Remote Batch Invocation
for Compositional Object Services

Ali Ibrahim?, Yang Jiad, Eli Tilevich!, and William R. Cook

1 Computer Science Department, Virginia Tech
{tilevich,jiaoyang}@s. vt.edu
2 Department of Computer Sciences, The University of Texasatin
{ai br ahi m wcook}@s. ut exas. edu

Abstract. Because Remote Procedure Calls do not compose efficieatigra
ers of distributed object systems use Data Transfer and Refagade patterns to
create large-granularity interfaces, hard-coded foripaer client use cases. As
an alternative to RPC-based distributed objects, thispaesentfkemote Batch
Invocation(RBI), language support for explicit client-defined bateh® Remote
Batch statement combines remote and local execution:eleimote code is ex-
ecuted in a single round-trip to the server, where all data ®ethe server and
results from the batch are communicated in bulk. RBI sugp@ninote blocks, it-
eration and conditionals, and local handling of remote ptioas. RBI is efficient
even for fine-grained interfaces, eliminating the need tordioptimized server
interfaces. We demonstrate RBI with an extension to Jawag iRMI internally
as the transport layer. RBI supports large-granularigfestss server interactions,
characteristic of service-oriented computing.

1 Introduction

The Remote Procedure Call (RPC) has long been the foundattianguage-level ap-

proaches to distributed computing. The idea is simple:aaplocal calls with stubs

that transfer the procedure call to a remote machine forwicet RPC has been gen-
eralized for objects to create distributed object systénesjding Common Object Re-

quest Broker Architecture (CORBA) [21], the Distributed r@monent Object Model

(DCOM) [8], or Java Remote Method Invocation (RMI) [27]. Bsuare defined on a
local object that acts as a proxy for a remote object. Oneradyge of this approach is
that it does not require language changes, but can be imptechesing libraries and

stub generator tools.

Standard object-oriented designs, which focus on flexyalnd extensibility through
the use of fine-grained methods, getters and setters, arlabjects, do not perform
well when distributed remotely. Every method call on a resmmioxy is a round trip to
the server. To achieve suitable performance, remote chjeast be designed according
to a different set of principlés Data Transfer Objects and Remote Facades are used to
optimize data transfer and combine operations to reduaauttimder of round trips [17].
One effect of this approach is that servers and protocolbanedcoded to support spe-
cific client invocation patterns. If a client changes sigifitly, then the entire system,
including the server and its interfaces, must be redesigned

2 This work was supported by the National Science FoundatimteuGrant CCF-0448128.
3 Approaches using asynchronous messaging are discussadtiztrwork

This paper presentRemote Batch InvocatidiiRBl), a new approach to distributed
object computing. Remote Batch Invocation allows multigddls on remote objects to
be invoked in a batch, while automatically transferringuangnts and return values in
bulk. The following example uses a Remote Batch in Java tetedébw-rated albums
from a personal online music database.

int mninm=5;
Servi ce mnusi cService = new Servi ce("MisicC oud", Misic.class);
batch (Misic favoriteMiusic : mnusicService) {

for (Al bum al bum: favoriteMisic.getAl buns())

if (albumrating() < mininum {

Systemout.println("renoving: " + albumagetTitle());
try {

al bum pl ay();
} catch (Exception e) {

Systemout.println("error: " + e.getMessage());

1}

The batch mixes local and remote computation. In this cdstiieacomputation is
remote except the two calls 8yst em out . The semantics of Java is modified within
the batch to first perform all remote operations, then petfali local operations. Thus
the typical ordering between local and remote statememistisecessarily preserved.
For example, all of the albums are deleted before any of timeesaare printed. All
loops and conditionals are executed twice: once on the sanathen again on the
client. Exceptions on the server terminate the batch byultefand raise the error in the
analogous execution point on the client.

A remote batch transfers all data between client and senvbulk. In this case,
just themi ni mumrating is sent to the server. The server returns a list ofitidstof
deleted albums. But it also returns a boolean for each allngicating whether it was
deleted. In general, any number of primitive or serializaldlues can be transfered to
and from the server. Remote Batch Invocation creates appteData Transfer Objects
and Remote Facgades on the fly, involving any number of abpgaud methods. Standard
Java objects can be published as a batch service by addingla sne of code. The
semantics of the batch statement require that only a siegh®te invocation is made
in the lexical block. This strong performance model is imant, because the cost of
remote invocations may be several orders of magnitude highe local invocations.

We demonstrate Remote Batch Invocation with an extensidavea. A source-to-
source translator converts that ch statement to plain Java which uses Batch Exe-
cution Service and Translation (BEST), our middlewarediigrfor batched execution
using Java RMI. Remote Batch Invocation is not tied to RML,dawld also be imple-
mented using other middleware transport, for example welicgs or mobile objects.
A server can publish a remote service by making a singlerluall.

The performance benefits of batching operations are welvknespecially in high-
latency environments. We evaluate our language extensi@oimparing it with other
approaches to batching such as implicit batching, mobiteecand the Remote Facade
pattern.

In summary, Remote Batch Invocation is a new approach talulis¢d objects that
supports service-orientation rather than remote pro@echits and proxies. The funda-
mental insight is that remote execution need not work atékiellof procedure calls,
but can instead operate at the level of blocks, with bulkgf@nof data entering and

leaving the block. Unlike traditional distributed objettsit maintain server side state,
Remote Batch Invocation has a stateless execution modés ittearacteristic of service
oriented computing [19, 16].

2 Remote Batch Invocation

Remote Batch Invocation allows clients to combine remotrafions into a single re-
mote invocation. We will illustrate the features of Remotadh Invocation by example.
The basis of our examples is a sample remote service deddrbEowler inPatterns

in Enterprise Application Architecturfd 7]. This simple remote music service is com-
prised of three classes: Album, Artist, and Track as showRigure 1. TheAl bum

interface also provides the# ay method which returns a string representing the music
on the album.

interface Al bum {

String getTitle();

void setTitle(String title);
Artist getArtist();

void setArtist();

Track[] get Tracks();

voi d addTrack(Track t);

voi d removeTrack(Track t);
String play();
}

A natural remote interface to these three classes is sholewbe

interface Miusic {

Al bum createAl bun{String id, String title);
Al bum get Al bun(String id);

Artist addArtist(String id, String nane);
Artist getArtist(String id);

Track createTrack(String title);
}

Using theMusi ¢ interface, a client can create and find artists and albumsefisas
create tracks. A client may update object fields using the@pjfate setters. We will
use this interface for our Remote Batch Invocation examples

Unfortunately, this natural interface is too fine-grainedisystem where individ-
ual method calls are expensive. Using the Remote FacadBatadTransfer patterns,
Fowler wraps the Music interface:

interface Fow er Musi ¢ {
String play(String id);
Al bunDTO get Al bun{ String id);
voi d createAl bun(String id, Al bunDTO dto);
voi d updat eAl bun{String id, Al bunDTO dto);
voi d addArtistNamed(String id, String nane);
voi d addArtist(String id, ArtistDTO dto);
ArtistDTO getArtist(String id);

Album *

Title: String
Platinum: Boolean

* 1
Track * Artist
*
Title: String Name: String

Fig. 1: Fowler Album Class Diagram

Fowl er Musi ¢ is a Remote Facade for thvasi ¢ interface. For example, the

Fowl er Musi c. pl ay method is simply calling theusi c. get Al bummethod followed
by the Al bum pl ay method. TheAl bunDTO, Arti st DTO, andTr ackDTO are data
transfer objects (DTO) that transfer information in bulkated from the remote server.
Fowler also definesl bumAssenbl er, which maps between DTOs and objects resid-
ing on the server.

cl ass Al bumAssenbl er {
public Al bunDTO writeAl bun{ Al bum subj ect) {
Al bunDTO result = new ALbunDTQ) ;
result.setTitle(subject.getTitle());
result.setArtist(subject.getArtist().getNane());
writeTracks(result, subject);

void witeTracks(Al bunDTO result, Al bumsubject) { ... }
void writePerformers(TrackDTO result, Track subject) { ... }
public void createAl bun(String id, Al bunDTO source) {
Artist artist = Registry.findArtistNanmed(source.getArtist());
if (artist == null) throw new Runti meException(...);
Al bum al bum = new Al bun{source.getTitle(), artist);
createTracks(source. get Tracks(), al bum;
Regi stry. addAl bun{id, al bum;

}
voi d createTracks(TrackDT] tracks, Albumalbum) { ... }
voi d createPerformers(Track newlrack, String[] performers) { ... }

}

Although Al bumaAssenbl er encapsulates the logic of mapping between DTO and
model objects, it is not generic, containing a hard-codagisitn about the DTO con-
tent. In the book, Fowler decides to have the Album DTO prewat the information
about a single album.

The next sub-sections give examples of using Remote Batatétion for batch
data retrieval, batch data transfer, loops, branchingeandptions.

2.1 Batch Data Retrieval

A simple client may want to print the title and name of thesdrfior an album. With the
fine-grainedwusi c interface, the client must execute four remote calls: atcafind
the album, a call to get the title of the album, a call to getattsst for the album, and a
call to get the name of the artist for the album.

Using Remote Batch Invocation, the client can useMhsi ¢ interface while still
executing a single remote call. The input to the remote biattie id of the album “1”.
The output of the remote batch is the title of the album andntimae of the artist of
the album. A remote batch can combine an arbitrary numbeedtiod calls as long as
they are invoked on objects transitively reachable fromrtdw object of the batch, in
this casenusi c.

batch (Music music : rmnusicService) {
final Al bum al bum = nusic. get Al bunm("1");
Systemout.printIn("Title: " + albumgetTitle());
Systemout.println("Artist: " + albumgetArtist().getNanme());

}

The same client using the remote fac&del er Musi c executes a single remote
methodget Al bumwhich returng\l bunDTO. For this client, the DTO is an over-approximation
of the data needed; a Remote Facade optimized for thig glienld need another DTO
for albums that only provides the title and artist name.

Al bunDTO al bum = nusi c. get Al bun("1");
Systemout.printin("Title: " + albumgetTitle());
Systemout.println("Artist: " + albumgetArtistNane());

For other clients, the DTO may be an under-approximatiohefdata needed. For
example, this client prints the title of two different albsm

batch (Music nmusic : nusicService) {
final Al bum al bum = nusic. get Al bunm("1");
Systemout.printIn("Title: " + albumgetTitle());
final Al bum al bum = nusic. get Al bunm("2");
Systemout.printIn("Title: " + albumagetTitle());

}

Fowl er Musi ¢ does not contain a method that matches this client pattemsé&tjuently,
the same client usingow er Musi ¢ must make an additional remote call compared
to using Remote Batch Invocation. Alternatively, thew er Musi ¢ interface can be
changed to include a method that takes two album IDs as ingliteturns a new DTO
containing two fields representing the titles of the inpbuats. This highlights one of
the disadvantages of the Remote Facade pattern; it cieeatas-functional dependency
between the server interface and the client call patterns.

2.2 Batch Data Transfers

Remote Batch Invocation also allows clients to transpéyérinsfer data in bulk to the
server. The following code creatésbum Arti st, andTr ack objects and wires them
together. The input to the remote batch is all the infornratibout the album, artist,
and track to be created and there is no output. The actuatroctien of the objects and
method calls occur entirely on the server.

batch (Music music : rmnusicService) {
final Al bum al bum = nusic.createAl bun("2", "First Al buni);
final Artist artist = nusic.addArtist("2", "John Smith");
al bum set Artist(artist);
final Track track = nusic.createTrack("First track");
track. addPerformer(artist);
al bum addTr ack(track);

}

A client usingFow er Musi ¢ can also create the objects using a single remote invoca-
tion using the appropriate DTOs.

Al bunDTO al bum = new Al bunDTQ("Fi rst Al buni') ;

Al bunDTO artist = new ArtistDTQ("2", "John Smith");
al bum set Artist(artist);

TrackDTO track = new TrackDTQ("First Track");
track. addPerforner(artist);

al bum addTr ack(track);

nmusi c. creat eAl bun("2", al bun);

A drawback to using data transfer objects for creating amthtipg objects, is that DTO
is under-specifying some of the semantics of the operaliigparticular, the DTO does
not tell the server whether the artist object is an artisecobjvhich should be created or
if it already exists. This is a well-known problem in data mpaqg and commonly arises
in distributed systems. A common approach and the one také&mWwler in his book,
is to specify a convention to either always create objeti&gys use existing objects,
or create an object if it does not already exist. Another aggh is to enrich the DTO
with statusfields for each normal field that specify the right semantisnetimes this
status field is encoded into the field, for example, by usingl as a special value.
A related problem is updating objects if the client only hgsagtial description of the
object. The client must be able to update the subset of fiehdshaare known, but not
the fields which are unknown.

The remote batch is more explicit in that specifies thatthd st is anewArti st
object. If the client wanted to reference an existing attistcode would be rewritten as
follows:

batch (Music music : rmnusicService) {

final Al bum al bum = nusic. createAl bum("2", "First Al buni);
final Artist artist = nusic.getArtist("2");

al bum set Artist(artist);

final Track track = nusic.createTrack("First track");
track. addPerformer(artist);

al bum addTr ack(track);

2.3 Loops

So far, we have shown that Remote Batch Invocation suppioaigstline code. How-
ever, it is common for a client to need more complex logic mv branching and
loops. Remote Batch Invocation allows for remoting of thbamced or loop intro-

duced in Java 1.5 if the collection can be evaluated remdfelgta from the iterations

is needed locally, the remote batch constructs a data gaolject with an array of the
data needed and transparently maps it on the client. Belavsisiple example which
shows how explicit batching can operate over arrays. Thetitgpthe remote batch is
simply the id of the album and output is the title of all of thadks, the name of all of
the performers on the tracks, and the string produced bylthg method.

batch (Music nmusic : nusicService) {
final Al bum al bum = nusic. get Al bum("1");
Systemout.println("Tracks: ");
for (Track t : al bumgetTracks()) {
Systemout.print(t.getTitle());
Systemout.printin(’,");
Systemout. print("Perforned by: ");
for (Artist a : t.getPerforners()) {
System out . print(a.getNane());
Systemout.print(’ ');

}
Systemout.print(’\n");
}
Systemout.println("Song: " + albumplay());

}

TheFow er Musi c. get Al bummethod in Remote Facade nearly provides all the func-
tionality required by this client; however, it does not indé a call to the\l bum pl ay
method.

2.4 Branching

Conditional statements, including andel se, are remoted if their condition is a re-
mote operation. Below is a simple example that shows sucmatesl conditional state-
ment also containing the primitive operag.

bat ch(Misic nusic : nusicService) {
final Al bum al bum = registry.getAl bun("1");
if (al bum getNanme().startsWth("A")
|| al bum get Nanme().startsWth("B")) {
al bum pl ay();
Systemout.print("Title starts with Aor B: " + albumgetTitle());
} else {
Systemout.print("Title does not start with A or B:
+ al bum get Artist().getNanme());
1}

RBI supports boolean and numeric primitive operators, botiry and binary. Condi-
tional code can also be included as part of operations oeat@hs. In that case, the
conditions are reevaluated on each iteration over a calecthe following example

adds albums composed by Yo-Yo Ma to the favorites collection

for (Artist a : t.getPerforners()) {
if (a.getNanme().equal s("Yo-Yo Ma")) {
favorites. addArtist(a);

)

2.5 Exceptions

Remote Batch Invocation separates exceptions caused lbyefain communication
from logical exceptions that arise when executing the statds in the batch. The
bat ch statement itself can raise network exceptions, which meisiamdled by the sur-
rounding context. If there are no network errors, then etioap raised by statements
in the batch can be handled in the client.

Within a bat ch, a remote operation can raise an exception on the servewihat
terminate the batch. The thrown exception will be raisetiédorresponding execution
point on the client. The client must use exception handlerig aegular Java code. In
addition, the execution of a remote batch may result Re@ot eExcept i on that can
be handled by wrapping an entisat ch block with at r y/ cat ch block.

For example, the following code extends an earlier exangpileddude an exception
handler when trying to delete an album, and another hanlégrdeals with network
and communication errors raised at any point of executiadp#tch.

try {
batch (Music favoriteMisic : musicService) {

try {

al bum pl ay();

} catch (Perm ssionError pe) {
Systemout.println("No pernission to play al bunt
+ albumgetTitle());

}
} /lend batch
} catch (RenoteException re) {
Systemout. println("Error conmuni cating batch.");

}

The default behavior of a batch is to abort processing whezxaeption is thrown.
As future work, we would like to be able to apply a differenteption policy, for
example to continue execution or restart the batch. Batalsesprovide a natural unit
of atomic execution. In many cases it is desirable for théretiatch to succeed or
fail, so that incomplete operations are never allowed. Oag t@ achieve this is to use
transactional memory on the server [7].

Even so, itis possible for the batch to succeed on the sentéotba communication
error to prevent the client from completing the batch. A dtm two-phase commit
could be used to ensure that both the server and client fatie batch have executed
to completion. These topics are beyond the scope of ourminesearch, but we do not
see any obstacles to combining RBI with distributed tratisas.

2.6 Service Implementation

Implementing a Remote Batch Invocation service is much Enthan implementing
a server using traditional distributed object middlewane|uding RMI or CORBA.
There is no need to create method stubs. Instead, the sémvely segisters a root
object with a single call after creating the server impletagan object.

Musi ¢ nusi cServer
rbi.Server server

new Musiclnpl (...);
new rbi . Server (" MisicC oud", musicServer);

The client connects to this service by using the same namaterthce.

rbi.Service nusicService =
new rbi . Service("MisicC oud", Misic.class);

As in most distributed systems, interface mismatches kevadient and server are
detected at runtime. Standard Java interfaces define thieesepntract.

2.7 Service-Oriented Interaction

Remote Batch Invocation supports a service-oriented stfyiateraction, so it does

not support object proxies. This is not a problem for mangntfiserver interactions,

which can be naturally accomplished in a single round-Triese interactions have the
following pattern:

put results

client 2% serverr "¢ client

The client sends any number of inputs to the server, whictopas multiple actions
and returns any number of results to the client. There mayabes; however, when a
server computation depends upon client ingrud previously defined server objects.

P results putls resultss

client 2% ser\|/er* = clientr P52 serverr "5 client

This situation is easily handled in distributed object syst like CORBA and RMI,
since each server operation is controlled by the client toan use proxies to refer to
the intermediate server results needed in the last step.

This interaction pattern requires some other solution itatekess service-oriented
system. The simplest approach is to have the second setteérretoad or recreate the
server objects that were defined in the first batch. The senegralso provide public
identifiers for its objects. The firsesultscan include a server object identifier, which
is used in the second batch to relocate the necessary séjeet.d’ hese patterns have
been studied extensively in the context of service-origntamputing [19, 16].

2.8 Allowed Remote Operations

Remote Batch Invocation does not support remoting of mavey danstructs, including.
casts,whi | e loops,f or loops, remote assignments, constructor calls, etc. Ajhou
these constructs can be used inside hhech block, they will be executed locally.
If using these constructs would interfere with the remotteHba&xecution, the batch
translator will raise an error. Future work may relax som#nese restrictions. If remote
assignments were allowed, then it would be possible to agdede.g. sum or average)
over collections remotely. General loops could also be supd without significant
changes to the model.

Exceptions are a special case. The remote batch cannoteateptions remotely,
but it does propagate them to the client in the original locedf the remote operation
that produced the exception. In this way, the client canfcaxceptions raised remotely
and handle them locally.

Keeping the remoteable constructs simple and as univesgalssible increases the
viability of using RBI against remote interfaces writteroither languages.

3 Semantics

Our Java implementation of Remote Batch Invocation usefoflmving syntax:
batch (Type ldentifier : Expression) Block

The Identifier specifies the name of the root remote object. Bxpressiorspecifies
the service which will provide the root remote object. Bleck specifies both remote
and local operations. A remote operation is an expressistatement executed on the
server. All remote operations inside the batch block arewesl in sequence followed
by the local operations in sequence. A single remote calldademwhich contains all
of the remote operations. This is the key property as it glewia strong performance
model to the programmer albeit lexically scoped. Excestiora remote operation are
re-thrown in the local operation sequence at the originztion of the remote opera-
tion. If the remote operations fail due to a network erroerttan exception is thrown
before any of the local operations execute. Operationglénsie batch block are re-
ordered and it is possible that the block executes différasta batch than it normally
would. The compiler does try to identify some of these casésnaarn the programmer,
however, it is up to the programmer to be aware of the diffedeama semantics inside
the batch block.

Each expression in the batch is marketbasl or remote Local expressions are fur-
ther subdivided intatatic localsandnon-static localsRemote expressions execute on
the server, possibly with input from static local expressid_ocal expressions execute
on the client, possibly with output from remote expressi&@tatic local expressions are
literals and variable expressions defined outside of thehtzatd not assigned within the
batch before their use. All other local expressions arestatie.

The compiler determines the location of an expressioncsifiti A component of
this analysis is a forward flow-sensitive data-flow analyisé&t maps variables to loca-
tions. Locations are ordered as a small lattice wiséac local< remote< non-static
local. Thew operator adds or changes a mapping for a variable pFbe function re-
turns the predecessors of a statement node in the controgjfigph. For simplicity, we
will assume in this paper that all assignments are statenleoivever, in Java they are
actually expressions. The data flow analysis is defined iargig.

Thebat ch variable is remote. Variables only assigned outside thehbate static
locals. Variables declared final and initialized with remekpressions are remote. All
other variables are non-static locals. Assignments mapgdshe mapping of a vari-
able up the lattice of locations. For this analysis, the aage where this happens is
a variable mapped as a static local may be remapped as aatankstal. It cannot
happen for variables mapped as remote, because final \egiednhnot be reassigned.

Figure 3 defines théocation function which maps expressions to locations. To
determine the location of a variable expression, the arslysks up the variable name
in the result of the data flow analysis flowing into the statehoentaining the variable
expression. The mutual definition &fcation andgen introduces a cyclic dependency
which is resolved by taking the fix point of the two functiontaring with the bottom
value of our location lattice (static locals). The locatwira primitive operation is the
join of the locations of the operands. The location of areinse method call expression
is the location of the target of the method call. All other eegsions inside or outside
the batch statement are non-static local or static locpkets/ely.

n,m € Statement

snil =s
_JsUv—1]
Sw[w”‘{<s—[wk]>u[wz1

méEpred(n)

out[m]

out[n] = in[n] W gen(n)

[v — remoté

[v — static loca])

[v — non-static locdl
[v — location(e)]

gen(n) =

nil

[v—1¢s

[v—kl€s

n = [batch(T v : e)]

n = [v =e],n ¢ batch

n = [v = e],n € batch(v,),v # vy

n = [final v = €], n € batch(vp), v # vy
otherwise

Fig. 2: Analysis of Java to identify local and remote varésbl

location([v]) = in[Stmt(v)](v)

location(e1 op ez2]) = location(er) U location(ez2)

location(Jo.m(€)]) = location(o)

location([]) = {

non-static local
static local

_ € batch
_ & batch

Fig. 3: Location of Java expressions

One important thing to note in the rules is that general assent is not supported in
the remote batch. Therefore, variables are only remoteif torrespond to thigat ch
variable or if they aré i nal and assigned remote expressions. Javadr5statements
are executed remotely if their collection is a remote exgices A remotd or loop is
replayed locally to support local expressions or statemirside the loop. Similarly,
conditional statements are executed remotely if their ttmmds a remote expression. A
remote conditional is replayed locally to support localmgsions or statements inside
thei f statement.

Data is passed by value from the client to the server and fn@sérver to the client.
For example, the remote identity function returns a copyheflbcal argument. This
implies that all input and output values of the batch mustimkzable and specifically
in Java implement the Serializable interface. Remote gahat used locally are not
subject to this restriction. Remote expressions do havtiilgeas long as they are part
of computations on the server, and similarly local expmsshave the normal notion
of identity in Java.

The compiler rejects all programs in which the remote op@matcannot be legally
moved above the local operations. For example, paramgtezgsions in remote method
calls cannot contain local variables defined within the lhaihe compiler also rejects
some programs in which moving the remote operations ab@letal operations might
result in non-intuitive behavior. For example, paramexgressions in remote method
calls should not have their value changed in the local omersit The following are
considered illegal expressions by the compiler.

— Method invocations on remote values that have a parametehvigia non-static
local expression or is not serializable.

— Expressions with remote locations inside ofidnblock where the condition is a
local expression.

— Expressions with remote locations inside of a loop constrbere the condition is
local.

— Nested batch statements.

One design goal was to ensure that programmers could easigrstand the semantics
of the bat ch construct. To that end, our analysis uses a very simple ldata flow
analysis and is lexically scoped. This may allow non-iiteiprograms to be accepted
by the compiler, because they change the state of statitdgpeaessions via different
threads, heap aliasing, or local method calls [18]. Thefalhg example shows a case
where the compiler accepts a program that behaves nortietyifrom the point of
view of the programmer.

StringBuilder sb = new StringBuilder();
sb. append(" My Al buni);
bat ch(Misic nmusic : nusicService) {
n(sb) ;
nusi c. creat eAl bunm(" 1", sbh);

}
voi d n(StringBuilder sb) { sb.append(*: Bl ues"): }

The programmer might expect that the remote methoa catht e Al bumwill be passed
the string" My Al bum Bl ues", but in a remote batch it will be passed the string

"My Al buni', because the remote method call will occur first. Unfortalyadava
reflection, virtual methods, and dynamic class loading athplicate whole program
analysis. Our local lexical analysis trades off catchingnemon-intuitive behavior to
gain simplicity, practicality, and locality.

4 Implementation

Support for Remote Batch Invocation in Java is implement@ aource to source
translator which takes code containing remote batch coctstand translates them into
regular Java code. The output of the source to source ttansiges a script recording
API that sends the remote operations as a single batch tertha&te server. In the current
implementation, the script recorder uses the transpoerlapd the service discovery
mechanism of Java RMI. The support system for RBI is calledBEwvhich is an
acronym for Batch Execution Service and Translation. BESmplemented as a layer
on top of Java RMI, without changes to the Java language dinmanFirst, we discuss
the translation of the batch syntax. Then, we focus on thdementation issues of
BEST, its underlying techniques, and its integration wihaJRMI. Section 5 quantifies
BEST performance benefits.

4.1 Language Translation

The source to source translator is implemented as an eatetsiJastAddJ [15]. Jas-
tAddJ is a Java compiler based on JastAdd and written as @anirattribute grammar.
JastAdd provides several useful features. As a circulabate grammar, many static
analyses can be expressed naturally and fixed point conqmgadre handled by the
JastAdd engine. In addition, JastAdd provides many aspéetted features which al-
low composition of different analyses and language featimea a modular fashion.
The data flow analysis is implemented on top of a control floapgrmodule written

by the authors of JastAddJ for Java 1.4. We modified the theitute slightly to add
support for the newat ch construct and to support Java 1.5. For each expression, the
translator computes its location as described in Section 3.

The translator traverses the program abstract syntaxA®€)(downwards starting
from the root AST node. Outside of a batch, the translatosdu# change the Java
code. Inside a batch, the translator always produces twe stithgs, one for the re-
mote operations and one for the local operations. Once ttie dratch is translated,
some boilerplate code to setup the batch is generated fiest,the remote operations
are inserted, then a call to execute the batch is generaiedinally the local operations
are inserted. While translating code in a batch, the trémdsfeas two different modes of
operation. Initially the translator is in local mode. Exgs®ns in local mode produce
no remote operations and produce themselves as local mpexa¥lost statements be-
have similarly except for remote loops and remote condii®nvhich produce both
remote and local operations. Once the translator reachespassion whose location
is remote, it binds that remote value to a temporary variabla remote operation and
enters remote mode for that expression. The translatoedid®a local operation which
invokes theget method on the temporary variable. In remote mode, the ttorstan
safely assume all sub-expressions are remote operations.

Servi ce mnusi cService = new Servi ce("MisicC oud", Misic.class);
bat ch(Music nmusic : nusicService) {
final Al bum al bum = nusic. get Al bun("1");
if (albumgetTitle().startsWth("A")) {
Systemout. println("Tracks:");
for (Track t : al bumgetTracks()) {
Systemout.print(’ ');
Systemout.print(t.getTitle());
}
} else {
Systemout.print("Title does not start with A
+ al bum get Artist().getNane());

1}
Fig. 4: RBI source code

/I Remote part
Servi ce service$ = nusicService;
{ Batch batch$ = service$. get Root ();
Handl e al bun$73751 = bat ch$. dol nvoke(bat ch$, "get Al bunt',
new Class[] {String.class}, new hject[] {"1"});
Handl e var$0 = bat ch$. dol nvoke(
bat ch$. dol nvoke(al bun$73751, "getTitle", null, null),
"startsWth", new Cass[] {String.class}, new Object[] {"A"});
bat ch$.riIf (var$0);
cursor. Cursor t$86036%Cursor = batch$. createCursor(
bat ch$. dol nvoke(al bun$73751, "get Tracks", null, null));
Handl e var$l = t$86036$Cur sor. dol nvoke(
t $86036%Cur sor, "get Title", null, null);
bat ch$. rEl se();
Handl e var$2 =
bat ch$. dol nvoke(bat ch$. dol nvoke(al bun$73751, "get Artist", null,
"getNane", null, null);
bat ch$. r End() ;
bat ch$. fl ush();
/I Local part
i f ((Bool ean)var $0. get ()){
Systemout. println("Tracks:");
whil e (t$86036%Cursor.next()) {
Systemout.print(’ ');
Systemout. print((String)var$l.get());
}
} else {
Systemout.print("Title does not start with A
+ (String)var$2.get());
1}

Fig.5: Translation of Figure 4

nul 1),

Figure 4 shows a RBI program which uses many of the suppoe@ifes. Fig-
ure 5 shows the translation into Java code which uses BESihtAresting part of the
translation is how conditionals and loops require both reenamd local operations.

4.2 BEST Client Interface
The main client interface of BEST is defined in Figure 6.

public interface Batch {
publ i ¢ Handl e dol nvoke(Obj ect obj, String nethod,
Cl ass[] types, nject[] args);

public Cursor createCursor(Handl e val ue);

public Handl e unary(QOps op, Handle val 1);

public Handl e bi nary(Ops op, Handle val 1, Handl e val 2);
publ i c Handl e const ant (Obj ect 0);

public Handl e riIf(Handl e condition);

public Handl e rEl se();

public Handl e rEnd();

public void flush();

Fig. 6: Interface to the BEST batch execution runtime

A Bat ch is a client object that represents a collection of stateménethod | ush
delineates the boundary of a batch. Whémsh is called, all the recorded statements
are sent to the server in bulk, executed there, and the relessults are returned back
together. Each recorded statement returdsrall e which is a placeholder for a remote
object, existing or created on the serverddndl e has two different semantics before
and afterf | ush is called. Beford | ush, aHandl e serves as a placeholder for a result
which has not yet been obtained. Afterush, a Handl e object holds a result of a
remote operation that can be retrieved.

TheBat ch interface describes a script recording service. To add aaddb be in-
voked remotely, the API provides the methitad nvoke. The parameters of this method
loosely mirror that ofvet hod. i nvoke in the Java Reflection API. The method’s pa-
rameters are deliberately weakly-typed to enable greaebflity. This design choice
fits well the BEST programming model, in which all the callstie script recording
API are automatically generated by the source-to-sousrestator, thereby ensuring
that the resulting code is type safe.

The Bat ch interface also provides methods to express conditionabtemontrol
flow and operators. These methods are used to express omsdiind operations used
in abat ch block. The translator maps Java conditional and primitigerators into
regular methods (e.g.) f, r El se, bi nary) that are recorded for remote execution.

ThemakeCur sor method takes &andl e parameter and returnsCar sor , which
represents an iteration context for the collection of otgjegisting on the server. The as-
sumption for callingrakeCur sor is thatitsHandl e parameter representsirer abl e
object such aspava. util. Col | ecti on or an array.

ThecCur sor interface is implemented as follows:

public interface Cursor extends Batch {
publ i c bool ean next();
public void setPosition(int position)
throws |1l egal Argunent Excepti on;
public int getPosition();
}

Remote operations recorded o@ua sor interface will be replayed on each element
of anl t er abl e collection on the server. Aftdrl ush, theCur sor can be iterated to
retrieve the results of remote operations for every element

The end result of recording operations usingBaech interface is a list of method
descriptors, which are serializable objects sent to theeseEach recorded operation is
assigned a sequence number which acts as an identifier faathal he sequence num-
bers are sent to the server, so that method arguments cantbleeth#o prior method
return values.

4.3 Batch Execution

When the client call§!l ush, the recorded operations are sent to the server as a batch by
calling a regular RMI methoblat chl nvoke. To make the BEST functionality available

to all RMI remote objects, thigat chl nvoke method is added toni cast Renot eQbj ect,

a super class extended by RMI application remote classes.

The BEST server runtime decodes method descriptors, isvbaeched methods
one-by-one and returns the results back to the client. Téeim@nt conditional state-
ments such asf andel se, the BEST server interprets the operations by evaluating
the specified conditional statements and changing the aldihdkv of a batch based
on their results. Similar strategy is applied to executingry and binary operations.
While at the script recording time on the client the operaardgepresented by handles,
their actual values are obtained during the execution oftehb@n the server. Then the
interpretation simply operates on the actual values as pesfged by the script.

Cursor operations are interpreted analogously to regplarations, with the excep-
tion that each recorded operation is executed on each etehan| t er abl e server
object with the results stored in a matrix-shaped structline matrix is then returned
to the client and is used to populate the approptiatell e object every timenext is
called on the server.

4.4 Result Interpretation

The results from the server are an array of objects and ayafrexceptions. The values
are assigned to théandl e object on the client if the operation executed normally.-Oth
erwise, the exceptions thrown by the server are assignéetdahdl e objects instead
of the values. If adandl e has an exception, rather than a value, then this exception is
thrown when accessing its content.

For cursors, result interpretation is more complicateathBanenext is called on
the Cur sor, theHandl e associated with it are assigned values from the return value
array. The number of values in the array is the number of etsne theCur sor times
the number ofHandl e’s. Handl e’s normally do not change value after they have been
assigned, with the exception when they are created withirsoc—theHandl e values
may change on each iteration of the loop.

120

100 "b

-
E /
[
g 8
Q.
g 60 —o—RMI
(8]
2 a0 —A—RBI
()]
€ 20 DTO
=
o L1

1 2 4 8 16 32 64

Number of fields

Fig. 7: Performance Comparison between RMI, RBI, and DTGives

5 Performance

In essenceBatch Remote Invocatida a language level mechanism that optimizes re-
mote communication by leveraging the improved bandwidtratteristics of modern
networks [22], especially in high-latency environmentshAugh the performance ben-
efits of batching remote operations are well-known and haenlthe target of several
research efforts [6, 20, 9], the purpose of evaluating thbopmance of RBI is to en-
sure that the overhead of its runtime, BEST, does not impnaeeeasonable perfor-
mance overhead. The following benchmark uses data objéttslifferent numbers of
Stringfields: 1, 2, 4, 8, 16, 32, and 64. The benchmark emulates a comsage sce-
nario, in which the client retrieves the object from the seand updates its fields. This
scenario was implemented and measured using three diffeoemmunication styles:
plain RMI, a hand-coded DTO, and RBI. Figure 7 shows the perémce numbers for
each version.

All the experiments were run in the Windows XP version of JDK.Q11 (build
1.6.011-b03), with the server running Dual Core 3GHz processdiGB of RAM,
and the client running Dual Core 1.66 GHz Processors, 1GBAM Rconnected via a
LAN with a 1Gbps, 1ms latency network. The results repreenaverage of running
each benchmark a 100 times with first running it another I9@sito warm the JVM.
Warming the JVM ensured that the measured programs had peamitally compiled
before measurements.

As expected, the RMI version is the slowest, with its slopangng linearly at a
fixed rate, as the number of fields increases. The DTO and RBlores exhibit com-
parable performance, with DTO being faster by a small conigtector. These results
are predictable, as the execution time is dominated by th&eu of remote calls per-
formed by each version of the benchmark, and in most netwgrknvironments the
latency of a remote call is several orders of magnitude taigen that of a local call.

The specific number of remote calls performed by each verditme benchmark is
as follows. If f is the number of fields, the RMI version perforts f remote calls (to
get and set every field); the DTO version performs ahballs (i.e., getting and setting
all fields in bulk); and finally, the RBI version performs elgd remote call.

Even though the RBI version performs only one remote calenehs the DTO ver-
sion two, RBI is still slower due to the overhead imposed byclient and server run-
time. To provide flexibility, BEST uses Java language fesguhat are known to have
a negative effect on performance, including reflection tate and invoke methods as
well as multipleCbj ect arrays to pass parameters. In addition, the current impieme
tation of BEST has not been fine-tuned for performance. Findde BEST overhead
would be amortized more significantly in a higher-latenciwoek environment. Com-
pared to the hard-coded interface of DTO, RBI makes it ptessdcreate a flexible
DTO on the fly with the accompanying performance benefits duéé reduced net-
work communication enabled by its service-oriented exenunodel.

6 Related Work

6.1 RPC Critique

Even though Remote Procedure Call (RPC) [29] has been orfeeahbst prevalent
communication abstracts for building distributed systeitssshortcoming and limita-
tions have been continuously criticized [28, 32, 25]. Rélyesome experts even express
the sentiment that RPC has had an overwhelmingly harmfulénfte on distributed
systems development and wish that a different communicatistraction had become
dominant instead [30]. A frequently mentioned alternafme RPC is asynchronous
messaging and events, including publish-subscribe atbising [11].

Despite all the criticisms of RPC and its object-orientedraerparts, exposing dis-
tributed functionality through a familiar procedure cadirpdigm has unquestionable
convenience advantages. Remote Batch Invocation is angtte address some of the
limitations of RPC, while retaining its advantages, withoiiroducing the complica-
tions of asynchronous processing imposed by message- anttleased abstractions.

Among the main criticisms of RPC is its attempt to elimindte tlistinction be-
tween the local and remote computing models, with respdatéacy, memory access,
concurrency, and partial failure [32]. By combining mulkippperations into a single
batch, RBI reduces latency. By executing all remote opamatbn the server in bulk,
RBI maintains the local memory access model for method petens. As future work,
a transactional execution model can be combined with RBtihdexe an all-or-nothing
execution property. And while batch invocations in RBI ayachronous, the resulting
execution model is explicit, giving the programmer a clearcaition and performance
model.

6.2 Explicit Batching

Software design patterns [17] fRemote FacadandData Transfer Objectalso called

Value Objects [3]) can be used to optimize remote commuioica® Remote Facade
allows a service to support specific client call patternegisi single remote invocation.
Different Remote Facades may be needed for differenttsli@emote Batch Invocation

provides a custom Remote Fagade for each client as longeadiéimt call pattern is
supported as a single batch.Pata Transfer Objects a Seri al i zabl e class that
provides block transfer of data between client and senewith the Remote Facade,
different kinds of Data Transfer Objects may be needed Hemifit clients. Remote
Batch Invocation constructs an appropriate value objecthenfly, automatically, as
needed by a particular situation. Remote Batch Invocatiemg@eneralizes the concept
of a data transfer object to support transfer of data froritrary collections of objects.

The DRMI system [20] aggregates RMI calls as a middlewanmatijpmuch like
BEST. DRMI uses special interfaces to record and delay tiecation of remote calls.
DRMI only supports simple call aggregation and simple bramg, while Remote Batch
Invocation and BEST also support cursors, primitive openat and exception han-
dling. Like BEST, DRMI requires that the programmer paotitithe remote and local
operations themselves. This often forces the programmeptiicate loops and con-
ditionals manually, whereas Remote Batch Invocation efeemore flexible style of
programming and relies on the source to source translagartdion the program into
remote and local operations.

Detmold and Oudshoorn [14] present analytic performancaaisdfor RPC and its
optimizations including batched futures as well as a newngipation construct termed
a responsibility Their analytic models could be extended to model the peréoice
properties of the new optimization constructs of RemoteB#tvocation such as cur-
sors and branching.

Sometimes a communication protocol defines batches direxglis in the com-
pound procedure in Network File System (NFS) version 4 Rat{26], which com-
bines multiple NFS operations into a single RPC request.cbingpound procedure in
NFS is not a general-purpose mechanism; the calls are indepeof each other, ex-
cept for a hard-coded current filehandle that can be set aedl lugs operations in the
batch. There is also a single built-in exception policy. V8&vices are often based on
transfer of documents, which can be viewed as batches ofteetatls [31, 10].

Cook and Barfield [10] showed how a set of hand-written wrapgan provide a
mapping between object interfaces and batched calls esquiexs a web service doc-
ument. Remote Batch Invocation automates the process afirmgethe wrappers and
generalizes the technique to support branching, cursatseaception handling. As
a result, Remote Batch Invocation scales as well as an g@iveb service, while
providing the raw performance benefits of RPC [12]. Web sexwichoreography [23]
defines how Web services interact with each other at the medseel. Remote Batch
Invocation can be seen as a choreography facility for thsted objects.

6.3 Mobile Code

Mobile object systems such as Emerald [5] reduce latency &wimg active objects,
rather than making multiple remote calls. JavaParty [24jrates objects to adapt the
distribution layout of an application to enhance localf&ynbassadors is a communi-
cation technique that uses object mobility [13] to minimike aggregate latency of
multiple inter-dependent remote methods. DJ [1] adds eitpliogramming constructs
for direct type-safe code distribution, improving bothfpemance and safety.

Mobile objects generally require sophisticated runtinygosut not only for moving
objects and classes between different sites, but also &dindewith security issues. A
Java application can essentially disable the use of mobde by not allowing dynamic

class loading. An RBI server is fairly simple to implemenlie@ts only gain access to
interfaces that are reachable from the service root.

Even in an environment that supports mobile code, therecar@gages to Remote
Batch Invocation. This can be understood by consideringastation from RBI to
mobile code. Abat ch statement could be implemented using mobile code by writing
two mobile classes, one that is sent from the client to theesd¢o execute the remote
operations, and another that is sent from the server badietalient to transport the
results in bulk to the client. The first class would contaimmber variables to store all
the local data sent to the server, and a method body to exeouttge server. At the
start of this method an instance of the second class is creai# populated with data
created by the remote method. At the end of the method thé& cdgact is sent back to
the client. A custom pair of classes is needed for ettt h statement in the program.
While mobile code is more flexible and powerful than RBI, ih@dso be more work to
use this power to implement common communication patterns.

6.4 Implicit Batching

Batched futureseduce the aggregate latency of multiple remote method# [@mote
methods are restructured to return futures, they can bé&édtd he invocation of the
batch can be delayed until a value of any of the batched fsiisresed in an operation
that needs its value. There are several different cliemtdation patterns that cannot be
batched in this model. For example, unrelated remote methlislwill not be batched
together.

Future RMI [2] communicates asynchronously to speed up RMBEiid environ-
ments, when one remote method is invoked on the result ohand®emote results of
a batch are not transferred over the network, remaining ersénver to be used for
subsequent method invocations.

Yeung and Kelly [9] use byte-code transformations to detaypate methods calls
and create batches at runtime. A static analysis determines batches must be flushed.

In all of these implicit batching techniques, it is not cléew to support loops,
branches, and exceptions as in Remote Batch Invocationlditi@n, small changes in
the program, for example introducing an assignment to d l@cé@ble, or an exception
handler, can cause a batch to be flushed. This means themarfoe is very sensitive
to the ordering of remote and local operations. On the otaedhRemote Batch In-
vocation automatically tries to reorder remote and loc&rapons to maintain a single
batch, while checking that the reordering makes sense.

6.5 Asynchronous Remote Invocation

Another approach to optimizing distributed communicat®@dispatching remote calls
asynchronously. A representative of asynchronous remeteation is ProActive [4].
Its asynchronous remote calls return futures, placehsliiterto be computed results,
on which the client blocks to wait for the results.

Although asynchronous remote invocations can optimizeynpatterns in client-
server communication, they offer no performance improvesér chains of remote
calls (i.e.,o. miL() . n2()). Compared to asynchronous invocation, the RBI program-
ming model does not involve futures and can combine chairrerobte calls into a
batch, thus improving their performance.

Although the current version of RBI does not take advantdgeicurrent process-
ing, in the future the script recorder could also convey depacies between batched
operations to the server, which can be used to safely int@doncurrency into the
batch execution on the server.

7 Conclusion

Previously researchers have argued that library extessimnnot sufficient to provide
a clear and powerful threading model []. Similarly, we artjua library extensions and
compiler optimizations are not sufficient to provide a claad powerful distribution
model. This paper presenRemote Batch Invocation (RBB language-level mecha-
nism for combining multiple operations into a batch. RBbals for the programmer
to transparently compose multiple remote method invonatishile at the same time
indicating that those invocations should be batched in glsiround-trip to the remote
server. Multiple objects can be used as remote operatigetsaand parameters, in-
cluding the results of previous operations. RBI also suigfeatures such as exception
handling, bulk operations on each element of a collectind,@nditional expressions.
The batching is explicit thus presenting a clear perforreanodel to the programmer.

RBI was implemented as a Java extension using a source toesmanslator and the
BEST runtime middleware library. Future work will integediatches with transactions
and explore advanced failure handling approaches.

The performance of RBI was evaluated by comparing plain Rl band-coded
DTO designs. Predictably, RBI significantly outperforms Rivid is only marginally
slower than hand-optimized DTO implementations. Since RBVides greater flex-
ibility and control to the programmer, the small overheagased by its runtime is
compensated by the added usability and expressivenesss RIBb attractive compared
with implicit batching because it can combine a larger seeafote operations.

RBI combines the convenience and flexiblity of fine-graingdifaces with the per-
formance advantages of coarser-grained interfaces. lti@tdhe RBI stateless exe-
cution model aligns well with the increasingly prevalemvsee-oriented architectures,
a rapidly-emerging industry standard.

Availability:

The implementation and examples discussed in the paperecdovinloaded from:
http://research. cs. vt. edu/ vt spaces/ best

References

1. A. Ahern and N. Yoshida. Formalising Java RMI with expliocdde mobility. InProc. of
OOPSLA '05 pages 403—-422, New York, NY, USA, 2005. ACM.

2. M. Alt and S. Gorlatch. Adapting Java RMI for grid compugfirFuture Generation Com-
puter System21(5):699-707, 2005.

3. D. Alur, J. Crupi, and D. MalksCore J2EE Patterns: Best Practices and Design Strategies
Prentice Hall PTR, 2003.

4. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Mamrd R. Quilici. Grid Com-
puting: Software Environments and Taathapter Programming, Deploying, Composing, for
the Grid. Springer-Verlag, January 2006.

10.

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

26.

27.
28.

. A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The elepment of the Emerald
programming language. HOPL IIl, pages 11-1-11-51, 2007.

. P. Bogle and B. Liskov. Reducing cross domain call ovathesing batched futuresACM
SIGPLAN Notices29(10):341-354, 1994.

. E. Brevnov, Y. Dolgov, B. Kuznetsov, D. Yershov, V. Shakin-Y. Chen, V. Menon, and
S. Srinivas. Practical experiences with java softwarestational memory. I®PoPP '08:
Proceedings of the 13th ACM SIGPLAN Symposium on Princiidspractice of parallel
programming pages 287—-288, New York, NY, USA, 2008. ACM.

. N. Brown and C. Kindel. Distributed Component Object Mdelemtocol-DCOM/1.0, 1998.
Redmond, WA, 1996.

. K. Cheung Yeung and P. Kelly. Optimising Java RMI Program€ommunication Restruc-

turing. INnACM Middleware Conferencé&pringer, 2003.

W. Cook and J. Barfield. Web Services versus Distributbpp€s: A Case Study of Per-

formance and Interface Design. the IEEE International Conference on Web Services

(ICWS’06) pages 419-426, 2006.

C. Damm, P. Eugster, and R. Guerraoui. Linguistic supfoordistributed programming

abstractions. IDistributed Computing Systems. Proceedings. 24th Inteynal Conference

on, pages 244-251, 2004.

C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle. Beracking the Round-Trip La-

tency of Various Java-Based Middleware Platfori@sidia Informatica Universalis Regular

Issue 4(1):7-24, 2005.

H. Detmold, M. Hollfelder, and M. Oudshoorn. Ambassadstructured object mobility in

worldwide distributed systems. Proc. of ICDCS'99 pages 442—-449, 1999.

H. Detmold and M. Oudshoorn. Communication ConstrustsHigh Performance Dis-

tributed Computing. IfProceedings of th&9" Australasian Computer Science Conference

pages 252-261, 1996.

T. Ekman and G. Hedin. The JastAdd Extensible Java Cem@IGPLAN Not.42(10):1-

18, 2007.

T. Erl. Service-Oriented Architecture: Concepts, Technology Besign Prentice Hall,

Upper Saddle River, NJ, USA, 2005.

M. Fowler. Patterns of Enterprise Application ArchitectureAddison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

R. Gabriel. Is worse really betterdournal of Object-Oriented Programming (JOQP)

5(4):501-538, 1992.

D. Krafzig, K. Banke, and D. Slaménterprise SOA : service-oriented architecture best

practices Prentice Hall, 2005.

E. Marques. A study on the optimisation of Java RMI progga Master’s thesis, Imperial

College of Science Technology and Medicine, University ohtlon, 1998.

The Object Management Group (OMG@he Common Object Request Broker: Architecture

and Specification1997.

D. A. Patterson. Latency lags bandwi@ommun. ACM47(10):71-75, 2004.

C. Peltz. Web services orchestration and choreograpbsputer 36(10):46-52, 2003.

M. Philippsen and M. Zenger. JavaParty— transparenbteobjects in JavaConcurrency

Practice and Experienc®(11):1225-1242, 1997.

U. Saif and D. Greaves. Communication primitives forquitbus systems or RPC consid-

eredharmful. IrDistributed Computing Systems Workshop, 2001 Internati@onference

on, pages 240-245, 2001.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.nBga\. Eisler, and D. Noveck.

Network File System (NFS) version 4 Protocol, 2003.

Sun Microsystemslava Remote Method Invocation Specificatit®97.

A. S. Tanenbaum and R. v. Renesse. A critique of the reprotedure call paradigm. In

EUTECO 88pages 775-783. North-Holland, 1988.

29.

30.
31.

32.

B. Tay and A. Ananda. A survey of remote procedure callperating Systems Revigw
24(3):68-79, 1990.

S. Vinoski. RPC Under FirdEEE INTERNET COMPUTIN(ages 93-95, 2005.

W. Vogels. Web services are not distributed objelctternet Computing, IEEE7(6):59-66,

2003.
J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A Note oistBbuted Computing. Tech-

nical report, Sun Microsystems, Inc. Mountain View, CA, USA94.

