
Extracting Queries by Static Analysis of Transparent Persistence∗

Ben Wiedermann and William R. Cook
Department of Computer Sciences, The University of Texas at Austin

{ben,wcook}@cs.utexas.edu

Abstract
Transparent persistence promises to integrate programming lan-
guages and databases by allowing procedural programs to access
persistent data with the same ease as non-persistent data. When the
data is stored in a relational database, however, transparent persis-
tence does not naturally leverage the performance benefits of rela-
tional query optimization. We present a program analysis that com-
bines the benefits of both approaches by extracting database queries
from programs with transparent access to persistent data. The anal-
ysis uses a sound abstract interpretation of the original program to
approximate the data traversal paths in the program, and the condi-
tions under which the paths are used. The resulting paths are then
converted into a query, and the program is simplified by removing
redundant tests. We study an imperative kernel language with read-
only access to persistent data, and identify the conditions under
which the transformations can be applied. This analysis approach
promises to combine the software engineering benefits of trans-
parent data persistence with the performance benefits of database
query optimization.

1. Introduction
The effective integration of programming languages and databases
is a long-standing and critical open problem. From a programming
language viewpoint, databases manage persistent data, which has a
lifetime longer than the execution of an individual program. Ideally
a unified programming model should be applicable to both persis-
tent and non-persistent data. This goal has been pursued for the
last 30 years in numerous forms, including orthogonal persistence
[2, 3, 4, 22, 27], object-relational mapping [14, 19, 25, 31], and
object-oriented databases [11, 13, 24]. Despite differences in par-
ticular details, these approaches all share the goal of transparent
persistence—a programming paradigm wherein the programmer
need not distinguish between persistent and non-persistent values.

Transparent persistence can be added to most any language
by extending the concepts of automatic memory management &
garbage collection to the management of persistent data: by iden-
tifying a persistent root object, any object or value reachable from
the root is also persistent [4]. For example, the Java program in
Fig. 1 manipulates a collection of employee objects associated with
a root object. If root identifies a persistent store of objects, then the
employee objects may be loaded from that store. However, the pro-
gram’s function remains independent of whether root is persistent
or not.

This kind of transparent persistence does not easily leverage
the power of database query optimization. Database optimizations
work best when records are loaded in bulk and conditions for se-
lecting records are executed in the database rather than the pro-
cedural program. The mismatch between one-at-a-time processing
in procedural language and bulk data processing in query opera-
tions is called “impedance mismatch” [23]. To solve this problem,

∗ This work was supported by the National Science Foundation under Grant
No. 0448128.

for (Employee e : root .employees) {
if (e. salary > 65000) {

print (e.name + ": " + e.manager.name);
}}

Figure 1. A program using transparent persistence.

// define an explicit query
String query = ”from Employee e

left join fetch e.manager
where e. salary > 65000”;

// execute the query
List result = session .createQuery(query);
for (Employee e : result . list ()) {

// no test required : all elements already satisfy
// the condition salary > 65000
print (e.name + ": " + e.manager.name);

}

Figure 2. Explicit query execution using Hibernate.

many persistence models allow programmers to execute explicit
queries. For example, Fig. 2 uses Hibernate, an object-relational
mapping tool, and its query language HQL [19] to execute an ex-
plicit query. The query returns only employees with salary greater
than $65,000; the prefetch clause left join fetch e.manager in-
dicates that each employee’s manager should also be loaded. The
if statement in Fig. 1 is not needed in Fig. 2 because the query’s
where clause ensures the query only returns employees for which
the test is true.

Although the programs in Fig. 1 and Fig. 2 print the same re-
sults, they have different performance and software engineering
benefits. In the transparent persistence version, all employees will
be loaded even though only those with salary greater than $65,000
are printed. Manager objects will be loaded individually, because
the persistence layer cannot predict which ones will be needed.
In the Hibernate version, the underlying relational query optimizer
will likely use an index to locate all employees whose salary is
greater than $65,000. The optimized version runs in time propor-
tional to the size of the query result, rather than the total number of
employees and may be orders of magnitude faster [8].

Despite its performance benefits, there are some drawbacks to
the Hibernate version. Query strings are not checked at compile
time for syntax or type safety, and they reduce modularity and in-
crease the complexity of programming. Proposals to address these
problems [6, 10, 18] either reduce or do not address the trans-
parency of persistence. There is also a subtle dependency between
the query and the code: the prefetch clause is logically redundant
with the use of the employee’s manager in the print method.

This paper describes a static analysis technique that allows a
programming language with transparent persistence to leverage the

1 2006/7/26

l ∈ Variable

f ∈ Field

e ∈ Expression ::= l | e.f | opn(e1, . . . , en)

op0 ∈ Constant ::= true | false | number | string

op1 ::= ¬ | print

op2 ::= ∧ | ∨ | > | < | = | ≥ | ≤ | 6=
c ∈ Command ::= skip | l := e | c; c

| if e then c [else c]

| for l in e do c

Figure 3. Syntax of a persistent data kernel language.

power of query optimization. Our approach automatically partitions
programs by extracting data traversals and conditions into a query,
and removing them from the program—essentially transforming
the program in Fig. 1 into the program in Fig. 2. Our analysis
consists of three parts. The first part (Section 3) identifies the
traversals used in the program; these traversals specify the data that
must be loaded by the query. The second part (Section 4) identifies
the conditions under which data is used, for example by a print
method, so that the conditions can be included in the query. In the
final part (Section 5) the individual conditions on the use of fields
are promoted to apply to entire records, and a query is created. This
final step also modifies the program to use the results of the query,
and eliminates the redundant if statement.

The primary contribution of this paper is a new approach to op-
timization of transparent persistence, by extracting queries from
imperative programs. This result is based on a sound abstract in-
terpretation of programs, together with techniques for converting
the resulting abstract values into queries and simplifying the origi-
nal program. We have developed a prototype implementation of the
analysis and applied it to simple examples to demonstrate its via-
bility. While this work re-opens an important line of research, there
are many topics left to future work. In particular, we do not ana-
lyze the performance of the analysis or the transformed programs—
although the performance gains from query optimization are well-
known. We have not applied the analysis to large programs with
procedures, or addressed the problem of identifying where in a
large program the analysis should be applied. Complex query be-
haviors, like aggregation, exists queries, and database mutations
(creations, updates, and deletions) are not considered. We expect
that the current work will serve as a solid foundation for ongoing
work on these problems, with the goal of combining the software
engineering benefits of transparent persistence and the performance
benefits of query optimization.

2. A Kernel Language with Persistent Data
We study a simple imperative language with records and access
to persistent data. The persistent data is an instance of an Entity-
Relationship Model [9], which provides natural mappings to both
relational databases [5] and class models in UML/object-oriented
programming [34]. A persistent value is a record, or labeled prod-
uct, whose fields are either basic values or references to other
records (these are called “attributes” and “relationships” in an ER
model). A reference/relationship field may be either single-valued
or multi-valued. Multi-valued relationships correspond to collec-
tion objects in object-oriented programming. The language ex-
presses key concepts in practical orthogonally persistent object-
oriented languages, but it also has several restrictions. Only the
structural representation of data is considered, not behavioral meth-

?>=<89:;r0

employees

²²•
ι

vvnnnnnnnnnnnnnnn

ι

²²
ι

''OOOOOOOOOOOOOO

?>=<89:;r1
manager //

salary

²²

name

ÁÁ>
>>

>>
>>

>
?>=<89:;r2

manager //

salary

²²

name

ÀÀ;
;;

;;
;;

;
?>=<89:;r3

manager

uu

salary

²²

name

ÁÁ>
>>

>>
>>

>

50000 Adam 60000 Bob 70000 Cathy

Figure 4. An object graph example.

ods, and the language contains no procedures. We do not model the
three-valued logic of null values, but assume that a value is de-
fined for every persistent element a program accesses. While the
language supports imperative update of local variables, persistent
data is read-only. We believe these restrictions to be reasonable, as
the current work is designed to introduce a technique for extracting
procedural queries. Section 7 discusses extensions to support in-
terprocedural analysis, analysis of more complicated query idioms,
and creation, update or, deletion of persistent data.

2.1 Syntax
The abstract syntax of the kernel language is defined in Fig. 3. The
traversal expression e.f projects a field f of a record e. The value
of e.f can be a simple value, or references to one or more records.

Persistent data is introduced through a special root identifier
(variable) that refers to a record representing persistent data [4].
Any value that is reachable from the root is also persistent. As
mentioned above, no constructs create or modify persistent records;
all records are loaded from the persistent store.

Primitive functions opn have a specified number of arguments
n. Infix notation is used where appropriate.

The for command allows iteration over the elements of a col-
lection. For simplicity, iteration is supported only for multi-valued
database fields; however, the language could easily be extended to
allow collections of basic program values.

A simple static type system for records is assumed for this
language [29]; programs are assumed to be well typed.

2.2 Values
A program operates over the domain:

v ∈ Value = Basic + RecordID + RecordID∗

where Basic is the domain of basic values (integers, Booleans,
and strings), and RecordID is the domain of record identifiers that
reference persistent database values. When a program traverses a
record identifier, a runtime function Load :: RecordID×Field →
Value retrieves the corresponding record’s field value(s). A special
record identifier r0 corresponds to the store’s root, and the store’s
structure is the graph formed by the transitive closure of traversals
from r0.

Figure 4 illustrates a persistent object graph, against which
the program in Fig. 1 can be evaluated. The graph’s solid dot
denotes a collection of record identifiers, where the target of each
outgoing edge is a member of the collection. Each of these edges
is implicitly labeled with an iterator field name ι, which identifies
distinct elements of the collection.

2 2006/7/26

〈l, σ〉 → σ[l] (S-VAR)

〈skip, σ〉 → σ (S-SKIP)

〈e, σ〉 → r

〈e.f, σ〉 → Load(r, f)
(S-TRAVERSE)

〈ei, σ〉 → vi for i ∈ {1, . . . , n}
〈opn(e1, . . . , en), σ〉 → fopn

(v1, . . . , vn)
(S-OP)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1; c2, σ〉 → σ′′
(S-SEQ)

〈e, σ〉 → v

〈l:=e, σ〉 → [l 7→ v]σ
(S-ASSIGN)

〈e, σ〉 → true 〈c1, σ〉 → σ′

〈if e then c1 else c2, σ〉 → σ′
(S-IFT)

〈e, σ〉 → false 〈c2, σ〉 → σ′

〈if e then c1 else c2, σ〉 → σ′
(S-IFF)

〈e, σ〉 → {r1, . . . , rn}
〈c, [l 7→ ri]σi〉 → σi+1 for i ∈ {1, . . . , n}

〈for l in e do c, σ1〉 → σn+1/l
(S-FOR)

Figure 5. Operational semantics of the kernel language.

2.3 Semantics
Figure 5 defines a big-step operational semantics for the kernel lan-
guage. A store σ maps variables to values. The evaluation relations
for expressions 〈e, σ〉 → v and commands 〈c, σ〉 → σ′ follow
standard form. All programs begin computation with a store σ0 that
maps the variable root to the persistent value r0.

Rule S-VAR retrieves a variable’s value from the store. For op-
erations, rule S-OP evaluates the operands, then applies the opera-
tor’s function to the result. The functions ftrue, f¬, f<, etc., have
the standard, mathematical meanings. Note that these functions are
defined so that they return only primitive values, not record identi-
fiers. Rules S-SKIP, S-ASSIGN, S-SEQ, S-IFT and S-IFF are stan-
dard. The expression [l 7→ v]σ denotes σ updated so that σ[l] = v.

Rule S-TRAVERSE loads persistent data. If expression e evalu-
ates to the record identifier r, then the expression e.f evaluates to
the result of calling Load(r, f).

Rule S-FOR defines iteration over a collection of record iden-
tifiers. For each record identifier ri in the collection, the for com-
mand’s body c is evaluated in a new store σi that maps the loop
variable l to record identifier ri. The result of the entire command
is the final store produced σn+1. A loop variable is defined only in
the loop’s body, so the variable is removed from the final store.

One subtle difference between the semantics of object-oriented
programming languages and relational databases is that program-
ming languages often impose an order on iterated collections,
whereas databases do not. For our purposes, we assume a default
order exists for every database collection and that programs iterate
over collections in that order.

Output from the print function is modeled by a special variable
output; the print function simply concatenates onto the end of
this variable.

Evaluating the example program in Fig. 1 against the persistent
data in Fig. 4 generates a final store with the following mappings:

{root 7→ r0, output 7→ “Cathy : Cathy”}

2.4 Operational Semantics with Explicit Used-Set
Our analysis summarizes the set of persistent values a program
uses. These values—which we refer to as the program’s used-set—
can then be loaded in bulk before the program needs them. The
operational semantics of the base language is extended in Fig. 6
to keep track of a computation’s used-set. The modified semantics
has evaluation relations 〈e, σ〉 → 〈v, ρ〉 and 〈c, σ〉 → 〈σ, ρ〉 where
ρ is the set of database values that were loaded during the entire
computation. S-TRAVERSE is the only rule that loads database
values, so the rule adds the newly loaded values ρf to the set.

All other rules are modified to collect the loaded values for
any sub-computation, where

S
ρi is shorthand for

S
i∈{1,...,n} ρi.

Evaluating our running example with the extended semantics gen-
erates the following set of database values:

{r0, r1, 50000, r2, 60000, r3, 70000, “Cathy”}

3. Analyzing Traversals
Traversal analysis is an abstract interpretation [12] of the opera-
tional semantics in which database values are replaced by paths.
The path corresponding to a database value is the sequence of
field names traversed to load that value. Note that many database
values may have the same path; for example, in Fig. 4 the paths
to record identifiers r1, r2, and r3 are identical. Many paths
may lead to the same database value; for example, the value
r2.name can be reached by following either employees.ι.name
or employees.ι.manager.name.

Abstract interpretation uses abstraction and concretization func-
tions to specify the relationship between abstract and concrete val-
ues. Given an abstract path, its concretization is the set of database
values that can be reached by following the path. If the path in-
cludes a collection field, the concretized result includes all the
traversals of items in the collection. Thus concretization corre-
sponds to interpreting the path as a query against the database.

The analysis is conservative (sound), so that the concretization
of a path may return a larger set of database values than actually ap-
pear in the concrete execution of the program. However, because a
program typically operates over a small subset of a large database,
the amount of data represented by the concretized paths should be
small relative to the overall database size. Soundness justifies bulk
loading of data before executing the program; precision gives better
performance. The analysis in this section uses a loose approxima-
tion, but serves as a useful foundation for the more precise analysis
in Section 4.

3.1 Abstract Value Domain
The abstract value domain is

v̂ ∈ V̂alue = ℘(Path) +>
where ℘ is the powerset operator and Path is the finite set of paths
a program can traverse. All non-path values are abstracted away
as >. The domain forms a finite, complete lattice ordered by the
subset relation (⊆).

To ensure that the analysis terminates, we restrict Path to be
a finite subset of the all possible sequences of fields Field∗. One
possible finite subset is the set of paths in which each field name

3 2006/7/26

〈l, σ〉 → 〈σ[l], ∅〉 (U-VAR)

〈skip, σ〉 → 〈σ, ∅〉 (U-SKIP)

〈e, σ〉 → 〈r, ρe〉
ρf = Load(r, f)

〈e.f, σ〉 → 〈ρf , ρe ∪ ρf 〉 (U-TRAVERSE)

〈ei, σ〉 → 〈vi, ρi〉 for i ∈ {1, . . . , n}
〈opn(e1, . . . , en), σ〉 → 〈fopn

(v1, . . . , vn),∪ρi〉 (U-OP)

〈c1, σ〉 → 〈σ′, ρ1〉 〈c2, σ
′〉 → 〈σ′′, ρ2〉

〈c1; c2, σ〉 → 〈σ′′, ρ1 ∪ ρ2〉 (U-SEQ)

〈e, σ〉 → 〈v, ρe〉
〈l:=e, σ〉 → 〈[l 7→ v]σ, ρe〉 (U-ASSIGN)

〈e, σ〉 → 〈true, ρe〉 〈c1, σ〉 → 〈σ′, ρc〉
〈if e then c1 else c2, σ〉 → 〈σ′, ρe ∪ ρc〉 (U-IFT)

〈e, σ〉 → 〈false, ρe〉 〈c2, σ〉 → 〈σ′, ρc〉
〈if e then c1 else c2, σ〉 → 〈σ′, ρe ∪ ρc〉 (U-IFF)

〈e, σ〉 → 〈{r1, . . . , rn}, ρ1〉
〈c, [l 7→ ri]σi〉 → 〈σi+1, ρi+1〉 for i ∈ {1, . . . , n}

〈for l in e do c, σ1〉 → 〈σn+1/l,∪ρi〉 (U-FOR)

Figure 6. Operational semantics, extended to collect used-sets.

〈e, σ̂〉→̂〈πe, π〉
πf =

(
> f t ∈ πe

{p.f t | p ∈ πe} otherwise

〈e.f t, σ̂〉→̂〈πf , π t πf 〉
(A-TRAVERSE)

〈ei, σ̂〉→̂〈v̂i, πi〉 for i ∈ {1, . . . , n}
〈opn(e1, . . . , en), σ̂〉→̂〈>,

F
πi〉 (A-OP)

〈e, σ̂〉→̂〈v̂, πe〉
〈c1, σ̂〉→̂〈σ̂1, π1〉 〈c2, σ̂〉→̂〈σ̂2, π2〉

〈if e then c1 else c2, σ̂〉→̂〈σ̂1 t σ̂2, πe t π1 t π2〉 (A-IF)

〈l, σ̂〉→̂〈σ̂[l], ∅〉 (A-VAR)

〈e, σ̂〉→̂〈v̂, π〉
〈l:=e, σ̂〉→̂〈[l 7→ v̂] t σ̂, π〉 (A-ASSIGN)

〈e, σ̂〉→̂〈πe, π〉
πι = {p.ιl | p ∈ πe}

(σ̂′, π′) =
F{(do〈c, l, πι〉)n(σ̂, ∅) | n ∈ N}

〈for l in e do c, σ̂〉→̂〈σ̂′/l, π t πι t π′〉 (A-FOR)

〈c, [l 7→ πι] t σ̂〉→̂〈σ̂′, π′〉
do〈c, l, πι〉(σ̂, π) = (σ̂′, π t π′)

(A-DO)

Figure 7. Path-based abstract interpretation for approximating used-sets.

occurs at most once — any other paths would be abstracted as >.
With this domain, the expression root.manager.manager would
be assigned abstract value >, even though it is a finite path. On the
other hand, in the following program x should be assigned value>,
because it produces a path of unbounded length:

for employee in root .employees do
x := x.manager;

Note that this program is not very useful because there is usually
not a meaningful relationship between the number of employees in
a list and the depth of a manager traversal.

To distinguish these cases, we create the domain Path by label-
ing each field in the program, and considering all paths in which
each labeled field occurs at most once. With labels, the first expres-
sion root.manager1.manager2 has a finite path, but x in the exam-
ple above would still be assigned abstract value>. More expressive
abstractions for representing infinite paths would certainly be use-
ful, for example in the analysis of recursive procedures. However,
such abstractions are beyond the scope of the current work.

3.2 Abstract Semantics for Traversals
The operational semantics in Fig. 7 computes the paths a program
may traverse. For brevity we omit the rules A-SKIP and A-SEQ,
which merely collect values and paths for subcomputations.

The abstract semantics has evaluation relations for expressions
〈e, σ̂〉→̂〈v̂, π〉 and commands 〈c, σ̂〉→̂〈σ̂′, π〉, where v̂ is an ab-
stract value, σ̂ maps variables to abstract values, and π is the set of
paths traversed by a computation.

Rule A-TRAVERSE defines how field traversal extends a path.
In evaluating e.f t, if e yields the set of paths πe then the result
of the traversal extends each path in πe with the labeled field f t.
The traversal rule also includes a widening clause to ensure the
analysis converges. If the field label f t already appears in one of
the paths that e may traverse, then the program traverses an invalid
path in the sense described by Section 3.1. In this case, the analysis
approximates the expression’s traversals with >.

Rule A-OP gives > as the abstract value for any operation,
because the analysis ignores basic values. In Section 4 we extend
the analysis to include abstractions for basic values.

Rule A-IF combines the paths traversed in evaluating the con-
dition and the two command branches of an if statement. The join
σ̂1 t σ̂2 of two maps σ̂1 and σ̂2 is a map that includes all elements
of both maps:

(σ̂1 t σ̂2)[l] = σ̂1[l] t σ̂2[l]

If σ̂i is not defined for l, then σ̂i[l] = ∅.
Rule A-VAR retrieves a variable’s abstract value from the store

and does not generate any new paths.
Rule A-ASSIGN describes how a program binds a variable to an

abstract value. To ensure soundness, the store maintains a may-be-
bound-to relationship between variables and abstract values. Thus
the binding operation is a join, rather than an overwrite.

Rule A-FOR evaluates the expression e to determine the paths
πe representing the possible collections to be iterated. To each of
these paths, the analysis appends the iterator field name ιl that

4 2006/7/26

stands for a particular element of the collection. Thus, if the path
to the collection is f1.f2 and the collection’s elements each has a
field f3, then the path to one of the element’s f3 field is f1.f2.ι

l.f3.
Each collection iteration (for loop) that appears in a program has
a unique iterator field name ιl, where l is the corresponding loop
variable. Iterator field names are useful for transforming the analy-
sis results into a query, as discussed in Section 5.

The analysis approximates the loop body’s concrete behavior
by taking the transitive closure of abstractly executing the loop an
arbitrary number of times. This value is the least upper bound of a
function do that is specialized for a given command c, loop variable
l, and set of iterator paths πι. The function takes an initial store σ̂
and set of paths π and evaluates c under an updated store that maps
l to πι to yield a new store σ̂′ and a new set of paths π′. The result
of the function is σ̂′ and the combined path set π t π′.

The abstract evaluation of our running example generates a final
store with the following mappings

{root 7→ {ε}, output 7→ >}
and generates the following set of paths:

{ ε, employees, employees.ιe, employees.ιe.salary,
employees.ιe.name, employees.ιe.manager,
employees.ιe.manager.name }

3.3 Soundness
The analysis is sound if it safely approximates the values a pro-
gram loads. If the database stores a set of values V , and if exe-
cuting a program causes the set of persistent values ρ ⊆ V to be
loaded, then the analysis should describe a set of values ρ̂ such that
ρ ⊆ ρ̂ ⊆ V . We formalize this relation between concrete and ab-
stract values and prove that the operational semantics preserves the
relation.

The set of concrete values described by an abstract path is the
set of values reachable by following that path from the root. We
can formalize this description by lifting the definition of Load to
operate on paths:

Load(r, ε) = {r} (P-LOAD1)

Load(r, f) = {r1, . . . , rn}
Load(r, f.p) =

S
Load(ri, p)

(P-LOAD2)

Load(r, ιl.p) = Load(r, p) (P-LOAD3)

Rule P-LOAD1 states that traversing an empty path from record
identifier r yields the set containing r. Rule P-LOAD2 loads one
level of the traversal hierarchy, then recursively loads the remainder
of the hierarchy. Rule P-LOAD3 removes an iterator field name
from a path, essentially binding the name to record identifier r.

A set of paths π safely approximates a set of values ρ if the set
of values reachable by following all paths in π is a superset of ρ:

ρR π ⇔ ρ ⊆
[
p∈π

Load(r0, p)

For our running example,
S

p∈π Load(r0, p) =

{ r0, r1, 50000, “Adam”, r2, 60000, “Bob”,
r3, 70000, “Cathy” }

which safely over-approximates the concrete results.
The abstract domain consists of sets of paths and >, so we lift

R to relate a concrete value v to a an abstract value v̂ as follows:

v R v̂ ⇔

8><>:{v} R v̂ v = r, v̂ = π

v R v̂ v = {r1, . . . , rn}, v̂ = π

v̂ = > otherwise

The first two cases relate record identifiers and paths, as above. The
final case states that> always safely approximates a basic program
value. The relation is lifted to be defined on stores as follows:

σ R σ̂ ⇔ ∀x ∈ Dom(σ) ∩Dom(σ̂).σ[x]R σ̂[x]

By these definitions, the initial stores are compatible, in that the
initial abstract store safely approximates the initial concrete store.

If we define an ordering on abstract stores as follows:

σ̂1 v σ̂2 ⇔ Dom(σ̂1) ⊆ Dom(σ̂2)

∧ ∀x ∈ Dom(σ̂1) ∩Dom(σ̂2).σ̂1[x] v σ̂2[x]

then the following lemma and its corollary state that if a concrete
value (or store) relates to one abstract value—and if that abstract
value is less than a second abstract value—then the concrete value
also relates to the second abstract value.

Lemma 1. For all v, v̂1, v̂2: v R v̂1 ∧ v̂1 v v̂2 ⇒ v R v̂2.

Corollary 1. For all σ, σ̂1, σ̂2: v R σ̂1 ∧ σ̂1 v σ̂2 ⇒ σ R σ̂2.

The lemma and corollary are trivially proved by examining the
possible values for v (σ) and v̂i (σ̂) and applying the appropriate
definition of R .

The proof that the abstract semantics preserves R requires
that we first prove the rules to be monotone. The following two
properties of lattices will be useful for proving monotonicity:

v̂1 v v̂2 ∧ v̂3 v v̂4 ⇒ v̂1 t v̂3 v v̂2 t v̂4 (1)

(∀v̂1 ∈ V1,∀v̂2 ∈ V2.v̂1 v v̂2) ⇒
G

V1 v
G

V2 (2)

The first property states that the upper bound of a pair of “lower”
elements (v̂1, v̂3) is less than the upper bound of a pair of “higher”
elements (v̂2, v̂4). The second property describes the same relation-
ship for sets of lattice elements, rather than pairs.

Theorem 1 (Monotonicity of Expression Evaluation). For all σ̂1,
σ̂2, e:

σ̂1 v σ̂2 〈e, σ̂1〉→̂〈v̂1, π1〉 〈e, σ̂2〉→̂〈v̂2, π2〉
(v̂1, π1) v (v̂2, π2)

where (v̂1, π1) v (v̂2, π2) means (v̂1 v v̂2) ∧ (π1 v π2).

Proof. By induction on the structure of e

Case e ≡ [[l]] Rule A-VAR gives (v̂1, π1) = (σ̂1[l], ∅) and (v̂2, π2) =
(σ̂2[l], ∅). The premise σ̂1 v σ̂2 yields the desired result.

Case e ≡ [[opn(e1, . . . , en)]] Rule A-OP gives (v̂1, π1) = (>, π̄1)
and (v̂2, π2) = (>, π̄2), where π̄i is the results of analyzing the
operand expressions. The induction hypothesis and property (2)
yield

F
π̄1 v

F
π̄2.

Case e ≡ [[e.f t]] Rule A-TRAVERSE first evaluates e which gives
results v̂e1 = (πe1 , π′1) and v̂e2 = (πe2 , π′2). There are four
cases to consider for the final results of the analysis v̂1, v̂2:
Case 1 f t ∈ πe1 , f t ∈ πe2: Then v̂1 = v̂2 = >.
Case 2 f t ∈ πe1 , f t 6∈ πe2 : Not possible, because the induc-

tion hypothesis asserts πe1 v πe2 , which implies f t ∈ πe2 .
Case 3 f t 6∈ πe1 , f t ∈ πe2 : In this case, v̂1 = {p.f t | p ∈

πe1} v v̂2 = >.
Case 4 f t 6∈ πe1 , f t 6∈ πe2 : In this case, the induction hypoth-

esis assures v̂1 = {p.f t | p ∈ πe1} v v̂2 = {p.f t | p ∈
πe2}.

Finally, (2) gives π1 = v̂1 t π′1 v π2 = v̂2 t π′2.

5 2006/7/26

Theorem 2 (Monotonicity of Command Evaluation). For all σ̂1,
σ̂2, c

σ̂1 v σ̂2 〈c, σ̂1〉→̂〈σ̂′1, π1〉 〈c, σ̂2〉→̂〈σ̂′2, π2〉
(σ̂′1, π1) v (σ̂′2, π2)

Proof. By induction on the structure of c. We omit the proofs for
skip, if commands, and sequences of commands, because these
proofs merely appeal to the induction hypothesis and properties (1)
and (2).

Case c ≡ [[l := e]] Rule A-ASSIGN first evaluates e and gives re-
sults (v̂1, π1) and (v̂2, π2). The rule then gives σ̂′1[l] = v̂1 t
σ̂1[l] and σ̂′2[l] = v̂2 t σ̂2[l]. Theorem 1, the induction hypoth-
esis, and (1) give the full result (σ̂′1, π1) v (σ̂′2, π2).

Case c ≡ [[for l in e do c]] Rule A-FOR first evaluates the collec-
tion expression, giving results (πe1 , π1) and (πe2 , π2). The rule
then creates iterator paths sets πι1 and πι2 . The premise states
that σ̂1 v σ̂2 and the induction hypothesis asserts πι1 v πι2 .
Next it must be shown that do is monotonic:

σ̂1 v σ̂2 πι1 v πι2 π1 v π2

do〈c, l, πι1〉(σ̂1, π1) = (σ̂′1, π
′
1)

do〈c, l, πι2〉(σ̂2, π2) = (σ̂′2, π
′
2)

(σ̂′1, π
′
1) v (σ̂′2, π

′
2)

This result can be achieved because do makes the transition
〈c, [l 7→ πιi] t σ̂i〉→̂〈σ̂′i, πci〉. The first two premises of the
above rule and (1) give [l 7→ πι1] t σ̂1 v [l 7→ πι2] t σ̂2. The
main induction hypothesis then yields σ̂′1 v σ̂′2 and πc1 v πc2 .
The premise π1 v π2 and (1) give π′1 = π1 t πc1 v π′2 =
π2 t πc2 . Thus do is monotonic.
Returning to the for case: Because do is monotonic and because
σ̂1 v σ̂2 and πι1 v πι2 , (2) yields the conclusion:

(σ̂′1, π
′
1) =

F{(do〈c, l, πι1〉)n(σ̂1, ∅) | n ∈ N}
v

(σ̂′2, π
′
2) =

F{(do〈c, l, πι2〉)n(σ̂2, ∅) | n ∈ N}
The full result (σ̂′1/l, π1 t πι1 t π′1) v (σ̂′2/l, π2 t πι2 t π′2)
is achieved by applying (2).

We now proceed to show that the computation semantics pre-
serve R . Computation soundness requires the following lemma,
which states that compatibility is maintained when combining the
results of compatible subcomputations.

Lemma 2 (Subcomputation compatibility). If (ρ1 R π1) and
(ρ2 R π2), then (ρ1 ∪ ρ2)R (π1 t π2).

Proof. If π1 t π2 = >, then the relation trivially holds. Other-
wise, by the definition of R , ρ1 ⊆ S

p∈π1
Load(p) and ρ2 ⊆S

p∈π2
Load(p). Since ρ1∪ρ2 ⊆

S
p∈π1∪π2

Load(p), the relation
holds.

Theorem 3 (Soundness of expression evaluation). For all σ, σ̂, e,

〈e, σ〉 → 〈v, ρ〉 〈e, σ̂〉 → 〈v̂, π〉 σ R σ̂

(v, ρ)R (v̂, π)

Proof. By induction on the structure of e.

Base case e ≡ [[l]] The concrete and abstract semantics rules for
this case give (v, ρ) = (σ[l], ∅) and (v̂, π) = (σ̂[l], ∅). The
premise σ R σ̂ yields the desired result.

The induction hypothesis asserts that evaluating subexpressions
produces sound results. It remains to show that evaluating operators
and traversals produces sound results.

Case e ≡ [[opn(e1, . . . , en)]] In this case, v̂ = >, so v R v̂ by
definition. The rules state ρ =

S
ρi and π =

F
πi. The

induction hypothesis and Lemma 2 achieve ρR π.
Case e ≡ [[e.f t]] If rule A-TRAVERSE analyzes the record expres-

sion e and gives > for πf , then the case is proved. Other-
wise, 〈e, σ〉 → 〈r, ρ〉, 〈e, σ̂〉→̂〈πe, π〉, rule U-TRAVERSE
gives ρf = Load(r, f) and rule A-TRAVERSE gives πf =
{p.f t | p ∈ πe} The induction hypothesis gives r R πe. A
simple inductive argument shows that P-LOAD guarantees the
following property, which states that if record identifier r can
be reached by following path p from the root, then the record
identifiers that correspond to r’s field f can be reached from
the root by following p extended with f .

r ∈ Load(r0, p)

Load(r, f) ⊆ Load(r0, p.f)
(3)

Thus, if r ∈ ρ then ρf R πf . This result, the induction hypoth-
esis, and Lemma 2 give (ρf ∪ ρ)R (πf t π).

Theorem 4 (Soundness of command evaluation). For all σ, σ̂, c,

〈c, σ〉 → 〈σ′, ρ〉 〈c, σ̂〉 → 〈σ̂′, π〉 σ R σ̂

(σ′, ρ)R (σ̂′, π)

Proof. By induction on the structure of c.

Base case c ≡ [[skip]] The premises suffice, because the command
neither alters the store nor generates any database loads.

The induction hypothesis asserts that analyzing subcommands
produces sound results. We omit the proof case for sequences,
because that case merely invokes the induction hypothesis.

Case c ≡ [[l := e]] The semantic rules give 〈e, σ〉 → 〈v, ρ〉 and
〈e, σ̂〉→̂〈v̂, π〉. The conclusion ρR π is given by Theorem 3,
which also gives v R v̂. The premise σ R σ̂ guarantees that σ′

and σ̂′ relate for all variables that are not l. It remains to show
that σ′[l]R σ̂′[l]. Proceed by cases:
Case 1: σ[l], σ̂[l] undefined. In this case, σ′[l] = [l 7→ v]σ and

σ̂′[l] = [l 7→ v̂]σ̂. The result v R v̂ suffices.
Case 2: σ[l] = v0, σ̂[l] = v̂0. In this case, σ′ = [l 7→ v]σ and

σ̂′ = [l 7→ v̂ t v̂0]σ̂. The premise and Lemma 1 guarantee
v R (v̂ t v̂0).

Case 3: σ[l] undefined, σ̂[l] = v̂0. Same as Case 2.
Case 4: σ[l] = v0, σ̂[l] undefined. This case cannot occur,

because the semantic rules guarantee Dom(σ) ⊆ Dom(σ̂).
Case c ≡ [[if e then c1 else c2]] If 〈e, σ〉 → 〈true, ρ〉, then the

concrete semantics gives 〈c1, σ〉 → 〈σ′, ρ〉 and the abstract
semantics gives 〈c1, σ̂〉 → 〈σ̂1, π1〉 and 〈c2, σ̂〉 → 〈σ̂2, π2〉.
By the structural induction hypothesis, ρR π1 and σ′ R σ̂1.
Lemma 2 yields ρR π1 t π2 and σ′ R σ̂1 t σ̂2. The argument
for 〈e, σ〉 → 〈false, ρ〉 proceeds similarly.

Case c ≡ [[for l in e do c]] Theorem 2 states that do is mono-
tone. The Knaster-Tarski theorem thus asserts that a fixpoint
exists, i.e. there is a number m such that dom

c,l,πe
(σ̂, ∅) =F{do〈c, l, πι〉i(σ̂, ∅) | i ∈ N}. Because this value is the great-

est fixpoint, we can conclude do〈c, l, πι〉n(σ̂, ∅) v
do〈c, l, πι〉m(σ̂, ∅), where n is the number of iterations that
take place when the program actually executes.

6 2006/7/26

4. Analyzing Traversal Conditions
The precision of the analysis can be significantly increased by
analyzing the conditions under which a program traverses its paths.
For example, the analysis in the previous section conservatively
estimates that the program in Fig. 1 needs the name field for every
employee even though the program traverses the name field only
if the employee’s salary is greater than $65,000. We extend our
analysis to identify and include such conditions, so that they may
be expressed in a database query.

4.1 Query Conditions
A query condition is a conditional program expression that can
be expressed as a part of a query and evaluated by a database.
Databases typically only allow conditions that operate on individ-
ual records of a set; for example, the select operator in relational
algebra evaluates a condition separately for each tuple in a relation.
An expression in the kernel language is a query condition if it sat-
isfies the following requirements, related to the requirements for
parallelizing code in a parallelizing compiler [1, 30]. The require-
ments are illustrated in Fig. 8, where the notation C[l] means that
condition C can depend upon variable l .

1. The database must be able to evaluate all operations (e.g., >)
that appear in the expression. The database evaluation should
produce the same result as program evaluation.

2. The expression can contain no loop-carried dependences [1]. A
loop-carried dependence occurs when the evaluation of an ex-
pression in a loop depends upon variables assigned in previous
iterations of a loop. The condition in (a) is a query condition
because x is redefined in each iteration of the loop. Example (b)
is not because x has a loop-carried dependence.

3. The paths the expression traverses can refer to no more than one
element from a given collection. If an expression meets this re-
quirement, its paths are distinct. Both conditions of example (c)
are query conditions, because each expression depends on only
one element of a given collection. Condition C2 of example (d)
is not a query condition, because it depends on a variable bound
in a different iteration.

4. The expression may traverse paths that refer to elements of
more than one collection, but only if the expression refers to
elements of nested collections that correspond with the nested
bindings of loop variables that a query can express. This restric-
tion is satisfied when each nested loop iterates over a path that
extends the path of its outer loop(s). Example (e) is a query con-
dition because the expression depends only on paths that satisfy
this condition. Example (f) is not a query condition because the
expression depends on two unrelated collections.

These restrictions do not prevent common programming idioms
used in data-intensive applications. A more powerful query trans-
lation could support more complex conditions.

4.2 Data Dependences
A program’s data dependences [1] provide information about which
persistent values the program must retrieve. If a persistent value
affects the contents of the final store, the program must retrieve that
value. Assignment statements introduce data dependences, because
any assigned value may affect the contents of the final store. Loop
variables, however, do not directly induce a data dependence on the
final store, because these variables are removed from the store after
the loop terminates. We extend our analysis to collect information
about which paths induce data dependences. The query creation
algorithm in Section 5 uses this information to ensure retrieval of
all values represented by data-dependent paths.

for l1 in p
x := E[l1]
if C[l1,x] then S

for l1 in p
x := E[l1] + x
if C[l1,x] then S

(a) C is a query condition (b) C is not a query condition

for l1 in p
if C1[l1] then S1

for l2 in p
if C2[l2] then S2

for l1 in p
if C1[l1] then

x := e[l1]
for l2 in p

if C2[l2,x] then S

(c) C1,2 are query conditions (d) C2 is not a query condition

for l1 in p
for l2 in l1.f

if C[l1,l2] then S

for l1 in p1

for l2 in p2

if C[l1,l2] then S

(e) C is a query condition (f) C is not a query condition

Figure 8. Examples of conditions and iterations.

4.3 Domains for Paths with Conditions
A path p[k] represents a query of the database for values located
at path p for which the condition k is true. The condition is ex-
pressed as an operation on abstract values, including other paths.
The domain of abstract values is extended to include conditions:

k ∈ Condition ::= opt
n(v̂1, . . . , v̂n)

cp ∈ CPath ::= p[k] | p[k]?

v̂ ∈ V̂ alue ::= ℘(CPath) + ℘(Condition) +>
A path marked p[k]? is involved in a data dependence. A non-
conditional path p is lifted to a conditional path p[true] signifying
that the path is always traversed. The label t in a condition is
a syntactic label constructed in the same fashion described for
traversals in Section 3.1. The syntactic labels of a given program
restrict the domain of CPath to be finite.

4.4 Abstract Semantics for Conditional Traversals
Figure 9 extends the abstract semantics to include the condition k
under which a program traverses a path. The evaluation relation
k, I ` 〈e, σ̂〉→̂〈v̂, π〉means that e evaluates to v̂ under condition k
in abstract store σ̂, with a list of enclosing iteration variable paths
I . Initially k is set to true , and I is empty. We omit rules K-VAR,
K-SKIP, and K-SEQ because these rules only collect the results of
subcomputation and do not alter the context.

Rule K-IF1 identifies query conditions. The analysis first deter-
mines that e contains no loop-carried dependences. This determi-
nation is the result of a standard analysis; for brevity, we omit its
details. The analysis also checks that all paths in the condition’s
abstract value are distinct, in the sense that they do not traverse
the same set of fields with different iteration variables. Finally, it
checks that all the paths used in the expression are based on lexi-
cally enclosing iteration paths.

The lexically enclosing iterations needed by K-IF1 are created
by K-FOR. The rule appends a new set of paths πι to the list of
iteration paths I only if all paths in πι extend some path in In, the
list’s most recently added member. In this way, K-FOR maintains
the constraint that I is a list of lexically enclosing iteration paths.
Other than imposing this constraint on I , K-FOR is the same as
A-FOR (Fig. 7).

Query conditions are used in the true and false branches of the
if command. Given the abstract value v̂ of e, the true-branch body

7 2006/7/26

e contains no loop-carried dependences
k, I ` 〈e, σ̂〉→̂〈v̂, πe〉

Distinct(Paths(v̂)) Trim(Paths(v̂)) ⊆ I
(k ∧ v̂), I ` 〈c1, σ̂〉→̂〈σ̂1, π1〉

(k ∧ ¬v̂), I ` 〈c2, σ̂〉→̂〈σ̂2, π2〉
π′ = πe t π1 t π2

k, I ` 〈if e then c1 else c2, σ̂〉→̂〈σ̂1 t σ̂2, π
′〉 (K-IF1)

K-IF1 does not apply
k, I ` 〈c1, σ̂〉→̂〈σ̂1, π1〉
k, I ` 〈c2, σ̂〉→̂〈σ̂2, π2〉

π′ = πe t π1 t π2

k, I ` 〈if e then c1 else c2, σ̂〉→̂〈σ1 t σ2, π
′〉 (K-IF2)

k, I ` 〈e, σ̂〉→̂〈v̂, π〉
k, I ` 〈l:=e, σ̂〉→̂〈[l 7→ v̂] t σ̂, π? t In[k]?〉 (K-ASSIGN)

∀p1, p2 ∈ π : Erase(p1) = Erase(p2) ⇒ p1 = p2

Distinct(π)

Erase(f̄1.ι
l1 . · · · .ιln .f̄n+1) = f̄1. · · · .f̄n+1

Trim(π) = {p.ιl | p.ιl.f̄ ∈ π}
Paths(π) = π

Paths(opn(e1, . . . , en)) = Paths(e1) t · · · t Paths(en)

k, I ` 〈e, σ̂〉→̂〈πe, π〉
πf =

(
> f t ∈ πe

{p.f t[k] | p ∈ πe} f t 6∈ πe

k, I ` 〈e.f t, σ̂〉→̂〈πf , π t πf 〉
(K-TRAVERSE)

k, I ` 〈ei, σ̂〉→̂〈v̂i, πi〉 for i ∈ {1, . . . , n}
v̂ =

(
> opt

n ∈ v̂i

opt
n(v̂1, . . . , v̂n) opt

n /∈ v̂i

k, I ` 〈opt
n(e1, . . . , en), σ̂〉→̂〈v̂,

F
πi〉 (K-OP)

k, I ` 〈e, σ̂〉→̂〈πe, π〉
πι = {p.ιl | p ∈ πe}
I ′ = Extend(I, πι)

(σ̂′, π′) =
F{(do〈k, I ′, c, l, πι〉)n(σ̂, ∅) | n ∈ N}

k, I ` 〈for l in e do c, σ̂〉→̂〈σ̂′/l, π t πι t π′〉 (K-FOR)

k, I ` 〈c, [l 7→ πι] t σ̂〉→̂〈σ̂′, π′〉
do〈k, I, c, l, πι〉(σ̂, π) = (σ̂′, π t π′)

(K-DO)

Extend(I, πι) =

8><>:πι n = 0

I, πι Prefixes(In, πι)

I otherwise

∀p2 ∈ π2 : (∃p1 ∈ π1,∃p′ ∈ Field∗ : p1.p
′ = p2)

Prefixes(π1, π2)

Figure 9. Abstract interpretation with paths and conditions.

is evaluated under the condition k ∧ v̂ and the false-branch body
under the condition k ∧ ¬v̂. When the program makes a traversal,
rule K-TRAVERSE attaches the condition k to the path generated
by the traversal.

If the condition does not satisfy the requirements of a query
condition, rule K-IF2 does not augment the paths with conditions.

Rule K-ASSIGN performs assignments but also marks all paths
in the bound expression as having data dependences. π? means the
marking of all paths in π with ?, and In[k]? means marking all
paths in In with condition k and ?. The iteration variable paths
themselves are marked as a data dependence because the execution
of any assignment can depend upon the existence of an element in
an iteration, even if no fields of the iteration variable are used. For
example, in the program for x in p do y := y + 1, the variable
x is never used, yet there is still a data dependence upon it because
its elements must be enumerated.

Rule K-OP defines the semantics of operations on abstract val-
ues. The operands are evaluated and the operator is retained in the
result. The rule also includes a widening clause to ensure conver-
gence to a fixed-point. The rule is similar to the one for traversals:
If the syntactic use of the operator opn already occurs in one of the
v̂i, then the expression evaluates to >.

The abstract evaluation of our running example generates a final
store with the following mappings:

root 7→ {ε}, output 7→
{print(employees.ιe.name[{employees.ιe.salary} > 65000]+

employees.ιe.manager.name[{employees.ιe.salary} > 65000]}

and the following set of paths:

{ ε, employees, employees.ιe, employees.ιe.salary,
employees.ιe[{employees.ιe.salary} > 65000]?,
employees.ιe.name[{employees.ιe.salary} > 65000]?,
employees.ιe.manager[{employees.ιe.salary} > 65000]?,
employees.ι.manager.name[{employees.ιe.salary} > 65000]?}

At this stage of the analysis, the conditions apply to the final
attributes loaded by a path. In Section 5 we further analyze the
conditions and paths to avoid loading entire records.

4.5 Soundness
Proceeding as before, we define the load operation for conditional
paths and define the relations between concrete and abstract do-
mains. We then prove that evaluation preserves these relations. This
proof relies on the previous soundness proof (Section 3.3).

The load operation for conditional paths is defined in Fig. 10.
Function CLoad i loads all records reachable by a path p, provided
the path’s condition k may be true . A mapping φ binds an iterator
field name to a specific record identifier, to be referenced in the
evaluation of the path’s condition. CLoad1 creates iterator field
name bindings, and CLoad2 uses the bindings.

Function eval defines condition evaluation. Operator evaluation
calls eval on the operands and applies f ′opn

to the results, where

f ′opn
(v̂1, . . . , v̂n) =

(
> > ∈ {v̂1, . . . , v̂n}
fopn

(v̂1, . . . , v̂n) otherwise

Note that because the underlying operators are monotonic, all func-
tions f ′ are also monotonic.

8 2006/7/26

CLoad i(r, ε[k], φ) =

(
{r} true v eval(k, φ)

∅ otherwise

CLoad i(r, f.p[k], φ) =
[

r′∈Load(r,f)

CLoad i(r
′, p[k], φ)

CLoad1(r, ι
l.p[k], φ) = CLoad1(r, p[k], [ιl 7→ r]φ)

CLoad2(r, ι
l.p[k], φ) = CLoad2(φ(ιl), p[k], φ)

eval(p[k], φ) =
G

CLoad2(r0, p[k], φ)

eval(opn(v̂1 . . . v̂n), φ) = f ′opn
(eval(v̂i, φ), . . . , eval(v̂n, φ))

eval(S, φ) =
Ĝ
v∈S

eval(v̂, φ)

Figure 10. Conditional record loading.

Path evaluation calls CLoad2 on the path, passing bindings φ
for any iterator field names that appear in the path. Note that, be-
cause the evaluated path can appear only in an operation expres-
sion, the result of path evaluation must be a set that contains a sin-
gle basic value. The least upper bound operation (t) retrieves this
value from the set. Evaluating a set of abstract values yields the
least upper bound of evaluating each value in the set.

A set π of conditional paths safely approximates the persistent
values a program loads if it describes a superset of those values.
We modify the definitions of R to relate concrete values and
conditional paths:

ρR π ⇔ ρ ⊆
[

p[k]∈π

CLoad1(r0, p[k], ∅)

(v, σ)R v̂ ⇔

8>>><>>>:
{v} R v̂ v = r, v̂ = π

v R v̂ v = {r1, ..., rn}, v̂ = π

v v eval(v̂, φσ) v ∈ Basic, v̂ = k

v̂ = > otherwise

σ R σ̂ ⇔ ∀x ∈ Dom(σ) ∩Dom(σ̂).(σ[x], σ)R σ̂[x]

The relation between concrete and abstract values is defined
only in the context of a store, because the store provides a binding
for any iterator field names that may appear in paths and conditions.
When v̂ is an abstract operation, evaluating v̂ must approximate v.
If L is the set of loop variables that appear in the entire program,
φσ =

S
l∈L[ιl 7→ σ[l]], where σ[l] = > if σ[l] is undefined. As

before, R is lifted to be defined on stores.
To prove soundness, we first show that expression evaluation

gives the same results as the analysis in Section 3.3, assuming that
evaluating every path condition may give the value true. We then
show that the analysis only constructs conditions that satisfy this
assumption. Proof of soundness for command evaluation follows
trivially.

As before, we state a lemma for soundness of subcomputation.
The lemma’s proof proceeds similarly to that of Lemma 2.

Lemma 3 (Subcomputation compatibility). If (ρ1 R π1) and
(ρ2 R π2), then (ρ1 ∪ ρ2)R (π1 t π2).

Theorem 5 (Soundness of expression evaluation). For all e, σ, σ̂,
k:

〈e, σ〉 → 〈v, ρ〉 k, I ` 〈e, σ̂〉→̂〈v̂, π〉
σ R σ̂ true v eval(k, φσ)

((v, σ), ρ)R (v̂, π)

Proof. By induction on the structure of e.

Base case e ≡ [[l]] In this case, (v, ρ) = (σ[l], ∅) and (v̂, π) =
(σ̂[l], ∅) The premise σ R σ̂ gives the desired result.

The induction hypothesis asserts that evaluating subexpressions
under condition k produces sound results. It remains to show that
evaluating operators and traversals under condition k produces
sound results.

Case e ≡ [[opt
n(e1 . . . en)]] If the abstract semantics gives v̂ = >

for e, then this case is trivially proved. Otherwise, it must be
shown that if, for each ei, the concrete semantics gives (vi, ρi)
and the abstract semantics gives (v̂i, πi), then:

fopn
(v1, . . . , vn) = f ′opn

(v1, . . . , vn)
v

eval(opn(v̂1, . . . , v̂n), φσ) = f ′opn
(eval(v̂i, φ), . . . , eval(v̂n, φ))

Because f ′ is monotonic, it suffices to show that if (vi, σ)R v̂i,
then vi v eval(v̂i, φσ). If vi is a basic value, then the definition
of R suffices. It remains to be shown that if vi is a record
identifier,

vi v
G

p[k]∈v̂i

nG
CLoad2(r0, p[k], φσ)

o
Because vi R v̂i, there exists some paths π′ ⊆ v̂i such that
vi ∈ CLoad1(r0, p

′, ∅), where p′ ∈ π′. Calling CLoad1

on these paths generates of set of iterator field bindings Φ
that includes φσ; therefore r ∈ Sp[k]∈v̂ CLoad2(r0, p[k], φσ).
Hence, the desired result that evaluating all paths in v̂i with
bindings φσ approximates r. Lemma 3 gives

S
ρi R

F
πi.

Case e ≡ [[e.f t]] Rules U-TRAVERSE and K-TRAVERSE and the
induction hypothesis give (r, ρe)R (πe, π) for the subex-
pression e. For the entire expression, the rules give ρf =
Load(r, f), πf = {p.f t[k] | p ∈ πe}. If true v eval(k, φσ),
then πf = {p.f t | p ∈ πe}. Section 3.3 proved soundness for
this case. Lemma 3 gives (ρe ∪ ρf)R (π t πf).

Theorem 6 (Condition evaluation approximates true). For all σ,
σ̂, conditions k produced by the analysis:

σ R σ̂

true v eval(k, φσ)

Proof. By induction on the structure of k.

Base case k = true Trivial, because eval(true,) = true .

The induction hypothesis asserts that evaluating subconditions
approximates true . It remains to prove the theorem for any condi-
tion k′ the analysis creates.

Case k′ ≡ [[k ∧ v̂]], v̂ is a query condition In this case, the analy-
sis attaches k′ to all paths generated by the true-branch of an if.
So, it must be shown:

〈e, σ〉 → 〈true, ρ〉 k, I ` 〈e, σ̂〉→̂〈v̂, π〉 σ R σ̂

true v eval(k ∧ v̂, φσ)

The induction hypothesis states true v eval(k, φσ), so it re-
mains to show true v eval(v̂, φσ). The induction hypoth-
esis also enables the invocation of Theorem 5, which gives
(true, σ)R v̂ which is defined to mean true v eval(v̂, φσ).

9 2006/7/26

Case k′ ≡ [[k ∧ ¬v̂]], v̂ is a query condition In this case, the anal-
ysis attaches k′ to all paths generated by the false-branch of an
if. So, it must be shown:

〈e, σ〉 → 〈false, ρ〉 k, I ` 〈e, σ̂〉→̂〈v̂, π〉 σ R σ̂

true v eval(k ∧ ¬v̂, φσ)

Proceeding as above, Theorem 5 gives false v eval(v̂, φσ).
Since f ′¬ is monotonic, true v ¬eval(v̂, φσ). A simple analy-
sis on the domain of f ′¬ gives ¬eval(v̂, φ) = eval(¬v̂, φ), and
the desired conclusion is reached.

Note that the transfer functions of this extended semantics are
also monotonic. Thus the proof of soundness for commands is sim-
ilar to that of Theorem 4, with appropriate applications of Theo-
rems 5 and 6.

5. Query Creation and Program Simplification
The results of static analysis can now be employed to partition the
original program into a query and its client. The query retrieves
a subset of the database on which the client program executes.
In some cases, the client program may be simplified by removing
conditional tests that become redundant when executed on the data
subset.

5.1 Query Creation
The concretization of a conditional path corresponds to a query
against the database. In its current form, the conditions are associ-
ated with the use of individual attributes, yet conditionally loading
an attribute is not nearly as useful as conditionally loading an en-
tire record. To avoid loading records, the conditions on individual
attributes are promoted to apply to iteration fields.

We provide an informal argument, rather than a formal proof,
for the validity of promotion. Condition promotion depends on
the connection between individual attributes and object loading:
An object does not need to be loaded if none of its attributes are
needed and if the object does not affect the final outcome of the
program. Thus the condition for loading an object is the union
(disjunction) of the conditions of all uses of its attributes. In this
way, the conditions on attributes are promoted to be conditions on
elements of a collection. If any of the paths has the condition true ,
then all elements of the collection will be loaded. In the example,
only employees with salary greater than $65,000 should be loaded.

One important point is the difference between marked and un-
marked paths. A marked path p[k]? is a data dependence of the final
state of the program store. An unmarked path only affects the pro-
gram’s control flow—for example, in a condition. Only conditions
on marked paths are promoted. Conditions on unmarked paths are
ignored, because these paths do not affect that final store.

Queries are created in a variant of the Object Query Language
(OQL) [7]. The syntax is:

q ::= struct (f1= q1 ,. . . ,fn= qn)
| select q from q as x where e

| x.f̄

where f names a record field, f̄ is a sequence of field names, and
x is a variable name. We restrict our use of OQL to queries that
return a structural subset of the original database. This mirrors the
capabilities of commercial products like Hibernate and EJB. Con-
sideration of other query translations is an area for future research.

Figure 11 builds a query from the set of paths that result from
the analysis in the previous section. Function Q takes a path p that
represents a common prefix for a set of paths π; it returns a query
for the elements reachable by following each suffix from the given

Q(p, {ε}) = p (Q-PATH)

π\ε = f1.π1 ∪ · · · ∪ fn.πn fi distinct
qi = Q(p.fi, πi)

Q(p, π) = struct (f1 = q1, . . . , fn = qn)
(Q-FIELDS)

π = ι.π′ ∪ {ι.f̄1[k1]
?, . . . , ι.f̄n[kn]?} ι.f̄ [k]? /∈ π′

q = Q(ι, π′ ∪ {f̄1, . . . , f̄n})
c = T (k1) ∨ · · · ∨ T (kn)

Q(p, π) = select q from p as l where c
(Q-ITER)

T (π) = {ι.f̄ | p.ι.f̄ ∈ π}
T (opn(e1, . . . , en)) =

W{opn(e′1, . . . , e
′
n) | e′i ∈ T (ei)}

Figure 11. Transforming conditional path sets to queries

prefix. In rule Q-PATH, the prefix is the query when the suffixes are
empty.

Rule Q-FIELD handles the case where the suffixes all start with
a distinct field name fi. The query result is a struct where each
field name is bound to a sub-query for that field. Each field name’s
query qi is constructed by appending fi to current prefix.

In rule Q-ITER, all suffixes start with an iterator field name ι,
and the query result selects elements of the collection to which ι
refers. If the suffixes begin with different iterator field names, each
field name represents a different iteration of the collection. In this
treatment we only consider queries that mirror the structure of the
database, so only one collection can be returned for a given multi-
valued field. Therefore the rule combines queries for multiple iter-
ations. Function Q creates a query for the collection by partitioning
suffixes into a set for which ι is the last iterator field name and a
set of suffixes π′ in which other iterator field names appear. The
select clause is obtained by forming a query from the prefix ι and
the set of suffixes that follow ι. The conditions are removed from
the suffixes where no further iterator field names occur and instead
are disjoined to form the select query’s where clause.

Function T transforms any paths that may appear in a condition.
If a path contains an iterator field name ι, T removes the prefix that
appears before ι. Because this field name must be the last to appear
in a path, it will be properly scoped by the as clause of the select
query.

Function T also expands sets of paths that may appear in opera-
tions. Therefore T disjoins the cross-product achieved by applying
the operation to each possible combination of operands.

5.2 Client and Query Simplification
In the next step of the analysis, the data constraints ensured by the
query are used to simplify the program, and consequently the data
elements in the result of the query. If the program tests a property
of the data which is guaranteed by the query, the program test can
be removed. Any data that is only used in such tests can then be
removed from the query results.

The following two rules are used to simplify the client program:

Γ ` v̂(e)

Γ ` 〈e〉 → true

Γ ` ¬v̂(e)

Γ ` 〈e〉 → false

Each rule includes a context Γ, which is a set of constraints on
the persistent data a query returns. The constraints are obtained by
taking the conjunction of all the query’s where clause conditions.
The term v̂(e) means the abstract value for e produced by the

10 2006/7/26

rules of Fig. 9. If a context entails an expression’s abstract value—
written Γ ` v̂(e)—then the expression can be re-written as true .
Similarly if the context entails the negation of an expression’s
abstract value, the expression can be re-written as false . Entailment
can be determined by a SAT solver. The rules are applied repeatedly
until no more reductions are possible. Once the client has been
simplified, a further analysis can remove trivial tests and dead code
[36].

After simplifying the client, the query can be simplified by ap-
plying the analysis of Fig. 9 to the client and composing the results
with the original query. The composite query does not retrieve val-
ues that appear only in where clauses. The partition for the exam-
ple program in Fig. 1 is:

// define an explicit query
String query =

”select struct (
name = e.name,
manager = struct (name = e.manager.name))

from Employee as e
where e. salary > 65000”;

// execute the query
List result = session .createQuery(query);
for (Employee e : result . list ()) {

// no test required : all elements already satisfy
// the condition
print (e.name + ": " + e.manager.name);

}
The function executeQuery queries the database and returns a
new structure that contains only the data retrieved by the query. The
query does not retrieve the employee’s salary, and the program does
not test for that value. Instead, the query retrieves only employees
whose salary is greater than $65,000.

6. Related Work
Our path-based approach is similar to research on approximating
the shape of pointer data structures [15, 17, 37]. However, we limit
ourselves to intraprocedural analysis and focus on the traversal of
read-only data structures, not mutation.

Vitenberg et al. describe a path-based abstract interpretation for
predicting the persistent values a program may need [35]. Their ap-
proach supports runtime improvement of transaction lock schedul-
ing. Kvilekval and Singh use shape analysis to dynamically hoard
(prefetch) remote data for mobile clients [21]. Their work reduces
the effect of disconnections in mobile computing environments.
Ours is a fully static approach that supports program transforma-
tion to bulk-load persistent data. Our analysis is also unique in that
it identifies traversal conditions.

Neubauer and Theimann partition a sequential program run at
one location into semantically equivalent, independent, distributed
processes [28]. Their approach provides software engineering ben-
efits similar to ours, except for multi-tier applications.

A common technique for integrating programming languages
and databases is to make queries first-class values of a program-
ming language. C# has been extended to incorporate relational
constructs and structured data in middle-tier applications [6]. Willis
et al. propose extensions to Java to support database-style optimiza-
tions for operations on collections of objects [38]. Safe queries de-
scribe queries with classes whose instances are translated into a
form that can be executed on a remote database [10]. Unlike our
proposal, each of these solutions reduce persistent transparency be-
cause they require explicit queries to be written in an extended pro-
gramming language syntax.

The DBPL language [33] and it successor Tycoon [26] explored
optimization of search and bulk operations within the framework

of orthogonal persistence. Tycoon proposed integrating compiler
optimization and database query optimization [16]. Queries that
cross modular boundaries were optimized at runtime by dynamic
compilation [32]. The languages included explicit syntax for writ-
ing queries or bulk operations on either persistent or non-persistent
data. We do not know of any published formal account of the opti-
mizations used in Tycoon, or any evaluation of its performance or
usability.

AUTOFETCH uses a profile-guided dynamic analysis that auto-
matically inserts prefetch directives in queries executed in an object
persistence architecture [20]. Because our work generates queries
which could be used in object persistence architectures, the two
techniques could be combined to achieve further performance ben-
efits.

7. Future Work
While the current analysis provides a unique technique for ex-
tracting implicit queries from imperative programs, it contains sev-
eral restrictions, which we hope to remove or diminish with future
work. The imperative language we studied contains no procedures.
We are currently extending the analysis to analyze whole programs
with behavioral methods and recursive procedures.

Employing standard static analyses (e.g., range analysis) can
improve the quality of the extracted queries. These analyses should
also allow us to identify and extract aggregation and “exists” sub-
queries.

To transform complete programs, more work is needed to iden-
tify where the analysis should be applied. Currently a new query is
created each time the special variable root is used. In some cases
it may be more efficient to break a query into parts, so that a result
of one query becomes the root of a nested query. Multiple queries
could also be used to transform programs in which an outer loop
introduces a loop-carried dependence. The expressive power of the
target query language also affects these decisions. Other strategies
for promoting conditions may also be considered.

Key differences between programming languages and database
semantics must be overcome to successfully integrate the two do-
mains. In this paper, we identified two artifacts of the database
domain—the three-valued logic of null values and the implicit or-
dering of database sets—that must have appropriate analogues in
the programming languages domain.

The current work analyzes only data queries. Future work will
extend this analysis to include updates to persistent data. If up-
dates are performed immediately, the resulting aliasing may make
it impossible to define a useful transformation for updates. Alter-
natively, it may be possible to delay the updates until a transaction
boundary, at which point all database references must be released.

Finally, the technique must be applied to realistic programs to
measure the performance of the analysis and effectiveness of the
transformation.

8. Conclusion
We have formalized a new approach for optimizing transparent per-
sistence. This approach extracts a query from an imperative pro-
gram, then simplifies the program to operate over the bulk-load
query results. This technique promises to combine the software en-
gineering benefits of transparent persistence with the performance
benefits of query optimization. We expect the current work to serve
as a useful foundation for ongoing research into the long-standing
effort to integrate programming languages and databases.

References
[1] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proc. of

the Symp. on Compiler Construction (CC), pages 233–246, 1984.

11 2006/7/26

[2] M. P. Atkinson. Programming languages and databases. In Proc. of
the Intl. Conf. on Very Large Data Bases (VLDB), pages 408–419.
IEEE Computer Society, 1978.

[3] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence.
An orthogonally persistent Java. SIGMOD Rec., 25(4):68–75, 1996.

[4] M. P. Atkinson and R. Morrison. Orthogonally persistent object
systems. VLDB Journal, 4(3):319–401, 1995.

[5] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design -
An Entity-Relationship Approach. Benjamin Cummings, 1992.

[6] G. M. Bierman, E. Meijer, and W. Schulte. The essence of data access
in cω. In Proc. of the European Conference on Object-Oriented
Programming (ECOOP), pages 287–311, 2005.

[7] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan,
C. Russell, O. Schadow, T. Stanienda, and F. Velez, editors. The
Object Data Standard ODMG 3.0. Morgan Kaufmann, January 2000.

[8] S. Chaudhuri. An overview of query optimization in relational
systems. In Proc. of Symp. on Principles of Database System (PODS),
pages 34–43, 1998.

[9] P. P. Chen. The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems (TODS), 1(1):9–36,
1976.

[10] W. R. Cook and S. Rai. Safe query objects: Statically typed objects
as remotely executable queries. In Proc. of the Intl. Conf. on Software
Engineering (ICSE), pages 97–106, 2005.

[11] G. Copeland and D. Maier. Making smalltalk a database system. In
Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, pages 316–325. ACM Press, 1984.

[12] P. Cousot and R. Cousot. Systematic design of program transforma-
tion frameworks by abstract interpretation. In Proc. of the ACM Symp.
on Principles of Programming Languages (POPL), pages 178–190,
2002.

[13] O. Deux. The O2 system. Commun. ACM, 34(10):34–48, 1991.

[14] J.-A. Dub, R. Sapir, and P. Purich. Oracle Application Server TopLink
application developers guide, 10g (9.0.4). Oracle Corporation, 2003.

[15] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, pages 242–256,
New York, NY, USA, 1994. ACM Press.

[16] A. Gawecki and F. Matthes. Integrating query and program
optimization using persistent CPS representations. In M. P. Atkinson
and R. Welland, editors, Fully Integrated Data Environments, ESPRIT
Basic Research Series, pages 496–501. Springer Verlag, 2000.

[17] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? a
shape analysis for heap-directed pointers in C. In Proc. of the ACM
Symp. on Principles of Programming Languages (POPL), pages
1–15, 1996.

[18] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically
generated queries in database applications. In Proc. of the Intl. Conf.
on Software Engineering (ICSE), pages 645–654, 2004.

[19] Hibernate reference documentation. http://www.hibernate.
org/hib_docs/v3/reference/en/html, May 2005.

[20] A. Ibrahim and W. Cook. Automatic prefetching by traversal
profiling in object persistence architectures. In Proc. of the European
Conference on Object-Oriented Programming (ECOOP), 2006.

[21] K. Kvilekval and A. Singh. SPREE: Object prefetching for mobile
computers. In Distributed Objects and Applications (DOA), Oct 2004.

[22] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Mahesh-
wari, A. C. Myers, M. Day, and L. Shrira. Safe and efficient sharing
of persistent objects in Thor. In Proceedings of the Intl. Conf. on
Management of Data (SIGMOD), pages 318–329, 1996.

[23] D. Maier. Representing database programs as objects. In F. Bancilhon
and P. Buneman, editors, Advances in Database Programming

Languages, pages 377–386. New York, NY, 1990.

[24] D. Maier, J. Stein, A. Otis, and A. Purdy. Developments of an
object-oriented DBMS. In Proc. of ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA),
pages 472–482, 1986.

[25] V. Matena and M. Hapner. Enterprise Java Beans Specification 1.0.
Sun Microsystems, 1998.

[26] F. Matthes, G. Schroder, and J. Schmidt. Tycoon: A scalable and
interoperable persistent system environment. In M. Atkinson, editor,
Fully Integrated Data Environments. Springer-Verlag, 1995.

[27] R. Morrison, R. C. H. Connor, G. N. C. Kirby, D. S. Munro, M. P.
Atkinson, Q. I. Cutts, A. L. Brown, and A. Dearle. The Napier88
persistent programming language and environment. In M. P. Atkinson
and R. Welland, editors, Fully Integrated Data Environments, pages
98–154. Springer, 1999.

[28] M. Neubauer and P. Thiemann. From sequential programs to multi-
tier applications by program transformation. In Proc. of the ACM
Symp. on Principles of Programming Languages (POPL), pages
221–232, 2005.

[29] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[30] T. Rus and E. Van Wyk. A formal approach to parallelizing compilers.
In Proc. of the SIAM Conf. on Parallel Processing for Scientific
Computation, March 14 1997.

[31] C. Russell. Java Data Objects (JDO) Specification JSR-12. Sun
Microsystems, 2003.

[32] J. Schmidt, F. Matthes, and P. Valduriez. Building persistent applica-
tion systems in fully integrated data environments: Modularization,
abstraction and interoperability. In Proceedings of Euro-Arch’93
Congress. Springer Verlag, Oct. 1993.

[33] J. W. Schmidt and F. Matthes. The DBPL project: advances in
modular database programming. Inf. Syst., 19(2):121–140, 1994.

[34] R. Software. Whitepaper on the UML and Data Modeling, 2000.

[35] R. Vitenberg, K. Kvilekval, and A. K. Singh. Increasing concurrency
in databases using program analysis. In Proc. of the European
Conference on Object-Oriented Programming (ECOOP), pages 341–
363, 2004.

[36] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(2):181–210, 1991.

[37] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. In
Computational Complexity, pages 1–17, 2000.

[38] D. Willis, D. J. Pearce, and J. Noble. Efficient object querying
in Java. In Proc. of the European Conference on Object-Oriented
Programming (ECOOP), Nantes, France, 2006.

12 2006/7/26

