String name);

Request[] getItemList();
void setItemList(Request[] items);

boolean getResultID();
void setResultID(int ID);

Param[] getParams();
void setParams(Param[] params);

}

// the result ID matches results to requests
public interface FileResult extends File {
int getStatusCode();
int getResultID();

}

Fig. 3. Request interface for web services.

<wsdl:portType name="ResourceServer">
<wsdl:operation name="invoke"

parameterOrder="doc">
<wsdl:input message="impl:invokeRequest"

name="invokeRequest"/>
<wsdl:output message="impl:invokeFileResult"

name="invokeFileResult"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:message name="invokeRequest">
<wsdl:part name="doc" type="impl:Request"/>
</wsdl:message>

<wsdl:message name="invokeFileResult">
<wsdl:part name="invokeReturn"

type="impl:ArrayOfFileResult"/>
</wsdl:message>

Fig. 4. Web service operation defined in WSDL.

Container, but sub-requests are collected as an explicit ar-
ray of items in the Request interface. The name parameter
of sub is stored as a name attribute in each Request item. A
similar treatment is used for the params of invoke. Finally,
the get method, which retrieves a File from a container, is
translated into a ResultID attribute that assigns an integer
sequence number to each requested file.

Only one remote method is used in the web services
interface to model a document-centric approach in which a
complete request is sent to the server as a single document,
and a single document is returned by the server that con-

<complexType name="Request">
<sequence>
<element name="itemList"

type="impl:ArrayOfRequest"/>
<element name="name" type="xsd:string"/>
<element name="params"

type="impl:ArrayOfParam"/>
<element name="resultID" type="xsd:int"/>

</sequence>
</complexType>

<complexType name="ArrayOfRequest">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType"

wsdl:arrayType="impl:Request[]"/>
</restriction>

</complexContent>
</complexType>

<complexType name="FileResult">
<sequence>
<element name="text" type="xsd:string"/>
<element name="Encoding" type="xsd:string"/>
<element name="length" type="xsd:int"/>
<element name="type" type="xsd:string"/>
<element name="modified" type="xsd:long"/>
<element name="location" type="xsd:string"/>
<element name="resultID" type="xsd:int"/>
<element name="statusCode" type="xsd:int"/>

</sequence>
</complexType>

<complexType name="ArrayOfFileResult">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType"

wsdl:arrayType="impl:FileResult[]"/>
</restriction>

</complexContent>
</complexType>

Fig. 5. Web service request and response structures.

tains all requested results. This perform method takes a
fully populated Request as input, and returns an array of
FileResult objects containing any files returned from the
server. The FileResult interface extends FileResult
to include a ResultID that associates each result with its
corresponding Request object.

Error handling is significantly different when using a
document-oriented interface. Errors are also reified as prop-
erties of result objects. For example, the FileNotFound
exception thrown by sub in the object-oriented interface
becomes a status code in the FileResult interface. The
perform method itself does not raise the FileNotFound
exception, since it handles multiple requests, some of which
may fail while other succeed.

An example of client access the web service is given in
Fig. 6. To invoke the web service, a client creates a Request
structure explicitly. The requests form a tree structure that
identifies which objects to retrieve from the server. Each file to



// create a request for base/index.htm
Request base = new Request("base");
Request index = new Request("index.htm");
base.setItemList(new Request[] { base });
index.setResultID(0);

// perform the request
File[] docs = server.perform(base);

// access the text of the result
String s = docs[0].getText();

Fig. 6. Example client using the document-oriented interface.

be retrieved is assigned a unique response identifier by calling
setResultID.

The client interface is awkward to use. Rather than perform
operations on file system objects, as in the object-oriented
interface, the client must create objects that represent the
operations to be performed. The web service interface is more
indirect conceptually. The client must check the status code
explicitly to determine if the request was successful.

D. Web Service Implementation of the File Server

Web services can use a document-oriented communication
style to implement the file server. We used Apache Axis
includes tools to automatically translate Java interfaces into
WSDL files. The WSDL file for Fig. 3 is given in Fig. 4 and
Fig. 5. The nillable="true" attribute was omitted for
readability.

The design of the Request interface was constrained to
some degree by existing web service tools (Axis). In the web
services implementation, a Request object can represent
either a container object or a file object. We attempted to dis-
tinguish between these representations by using subclassing. It
was not possible to subclass the Request object to provide
this distinction because of limitations of the technology. The
Axis tools did not produce the expected WSDL when this
approach was taken.

III. PERFORMANCE

The test driver loads files from a file server using either the
web service interface or the RMI interfaces. The independent
variables are the communication configuration and the number
of files retrieved in a single transaction. Three configura-
tions were used for communication from client to server:
both processes on the same machine (localhost), over closely
connected local network, and over a wireless network on
different subnetworks. The files being retrieved are generated
synthetically to avoid disk access. They are also very small,
less than 100 bytes. The tests are performed iteratively 50 to
100 times and the results averaged.

The server machine is a Dell Precision 360 running Win-
dows XP and Apache Tomcat version 5.0. The client was a
Dell Lattitue D600 laptop running Windows XP. The Sun Java
VM 1.5.0 runtime was used in both implementations and for
the rmiregistry executable the RMI server.

All the files retrieved are two folders down from the root,
with paths of the form /base/section/testi.htm. The
RMI interface requires at least 5 round-trips to access a single
file. The costs do not include setting up the connection for
RMI or the web service. Accessing files with longer paths
would cause more round-trips.

In addition to the Web Services and RMI implementations
described in Section II, the result below include data for an
RMI Optimized implementation, which is defined below in
Section IV-B.

A. Performance Results

The results for the localhost configuration are shown in
Fig. 7. The Web Service implementation is significantly slower
than the RMI implementation in retrieving one document.
It is well-known that here is greater overhead associated
with making a Web Service call. This result is analogous to
previous studies [4], [5], [6], [7], although the performance
difference is less significant because our RMI application
requires multiple round trips to access even a single document.
Both implementations scale linearly with the number of files
being retrieved. However, the slope of the RMI implementation
is much greater. This is because each file takes approximately
8ms to load, and so five files take 40ms. The Web Service,
on the other hand, only performs one round-trip to the server
to load any number of documents. Thus the incremental cost
of retrieving another document is low. The results show that
between 2 and 3 files the web services performance exceeds
that of the RMI implementation. When 5 files are loaded, the
web service takes half the time of RMI.

Localhost

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5
Files

M
ill

is
ec

on
ds

Web Service
RMI
RMI Optimized

Fig. 7. Performance of Web Service, RMI, and RMI Optimized with client
on same machine as server.

The results for a local area network configuration are given
in Fig. 8. In this case the latency is approximately 2ms.
With this higher level of latency, the web service and RMI
implementations are approximately equivalent for retrieving
one file. At 5 files, the web services takes only 25% of the
time of the RMI implementation.



Ping 2ms

0

50

100

150

200

250

1 2 3 4 5
Files

M
ill

is
ec

on
ds

Web Service
RMI
RMI Optimized

Fig. 8. Performance of Web Service, RMI, and RMI Optimized with client
on local area network (average ping time 2ms).

Finally, the results for the higher-latency wireless configu-
ration are given in Fig. 9. In this case the latency is 29ms.
The effect of increased latency on the RMI implementation
are clearly visible. The web service is faster retrieving any
number of documents. For 5 files, the web service takes only
12.5% of the time required by RMI. Web service performance
is essentially constant as the number of files increases.

As more and larger files are retrieved both RMI and the web
service will also experience bandwidth costs in transferring
files from the server to the client. These costs would be
fairly equivalent between the two, assuming that appropriate
compression schemes are used. However, the basic relation-
ship between latency and bandwidth is unlikely to change:
improvements in latency are more difficult than improvements
in bandwidth [17]. The key observation is that latency costs
dominate when performing multiple operations on remote
objects.

Ping 29ms

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5
Files

M
ill

is
ec

on
ds

Web Service
RMI
RMI Optimized

Fig. 9. Performance of Web Service, RMI, and RMI Optimized with client
on wireless network (average ping time 29ms).

IV. IMPROVING USABILITY AND PERFORMANCE

As seen in previous sections, the RMI implementation
is easy to use but has significant performance problems in
accessing multiple files with long paths. On the other hand,
the web service scales well (despite its initial higher cost), yet
is difficult to use. In this section we introduce a client-side
wrapper to improve the usability of the web service. It turns
out to be exactly what is needed to improve the performance
of the RMI implementation.

A. An Object-Oriented Wrapper for the Web Service Client

Using the Request and ResourceServer interfaces
directly is awkward. It exposes too many details about the
structure of the communication model. To solve this problem,
we defined a wrapper classes to assist the client in constructing
the request to the server, as shown in Fig. 10. The wrapper
automate the creation of request objects and the matching
of responses to requests after calling the server’s perform
method. The key point is that ClientRoot implements the
original Container interface in Fig. 1.
RequestWrapper provides sub and get methods that

create requests and futures on the client. A future is a
placeholder value for a response that will be returned from
the server in the future. The sub method instantiates a new
RequestWrapper object with the String value passed as
an argument, adds the new instance to its items array, and
returns the new RequestWrapper object. The get method
calls the ClientRoot to create a new future. It creates
a new result ID and initializes the RequestWrapper and
ResponseFuture with this ID.

The key to this interface is that the File objects re-
turned by get and invoke are not populated – they are
futures, or placeholders that are undefined until after the
call to the perform method. When the Request ob-
ject is fully constructed by the client and is passed to the
ResourceServer’s perform method, the wrapper fills in
the File objects using the data returned from the server.
The futures also perform error handling, by throwing the
FileNotFound exception if the status code of the result
file indicates an error. The same exception is thrown as in the
object-oriented interface, but it is thrown at a different time:
instead of being thrown by sub, it is thrown when the result
is accessed.

The client wrappers are as easy to use as the RMI interfaces.
For example, we used the code segment shown in Fig. 11 to
retrieve 20 files from a single directory on the server. Note that
different clients can implement different wrappers – clients
are responsible for creating their own web service interfaces,
rather then depending on the server to publish appropriate
interfaces.

B. Document-Oriented RMI Implementation

Implementing a document-oriented RMI implementation
involves careful design to allow the client to collect multiple
logical operations into a single request, which is then sent to
the server for processing.



class RequestWrapper
extends Request
implements Container {

ClientRoot root;

Request sub(String name) {
RequestWrapper[] items =
(RequestWrapper[]) getItemList();

// omitted: find named object in items,
// or creates if it does not exist.

}

public Response get() {
return root.newResponse(this);

}
}

class ClientRoot
implements ResourceServer {

RequestWrapper request;
ResourceServerBase server;
int nextID;
Vector<ResponseFuture> futures =
new Vector<ResponseFuture>();

// forward to request
public RequestWrapper sub(String name) {
return request.sub(name);

}

// perform complete request and decode results
void perform()
throws RemoteException, ServiceException

{
FileResult[] files = server.perform(request);

// fill in the futures
for (int i = 0; i < files.length; i++) {
FileResult file = files[i];
ResponseFuture future =
futures.get(file.getResultID());

future.setResult(file);
}

}

// create a response future
ResponseFuture newResponse(Request location) {
ResponseFuture resp = ResponseFuture();
futures.add(resp);
location.setResultID(++nextID);
return resp;

}
}

Fig. 10. Wrappers for an object-oriented to a document-oriented server

int numberOfFiles = 20;
ClientRoot request = new ClientRoot();
File[] docs = new File[20];

for (int i = 0; i < numberOfFiles; i++) {
String filename = "test" + i + ".htm";
Container base = request.sub("base");
docs[i] = base.sub(filename).get();

}
service.perform(request);
print(docs[3].getText()); ...

Fig. 11. Using the improved web service interface.

The key technique is the appropriate use of remote and
serializable objects to define which objects should be trans-
mitted as proxies, and which should be copied. In summary,
the strategy is to create a smart server stub, implemented by
the same ClientRoot used for wrapping the web service,
that is copied to the client to manage client-side interaction.
This stub contains a proxy that refers back to the server, which
implements the ResourceServer interface defined in Fig. 3
for processing requests.

The client stub collects client-side operations into a batch,
which is then transmitted to the server using the server proxy.
The batch is represented by a Request object, which is made
serializable so that it will be copied to the server. The server
returns a set of serializable response objects, which are copied
to the client. Since the client logic is the same as for the web
service wrapper, we reused the wrapper code.

Clients must use another remote object, the
ContainerRootFactory to obtain the smart
ClientRoot stub. Creating the factory is more complicated
than simply registering a remote object. The server contains
a remote object (the file server) contained in a serializable
object (the smart client wrapper) which is referenced by a
remote object (the factory):

// ResourceServer is Remote
ResourceServer server = new ResourceServer();
// ClientRoot is Serializable, server is proxy
ClientRoot root = new ClientRoot(server);
// ClientFactory is Remote
ClientFactory factory = new ClientFactory(root);
// Bind the factory
Naming.rebind("rmiopt", factory);

Since RequestWrapper is serializable, care must be
taken to avoid serializing the ClientRoot referenced by
the root vabiable: it is set to null before the request is sent.
In the web service implementation, only the Request part
of the RequestWrapper is serialized; in RMI it is harder
to select what parts of an object need to be serialized.

The steps in the execution of the optimized RMI server
are illustrated in Fig. 12. In step 1, the client connects to
the factory. In Step 2 the client calls create to obtain a
local copy of the smart container root. In step 3, the client
invokes operations on the container root that create a local
request object and the response futures. When the client calls



ContainerRootFactory

ClientRoot

ResourceServer

ContainerRootFactory

ClientRoot

ResourceServer

Server Client

RequestResponse

Response

1

2

3

4

5

7

Remotable Object

Request Remote Proxy

Serializable Object

Serializable Value

Object

Execution Step

Key

Copy by Serialization
Response

Future

Response

Future

6

Fig. 12. Steps in the execution of the optimized, wrapped server

perform, in step 4, the container root invokes the server
proxy with the request, causing the request to be copied to the
server. In step 5 the server processes the request and creates
the response structure. In step 6, the call to perform returns
and the response is copied to the client. Finally, in step 7
the response futures are filled in with the actual responses.
The response futures reuse the same code defined for the web
service, but instead of serializing with XML for a web service,
native Java serialization is used. As shown in Figs.7-9, the
resulting optimized RMI implementation is very fast and has
good scalability. Its main drawbacks are that it is difficult to
develop and is still platform-specific.

V. RELATED WORK

There are a number of existing studies that examine the
performance of web services and SOAP compared to other
distributed object technologies, including Java RMI. In each of
these studies, a comparison is made based on the performance
of a web service implementation that calls a simple method
and an RMI, CORBA, or other implementation that calls
the same method. The authors in [7] compare the round
trip method invocation times and instantiation times for all
simple data types for web services (with RPC), Java RMI,
and RMI with tunneling. The study described in [5] compare
20 different middleware implementations, including Java RMI
and web services with RPC encoding, using measurement of
an empty ‘ping’ method invocation on the server. Authors of
the other works cited [4], [6] performed similar studies with
measurements of single method invocations, in which the web
service implementation mimicked the RPC-style paradigm of

calling the server with multiple simple requests, always using
an RPC encoding in the web services implementation.

In all cases mentioned, the authors showed that web services
implementations performed slower than other implementa-
tions, and always slower than a Java RMI implementation.
Some of them pointed out that web services don’t provide
value in performance, but do provide a convenient way to
provide user interface, automatic firewall protection (because
they generally use HTTP for transport), mobility of applica-
tions, transparent proxies, and thin clients [2]. The authors in
[6] acknowledge that a naı̈ve use of web services to exactly
model CORBA resulted in an overwhelming degradation in
performance, a factor of 400 in this study, but with some
tuning this degradation was only a factor of 7.

It is not surprising that web services performed poorly in all
of these studies when one considers that they are not intended
to be used RPC-style like other distributed object technologies.
When considering performance alone, web services provide
value when the overhead of parsing XML and SOAP is
outweighed by the business logic or computation performed
on the server. Web services provide a literal encoding that
can be used in a document-centric paradigm rather than an
RPC-centric one. In this model, the client sends over multiple
requests in a single document to the server, and retrieves
multiple pieces of information back from the server in a single
XML document. In this study, we use the document-centric
nature of web services to show that web services implementa-
tions can outperform other traditional implementations when
this document-centric approach is used and compared with an
RPC-centric approach.

Davis [4] examines the call latency of SOAP implementa-



tions in comparison to Java RMI and CORBA. Call latency
is the total elapsed time for a call. When run on the same
machine, they show that web services implementations are
on average 20 times slower than Java RMI to call an empty
procedure without network delay. When run on different
machines the RPC systems reflect the small network delay
of approximately 0.4 ms in their test setup. Web services
experience a delay of approximately 170 ms, which they show
to be due to an interaction between acknowledgement packets
and the Nagle algorithm used to limit the number of small
packets on the internet.

Our design can be viewed as an explicit and generalized
form of batched futures [18]. The original definition that will
perform a remote operation for non-proxy data is needed, for
example when calling File.getStatusCode. In our web
service wrapper design, the remote operation is explicit; such
a call would raise an exception. The explicit approach is more
flexible and can be more efficient, because it allows multiple
requests for non-proxy data to be performed at the same time.

VI. CONCLUSION

In this project we challenged the existing studies that
compare the performance of web services and traditional
distributed object technologies, which have all shown that web
services perform poorly compared to traditional technologies
[4], [5], [6], [7]. We noted that these previously performed
studies constructed web services that exactly model the RPC-
style of traditional distributed object implementations like
Java RMI or CORBA. In these studies, the service created
performs a simple operation, for example, calling a simple
method without arguments that returns an integer or string
value [5]. We argued that by doing the opposite in this study,
using a scenario well suited for a web services implementation
and using design strategies that make web services effective,
we could show that web services can outperform traditional
technologies.

We implemented a web services and Java RMI program-
ming interface to the HTTP get method, providing a way for
clients to form requests and retrieve results from a server. In
the web services implementation, we pass a request for multi-
ple files in a single document, and receive all resulting files in a
single document. In the Java RMI RPC-style implementation,
each file retrieved requires at least one call to the server, with
the presence of subdirectories resulting in multiple trips.

A client-server program that allows the client to load a vari-
able number of files from the server was created with both web
service and RMI interfaces, and test scenarios that retrieved
a varying number of files were executed with three different
network latency conditions. All tests show the performance
benefits and near perfect scaling of the document-centric web
service implementation, particularly in the presence of network
latency, where it always outperformed the RMI interface.

The performance of the systems can be approximated by a
simple model based on latency time L, transmission/encoding
time T (defined as message size divided by bandwidth),
distributed object overhead D, and web service overhead W .

The RMI implementation executes in time n(L+T +D) while
the web service executes in L + nT + W , where n is the
number of operations performed in a batch. The batch size at
which web services will perform as well as distributed objects
is n̂ = (L + W )/(L + D). For low latencies, web services
are competitive only when for batches of (approximately) size
W/D. Given that W is currently much larger than D, web
services are only competitive if they can perform batches of
10 or more primitive RMI operations. Our tests indicate that
latencies can be equal or greater than W , in which case web
services are competitive with a batch size closer to 2.

We identified that the web service interface is awkward
and difficult to use. The RMI implementation is easy to
use but has significant performance problems. We suggested
a way to improve usability and performance by creating
an optimized document-centric RMI implementation. In this
implementation, the client constructs the request, a factory
sends the request to the server, and the results back to the
client, and the client populates the result structure from the
server response. This implementation has the best of both
worlds, outperforming the other two implementations in all
tests, and providing an interface that is easy to use.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 0448128.

REFERENCES

[1] W. Vogels, “Web services are not distributed objects.” IEEE Internet
Computing, vol. 7, no. 6, pp. 59–66, 2003.

[2] A. Gokhale, B. Kumar, and A. Sahuguet, “Reinventing the wheel?
CORBA vs. web services.” in Proceedings of the International World
Wide Web Conference, 2002.

[3] K. P. Birman, “Like it or not, web services are distributed objects,”
Commun. ACM, vol. 47, no. 12, pp. 60–62, 2004.

[4] D. Davis and M. Parashar, “Latency performance of SOAP implemen-
tations,” IEEE Cluster Computing and the Grid, 2002.

[5] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle, “Benchmarking
the round-trip latency of various java-based middleware platforms,”
Studia Informatica Universalis Regular Issue, vol. 4, no. 1, p. 724, May
2005, iSBN: 2912590310.

[6] R. Elfwing, U. Paulsson, and L. Lundberg, “Performance of SOAP in
web service environment compared to CORBA.” in APSEC. IEEE
Computer Society, 2002, pp. 84–.

[7] M. B. Juric, B. Kezmah, M. Hericko, I. Rozman, and I. Vezocnik,
“Java rmi, rmi tunneling and web services comparison and performance
analysis,” SIGPLAN Not., vol. 39, no. 5, pp. 58–65, 2004.

[8] OMG, The Common Object Request Broker: Architecture and Specifi-
cation. Object Management Group, Framingham, MA, 1998.

[9] “Distributed object component model (DCOM).” [Online]. Available:
http://www.microsoft.com/com/tech/DCOM.asp

[10] “Remote method invocation (RMI) in the jdk 1.1 specification.”
[Online]. Available: http://javasoft.com/products/jdk/1.1/docs/guide/rmi

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1,” 1999.
[Online]. Available: citeseer.ist.psu.edu/fielding97hypertext.html

[12] G. Booch, Object oriented analysis and design with applications.
Addison-Wesley, 1994.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web Services Description Language (WSDL) 1.1,” 2001,
http://www.w3.org/TR/wsdl.

[14] “Apache Axis,” 2002, http://xml.apache.org/axis/.
[15] S. Holzner, Eclipse. O’Reilly, 2004.
[16] Microsoft Developer Network Online Documentation,

http://msdn.microsoft.com.



[17] D. A. Patterson, “Latency lags bandwith,” Commun. ACM, vol. 47,
no. 10, pp. 71–75, 2004.

[18] P. Bogle and B. Liskov, “Reducing cross domain call overhead using
batched futures,” in OOPSLA ’94: Proceedings of the ninth annual
conference on Object-oriented programming systems, language, and
applications. New York, NY, USA: ACM Press, 1994, pp. 341–354.


