
Function Inheritance: Monadic Memoization Mixins
Daniel Brown1, William R. Cook2

1Northeastern University, Boston, MA USA
2University of Texas at Austin, Austin, TX USA

Abstract. Inheritance is a mechanism for incrementally modifying recursive
definitions. While inheritance is typically used in object-oriented languages,
inheritance also has something to offer to functional programming. In this
paper we illustrate the use of inheritance in a pure functional language by de-
veloping a small library for memoization. We define monadic memoization
mixins that compose—via inheritance—with an ordinary monadic function
to create a memoized version of the function. A comparison of the perfor-
mance of different approaches shows that memoization mixins are efficient
for a small example.

1. Introduction
Inheritance is usually understood as specific to object-oriented programming and
classes. However, at its core inheritance is a general mechanism for incrementally
modifying recursive structures [Cook 1989]. Classes are one common example of
recursive definitions, but inheritance also applies to types [Canning et al. 1989], func-
tions, and modules. In this paper we illustrate the use of inheritance for functions by
showing how it can be used to implement memoization in the pure functional program-
ming language Haskell.

Memoization can be implemented in many ways. A function can be memoized
by rewriting it to explicitly maintain its own memo table, but rewriting many functions
this way is tedious and fails localize the common memoization behavior, which could
otherwise allow modular memoization strategies. Some languages include a primitive
operator memo, but this is beyond the user’s control. Lazy functional languages indi-
rectly support a form of memoization as a side effect of the lazy evaluation strategy.

In procedural languages memoization can be implemented as a user-defined,
higher-order procedure memo which produces a memoized version memo f of a func-
tion f , but memo cannot be written in a pure functional language since its internal
memo table relies on side effects. Moreover, naı̈vely applying memo to a recursive
function fails to memoize recursive calls within the function.

In this paper we present monadic memoization mixins that compose with a
recursive function using inheritance to memoize its recursive calls. The goal of this
work is to illustrate a novel use of inheritance, not to develop a high-performance
memoization implementation. However, we do show that performance is acceptable.
In an earlier report [Brown and Cook 2007] we scaled our technique up to memoize a
parser combinator library, but the details are beyond the scope of the current paper.

2. Memoizing Recursive Functions
Memoizing a simple recursive function nicely illustrates the technique of monadic
memoization mixins. The underlying ideas behind this approach are well known, but
they have not been systematically studied in the context of mixins and monads in pure
functional languages.

fib :: Int → Int
fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

Consider the Fibonacci function. The execution
time for fib n grows exponentially in n because
fib is called exponentially often on small inputs.
While it is possible to rewrite fib to include a
memo table, the memoization code would be
tangled with the Fibonacci computation. Instead, we explore ways to generalize fib
so that it can be memoized by composing it with an appropriate memoization function.

2.1. Monadification
Rather than rewrite fib to explicitly use a state monad, fib can first be rewritten in
monadic style over an arbitrary monad parameter. This is an automatable process
called monadification [Erwig and Ren 2004]. This monad “hole” can then be plugged
with a state monad that carries a memo table through the recursive calls of the function.
The monadic version mFib of fib computes over an arbitrary monad m:

mFib :: Monad m ⇒ Int → m Int
mFib 0 = return 0
mFib 1 = return 1
mFib (n + 2) = do {a ← mFib n; b ← mFib (n + 1); return (a + b)}

Monadifying a function forces the recursive calls to occur in sequence, which will
enable the memo table to be passed into the first call and the resulting table to be
passed into the second call.

fibm :: Int → Int
fibm = runIdentity ◦mFib

The original Fibonacci function can be re-
covered by running mFib in the identity monad.
runIdentity :: Identity a → a serves two purpose
here: it binds the monad parameter m in mFib to the Identity monad and then extracts
the Int from the resulting trivial computation of type Identity Int .

2.2. Open Recursion and Inheritance
The monadified version of fib enables a memo table to be threaded through the re-
cursive computation, but to also memoize recursive calls to fib, the self-reference
must be exposed, or opened, so that it can be rebound to refer to the memoized ver-
sion of the function. This is exactly what inheritance does in object-oriented lan-
guages [Cook and Palsberg 1989]—and the same technique can be applied to func-
tions [Cook 1989]. To do so, we abstract the self-reference in fib as an explicit self
parameter, then reconstruct fibg using an explicit fixed point.

type Gen a = a → a

gFib :: Gen (Int → Int)
gFib self 0 = 0
gFib self 1 = 1
gFib self (n + 2) = self n + self (n + 1)

fibg :: Int → Int
fibg = fix gFib

Functions like gFib that are
used to specify a fixed-point are
called generators. They have types
of the form a→ a, described by the
type Gen a .

Inheritance works by com-
posing generators before comput-
ing the fixed point. For memoiza-
tion, the memoized Fibonacci function will have the form fix (memo ◦ gFib) for
an appropriate generator memo with gFib. This has the effect of binding self-
reference in gFib to the memoized version of the function. In this context, memo
is a mixin [Bracha and Cook 1990].

Object-oriented languages support open recursion implicitly: every recursive
definition implicitly defines a generator which can be inherited using special syntax.
The same thing could be supported in Haskell. The syntax memo inherit fib could be
defined to mean fix (memo ◦ gFib0) where gFib0 is the generator of fib. There is a
significant performance penalty for using explicit fixed-points in Haskell to implement
inheritance, but direct support for inheritance could improve this situation.

2.3. Monadic Fibonacci Generator
The versions of fib with open and monadic recursion are combined to create a monadic
Fibonacci generator. Since open recursion and monadification are orthogonal opera-
tions, they can be performed in either order to yield the same result:

gmFib :: Monad m ⇒ Gen (Int → m Int)
gmFib self 0 = return 0
gmFib self 1 = return 1
gmFib self (n + 2) = do {a ← self n; b ← self (n + 1); return (a + b)}
fibgm :: Int → Int
fibgm = runIdentity ◦ (fix gmFib)

The three functions fibg, fibm, and fibgm all behave the same as fib.

2.4. Memoization Mixin
A memoized version fM of a function f has a standard pattern based on a table of
previous results. The function call fM(x) first checks if x has an entry in the table
and, if so, returns the stored result. If not, it computes f(x) and stores the result in the
table. In a pure functional language, an explicit memo table is passed as an input to fM

(and to the recursive calls), and the updated table is returned with the result. This kind
of computation is naturally expressed using the State monad with the memo table as
the state. However, various kinds of tables or state-like monads might be used, so we
parameterize the memo function by two accessor functions to check whether a value

memo :: Monad m ⇒ Dict a b m → Gen (a → m b)
memo (check , store) super a = do

b ← check a
case b of

Just b → return b
Nothing → do {b ← super a; store a b; return b}

Figure 1. Memoization Mixin

has already been computed, and to store new values that are computed. These two
functions constitute a dictionary interface Dict a b m , where a is the key type, b is
the value type, and m is the state-like monad:

type Dict a b m = (a → m (Maybe b), a → b → m ())

Given a dictionary, the memo mixin is easily defined, as shown in Figure 1. Follow-
ing a convention from object-oriented programming [Goldberg and Robson 1983], the
argument of the mixin is called super .

While it is desirable to encapsulate check and store within a type class for
memo tables and stateful monads, this approach does not work nicely in cases where
multiple dictionaries have the same type.

2.5. Memoized Fibonacci

Finally, the memo mixin is combined with the monadic generator for fib to create the
memoized function memoFib. Notice that the particular representation for the memo
table is still unspecified.

type Memoized a b m = Dict a b m → a → m b

memoFib :: Monad m ⇒ Memoized Int Int m
memoFib dict = fix (memo dict ◦ gmFib)

The type Memoized a b m represents the memoized version of a function of type
a → b, abstracted over a memo dictionary. One way to instantiate the dictionary’s
memo table is with a standard Data.Map object with lookup and insert operations:

mapDict :: Ord a ⇒ Dict a b (State (Map a b))
mapDict = (check , store) where

check a = gets (lookup a)
store a b = modify (insert a b)

memoMapFib :: Int → State (Map Int Int) Int
memoMapFib = memoFib mapDict

The function memoMapFib is memoized with a Map to store computed values. Since
memoMapFib exposes the stateful monad that carries the memo table, a client could
reuse the same table across separate uses of the function, if desired. On the other hand,
if the client does not need this kind of reuse and only wants to memoize recursive calls,
a simpler version can be defined with the same interface as fib:

runMemoMapFib :: Int → Int
runMemoMapFib n = evalState (memoMapFib n) empty

The function evalState :: State s a → s → a runs the stateful computation
memoMapFib n with the initial state empty , an empty map, and returns the Int result
of that computation.

For improved efficiency, the memo table might instead be implemented as an
array, which Haskell provides a variety of. To use one for memoization, an appropriate
pair of accessors must be defined. (The details of using the MArray array type and
the ST monad aren’t relevant to our discussion, but we include the code in full for
completeness.)

arrayDict :: (MArray arr (Maybe b) m, Ix a,Ord a)⇒
a → arr a (Maybe b)→ Dict a b m

arrayDict size arr = (check , store) where
check a = if a > size then return Nothing else readArray arr a
store a b = if a > size then return () else writeArray arr a (Just b)

With arrayDict in hand, a memoized fib with an array memo table is easily defined:

newSTArray :: Ix i ⇒ (i , i)→ e → ST s (STArray s i e)
newSTArray = newArray

runMemoArrayFib :: Int → Int → Int
runMemoArrayFib size n = runST (do

arr ← newSTArray (0, size) Nothing
memoFib (arrayDict size arr) n)

In summary, fib was memoized by monadifying, opening recursion, and then
composing with a generic memo mixin. The memo mixin is parameterized by func-
tions that interact with a memo table within a stateful monad. Next, we consider
memoizing a function that is already defined in a monadic style.

3. Memoizing Monadic Functions
Effectful computations in Haskell are often structured using monads. Since a monadic
function is just a pure function from input values to output computations, we can reuse
the approach in the previous section to memoize functions that are already monadic:
the memo table will just map inputs to computations delivering outputs.

But this memo table is not always the one we want. For example, tables for
stateful computations will map inputs a to state transformers s → (b, s), failing to
use the input state s in the cache lookup. Tables for the reader monad have the same
problem. But sometimes caching the output computation is exactly what we want:

a → Maybe b caches the successful result Just b or failure Nothing
a → Error e b caches the successful result Right b or error Left e
a → [b] caches the sequence of possible results [b]
a →Writer w b caches the accumulated output w along with the result b

Since Haskell represents effects explicitly, our mixin-based approach to memoization
immediately applies to these kinds of effectful computations. In this section we illus-
trate how to memoize a nondeterministic computation expressed in the list monad.

First consider a function that computes the fringe of a tree: given a tree with
values at its leaves, fringe computes the left-to-right traversal of the leaves.

data Tree a = Leaf a | Fork (Tree a) (Tree a) deriving (Show ,Eq)

fringe :: Tree a → [a]
fringe (Leaf a) = [a]
fringe (Fork t u) = fringe t ++ fringe u

Now consider the preimage of fringe: unfringe maps a list representing the fringe of
a tree to the set of trees with that fringe. Since unfringe computes a set of possible
trees, it is naturally expressed as a nondeterministic computation using the list monad.
It maps singleton lists to leaves, and it maps larger lists to a set of trees by recurring on
all binary partitions of the list and combining every pair of resulting trees with Fork :

unfringe :: [a]→ [Tree a]
unfringe [a] = [Leaf a]
unfringe as = do {(l , k)← partitions as ; t ← unfringe l ; u ← unfringe k ;

return (Fork t u)}

We use the function partitions which computes all of the binary partitions of a list:

partitions :: [a]→ [([a], [a])]
partitions as = [splitAt n as | n ← [1 . . length as − 1]]

The function unfringe can be transformed to add a monad parameter and open recur-
sion in the same way fib was transformed in Sections 2.1 & 2.2. Notice that monadifi-
cation introduces a monad m separate from the existing list monad: the nondetermin-
ism effect provided by the list monad and the stateful effect required by memoization
are independent and require different monads. The result, gmUnfringe , is openly re-
cursive via self and is parameterized over a monad m:

gmUnfringe :: Monad m ⇒ Gen ([a]→ m [Tree a])
gmUnfringe self [a] = return [Leaf a]

gmUnfringe self as =
liftM concat (sequence (do

(l , k)← partitions as
return (do {ts ← self l ; us ← self k ;

return (do {t ← ts ; u ← us ; return (Fork t u)})})))

The monadic generator gmUnfringe can be run without memoization by closing the
recursion and binding the monadic parameter m to the Identity monad:

unfringegm :: [a]→ [Tree a]
unfringegm = runIdentity ◦ fix gmUnfringe

The result, unfringegm , behaves the same as unfringe. The memo mixin and accessors
defined in Sections 2.4 & 2.5 apply to gmUnfringe just as they did for gmFib:

memoUnfringe :: (Ord a,Monad m)⇒ Memoized [a] [Tree a] m
memoUnfringe access = fix (memo access ◦ gmUnfringe)

runMUnfringe :: Ord a ⇒ [a]→ [Tree a]
runMUnfringe l = evalState (memoUnfringe mapDict l) empty

Obtaining gmUnfringe from unfringe is straightforward, but it produces a
function that is difficult to understand because it is written in two monads, List and
m, whose use must be interleaved. One way to avoid this interleaving is to combine
the two monads into one and express gmUnfringe more uniformly in the combined
monad. In the next section we show how to achieve this using monad transformers.

4. Memoization via Monad Transformers
Monadifying a function that is already written in monadic style produces code that
is difficult to understand because it interleaves uses of two different monads. In the
last section, we identified certain monads where our approach from Section 2 properly
memoizes functions with that effect—Maybe, Error e, List , and Writer w—and in
this section we show how using the corresponding monad transformers is an elegant
alternative to modification. We continue the unfringe example from the last section to
illustrate our approach with the ListT monad transformer1.

We obtained the monad parameter m in gmUnfringe by monadifying the list
computation unfringe . A more elegant way to introduce a new monad into an already
monadic computation is to use monad transformers [Liang et al. 1995]: lift unfringe
from the list monad to the transformed monad ListT m , leaving m to be bound to the
memoization monad when composed with an appropriate memo mixin. This produces
the function gmUnfringeT :

gmUnfringeT :: Monad m ⇒ Gen ([a]→ ListT m (Tree a))
gmUnfringeT self [a] = return (Leaf a)

1ListT fails to be a proper monad transformer; we discuss this at the end of the section.

gmUnfringeT self as = do
(l , k)← ListT (return (partitions as))
t ← self l
u ← self k
return (Fork t u)

The benefit of using monad transformers is that gmUnfringeT is defined similarly to
unfringe and avoids the interleaving of the two monads found in gmUnfringe.

A false start to defining an appropriate memo mixin for transformer-based
functions is to simply lift the memo table operations into the transformed monad:

memoX :: (Monad m,MonadTrans t ,Monad (t m))⇒
Dict a b m → Gen (a → t m b)

memoX (check , store) super a = do
b ← lift (check a)
case b of

Just b → return b
Nothing → do {b ← super a; lift (store a b); return b}

Unfortunately, memoX misbehaves: in the case of ListT , it only memoizes the first
result of the computation, ignoring the rest. The problem is evident in the type of
memoX : the memo table defined by Dict a b m stores values of type b instead of
computations [b].

This problem arises because the transformed monad interleaves the effects of
the two monads: the call to super a :: t m b delivers a result of type b from the
monad t m , whereas we want a result of type m b from the monad embodied by the
transformer t . Thus, we must shift perspective from transformed monad t m to the
monad n , where t m a ∼= n (m a)—although many monad transformers are not of this
shape, those for the monads we address in Section 3 all are. We encode this shift with
a type class that maps between a monad transformer and its corresponding monad:

class (MonadTrans t ,Monad n)⇒ TransForMonad t n | t → n, n → t where
toTrans :: m (n a)→ t m a
fromTrans :: t m a → m (n a)

The type class TransForMonad uses a common Haskell extension called functional
dependencies [Jones 2000]: the clause t → n specifies that the type t uniquely deter-
mines n in instances of this class, which the type checker will use to infer types for
functions like fromTrans where n does not occur in the function’s input types. Since
we also have the dependency n → t , TransForMonad expresses a bijection between
certain monad transformers and their underlying monads. Most instance of this class
simply add and remove datatype constructors:

instance TransForMonad ListT [] where
toTrans = ListT
fromTrans = runListT

TransForMonad enables us to define the transformer-based mixin. We use the original
memo mixin as a generator Gen (a → n (m b)) so that it will capture results of type
m b, and we then wrap it to obtain a generator Gen (a → t m b):

memoT :: (TransForMonad t n,Monad m)⇒
Dict a (n b) m → Gen (a → t m b)

memoT dict f = toTrans ◦memo dict (fromTrans ◦ f)

The transformer-based mixin memoizes transformer-based functions, as before:

type MemoizedT a n t b m = Dict a (n b) m → a → t m b

memoUnfringeT :: Monad m ⇒ MemoizedT [a] [] ListT (Tree a) m
memoUnfringeT dict = fix (memoT dict ◦ gmUnfringeT)

runMUnfringeT :: Ord a ⇒ [a]→ [Tree a]
runMUnfringeT a = evalState (runListT (memoUnfringeT mapDict a)) empty

Throughout this section we have been abusing the ListT “monad trans-
former” because the functor ListT m is only a monad when m is a commutative
monad [Jones and Duponcheel 1993], but the particular instances we have in mind for
m—a state-like monad—are usually not commutative. However, the “memoization ef-
fect” does not necessarily bring along the full functionality of state—and, intuitively,
it appears to be commutative: switching the order in which the results of a function are
cached makes no semantic difference. So we expect that our Dict abstraction can be
refined into a proper axiomatization of a commutative “memoization monad”, but we
leave this as future work.

5. Memoizing Mutual Recursion
Our approach so far handles recursive functions, possibly written in monadic style, but
computations are often spread across multiple, mutually recursive functions. Memo-
izing mutually recursive functions requires maintaining a collective state with a memo
table for each function—all of which might have different types. In this section we
extend our technique to apply to a pair of mutually recursive, non-monadic functions;
extending to many monadic functions would then be straightforward.

Consider mutually recursive functions f and g (with different types):

f :: Int → (Int , String)
f 0 = (1,"+")
f (n + 1) = (g (n, fst (f n)),"-"++ snd (f n))

g :: (Int , Int)→ Int
g (0,m) = m + 1
g (n + 1,m) = fst (f n)− g (n,m)

The technique for defining mutually recursive functions using an explicit fixed-point
is standard: the fixed-point generator operates on tuples of functions. In this case, the

tuple is a pair with type (Int → (Int , String), (Int , Int) → Int). As in the case for
fib, these non-monadic functions must be monadified to introduce a monad parameter.
The result is a generator on a pair of functions monadified over m:

type MFuns m = (Int → m (Int , String), (Int , Int)→ m Int)

gmFG :: Monad m ⇒ Gen (MFuns m)
gmFG ∼(f , g) = (f ′, g ′) where

f ′ 0 = return (1,"+")
f ′ (n + 1) = do {a ← f n; b ← g (n, fst a); return (b,"-"++ snd a)}
g ′ (0,m) = return (m + 1)
g ′ (n + 1,m) = do {a ← f n; b ← g (n,m); return (fst a − b)}

The input, a pair of functions f and g , represents the self parameters, while f ′ and
g ′ are the functions produced by the generator. The lazy pattern ∼(f , g) prevents
divergence. Whereas similar encodings for object-oriented languages typically use
records instead of tuples, Haskell records are akward to use because they lack first-
class update functions, so we settle here for tuples.

The function f is easily recovered from gmFG by taking its fixed-point, pro-
jecting, and running the result through the identity monad. The resulting function fgm
behaves the same as f .

fgm :: Int → (Int , String)
fgm = runIdentity ◦ (fst (fix gmFG))

To memoize f and g , a memoization mixin must be composed with each gen-
erator separately, yet each memo mixin must read and write to disjoint parts of the
same state. The memo mixin for f and g is a function on pairs, which uses a pair of
dictionaries to access the store:

memoFGMixin :: (Monad m,Monad m ′)⇒
(Dict a b m,Dict a ′ b ′ m ′)→ Gen (a → m b, a ′ → m ′ b ′)

memoFGMixin (df , dg) (f , g) = (memo df f ,memo dg g)

memoF :: Monad m ⇒
(Dict Int (Int , String) m,Dict (Int , Int) Int m)
→ Int → m (Int , String)

memoF dicts = fst (fix (memoFGMixin dicts ◦ gmFG))

One method to represent memo tables for mutual recursion is to maintain a map for
each function, providing access to the ith map by projection and injection functions:

type Accessor a b = (b → a, a → b → b)

The function selMap creates a pair of dictionary accessors given a projection/injection
pair. It assumes that the components of the pair are Maps.

selMap :: Ord a ⇒ Accessor (Map a b) s → Dict a b (State s)
selMap (proj , inj) = (check , store) where

check a = gets (lookup a ◦ proj)
store a b = modify (λs → inj (insert a b (proj s)) s)

To run the memoized version of f , the memo function memoF is applied to an ap-
propriate pair of accessors and executed in an empty state. We assume a family of
projection and injection functions proji/n and inji/n for accessing the ith component
of an n-tuple, and let acci/n = (proji/n, inji/n). (These could easily be written by
hand or generated with metaprogramming.)

runMemoF :: Int → (Int , String)
runMemoF n = evalState (memoF dicts n) (empty , empty)

where dicts = (selMap acc1/2, selMap acc1/2)

The shared state for f and g contains a Map for each function of the appropriate type:

type MemoFG = State (Map Int (Int , String),Map (Int , Int) Int)

6. Evaluation
To evaluate the performance of our monadic memo mixins, we compared the simple
Fibonacci function implemented in five different ways:

zipFib The traditional hand-coded lazy data structure
mixinFib/fix Fibonacci implemented as a memo mixin as in Section 2
mixinFib/nofix mixinFib/fix with harded-coded fixed-point
mixinFib/nofix/IO mixinFib/nofix with Data.Array .IO instead of ST
tabFib/nofix Lazy tabulating function without mixins [Hinze 2000]

The performance of these implementations is summarized in Figure 2. The vertical
axis is the time to compute fib n where n increases linearly along the horizontal axis.
Each computation is performed separately so that the memo tables are reconstructed
each time. The results represent the total time of 200 runs on a 2.4GHz Intel Pentium 4
running Windows XP. The code was compiled with optimizations (-O) in GHC 6.4.1.
The performance results are relatively stable between runs.

The memoization mixins are comparable to the traditional zipFib version, al-
though the latter has a slightly worse asymptotic behavior. None of the implemen-
tations exhibit true linear behavior, although the second-degree coefficients are gen-
erally small. The graphs include second-degree polynomial trend lines which match
the curves closely. Curiously, when run without optimizations in ghci the trends are
more clearly linear. The implementation using IO arrays is the closest to linear.

In [Brown and Cook 2007] we also applied our techniques to memoize a
monadic parser so we could construct Ford’s Packrat parsers [2002] in a more modular
way. This case study was interesting because parsers produce large nests of mutually

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25
n (thousands)

CP
U

Ti
m

e
fo

r 2
00

 ru
ns

 (S
ec

on
ds

)

zipFib

ta
bF

ib
/n

of
ix

m
ixi

nF
ib

/fi
x

m
ixi

nF
ib

/n
of

ix/
IO

m
ixi

nF
ib

/n
of

ix

Figure 2. Performance of memoized Fibonacci (detail)

recursive functions and monadic parsers typically combine the state monad with failure
or nondeterminism. As discussed in Section 3, additional work is needed to develop a
general approach to memoizing computations in the state monad because our method
does not make the input state available to the memo mixin. To work around this, we
devised an ad-hoc method to expose the input states, and the resulting memoization
mixin works but is not satisfactorily elegant or general—see the report for details. We
think that broadening our technique to monads beyond those mentioned in Section 3
is a good challenge problem for future research.

7. Related Work

Memoization is an old technique [Michie 1968]. Most accounts introduce a higher-
order function memo to perform memoization. This approach can be implemented in
procedural languages that support higher-order functions [Hall and Mayfield 1993]. A
memo function can also be implemented as a primitive within the implementation of
a lazy functional language. For example, some versions of GHC included a memo
function, but it appears to have been removed from recent versions [GHC]. Mem-
oization can also be defined in terms of more basic primitives which allow effects
outside the normal semantics of functional languages. For example, memoization can
be defined on top of an unsafe state monad [Cook and Launchbury 1997] or unsafe IO
monad [Jones et al. 1999].

Hinze [2000] defines tabulation functions that store previous results in lazy data

structures. He also transforms functions, but only needs to open recursion, not apply
monadification. As a result, his technique of tabulation is easier to use than monadic
memoization mixins, but it produces a less efficient result.

Swadi et al. [2006] independently proposed an approach to memoization simi-
lar to the one presented in this paper (and our original report). However, they reached
a significantly different solution because their primary goal was to perform partial
evaluation on memoized computations to increase performance. Instead of creating a
memoization mixin, they create a memoizing fixed-point combinator.

The memoization technique described here depends upon monadification,
which introduces a monad parameter into a recursive function. A comprehensive re-
view of this problem and its solution was presented by Erwig and Ren [2004] although
the problem was discussed earlier [Lämmel 2000].

Memoization by lazy data structures appears to be unique to lazy functional
programming languages. The technique is powerful, but difficult to use because it is
almost invisible in the resulting program [Bird and Hinze 2003]. There is no simple
way to shrink the memo table in the canonical memoization of fib presented in the
introduction.

Cook and Lauchbury [1997] studied “disposable memo functions” where the
memo table can be garbage collected when it is no longer referenced. They present an
extension to a λ-calculus with a primitive memo function. They also briefly discuss
the basic solution to memoization using a state monad. They show how the behavior
of the extended λ-calculus can be implemented using unsafeST , which allows update
of mutable state to be hidden within a Haskell program. Our results refute their claim
that “in Haskell, memo must be defined outside the of the language”.

8. Conclusion
This paper presents monadic memoization mixins. The main motivation for our work
was to illustrate the use of inheritance in functional languages. Inheritance is usually
associated with classes in object-oriented languages, but it is in fact a more general
technique for modifying recursive structures—including classes, modules, functions,
and types. Our monadic memo mixins memoize recursive functions, monadic func-
tions, and mutually recursive functions, and they are efficient for a small example.

References
Bird, R. and Hinze, R. (2003). Functional pearl: Trouble shared is trouble halved. In

ACM SIGPLAN Workshop on Haskell, pages 1–6.

Bracha, G. and Cook, W. (1990). Mixin-based inheritance. In Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages 303–311.

Brown, D. and Cook, W. R. (2007). Monadic memoization mixins. Technical Report
TR-07-11, UT Austin, Department of Computer Sciences.

Canning, P., Cook, W., Hill, W., Mitchell, J., and Olthoff, W. (1989). F-bounded
polymorphism for object-oriented programming. In Functional Programming Lan-
guages and Computer Architecture (FPCA), pages 273–280.

Cook, B. and Launchbury, J. (1997). Disposable memo functions. In International
Conference on Functional Programming (ICFP), pages 310–310.

Cook, W. (1989). A Denotational Semantics of Inheritance. PhD thesis, Brown.

Cook, W. and Palsberg, J. (1989). A denotational semantics of inheritance and its cor-
rectness. In Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 433–444.

Erwig, M. and Ren, D. (2004). Monadification of functional programs. Sci. Comput.
Program., 52(1-3):101–129.

Ford, B. (2002). Packrat parsing: simple, powerful, lazy, linear time. In International
Conference on Functional Programming (ICFP), pages 36–47.

GHC. GHC – The Glasgow Haskell Compiler. haskell.org/ghc.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: the Language and Its Implemen-
tation. Addison-Wesley.

Hall, M. and Mayfield, J. (1993). Improving the performance of AI software: Pay-
offs and pitfalls in using automatic memoization. In International Symposium on
Artificial Intelligence.

Hinze, R. (2000). Memo functions, polytypically! In Second Workshop on Generic
Programming.

Jones, M. P. (2000). Type classes with functional dependencies. In European Sympo-
sium on Programming Languages and Systems (ESOP), pages 230–244.

Jones, M. P. and Duponcheel, L. (1993). Composing monads. Technical Report
YALEU/DCS/RR-1004, Yale University.

Jones, S. L. P., Marlow, S., and Elliott, C. (1999). Stretching the storage manager:
Weak pointers and stable names in haskell. In Implementation of Functional Lan-
guages, pages 37–58.

Lämmel, R. (2000). Reuse by Program Transformation. In Michaelson, G. and Trinder,
P., editors, Functional Programming Trends 1999. Intellect. Selected papers from
the 1st Scottish Functional Programming Workshop.

Liang, S., Hudak, P., and Jones, M. P. (1995). Monad transformers and modular inter-
preters. In Principles of Programming Languages (POPL), pages 333–343. ACM.

Michie, D. (1968). “memo” functions and machine learning. Nature, 218:19–22.

Swadi, K., Taha, W., Kiselyov, O., and Pasalic, E. (2006). A monadic approach for
avoiding code duplication when staging memoized functions. In Partial Evaluation
and Semantics-Based Program Manipulation (PEPM), pages 160–169.

