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How many times 
have you 
heard…

3

“Web Services 
suck…”

?

4

“WS are a bad
version

of distributed 
objects”

(CORBA, DCOM, RMI, etc.)
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Criteria

Performance

Ease of Use
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Past Studies

Distributed Objects

10 to 100 

times faster than 

Web Services
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Test Case

Call a remote service 
that 

returns an integer

(or an array, etc)

Demare 2005, Elfwing 2002, Juric 2004
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Biased
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Typical of RPC…

typical of 
Web Services?
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Web services

support

“document-oriented

messaging”
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My Study

Also biased

…in the 
other direction

12

HTTP designed 
with distributed 

objects
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RMI Document Server
interface Item {

File Get();
File Invoke(HashMap p);

Item Sub(String n)
throws FileNotFound;

}

interface File {
int Length();
String Text();
String Type();
String Encoding();
long Modified();
}
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Abstraction 
is great

15

Distance 
doesn’t 
matter

16

unless…
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property being 
abstracted

=
essence of 
problem

-Steve Cook
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distance
=

essence of 
problem
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Calling RMI

Container c;

c = root.Sub(“papers").Sub("index.htm");

String s = c.Get().Text();

Can’t take something that works 
locally and make it remote. But taking 
something that works remotely and 
using it locally is ok. – Don Box

“.” = 
Round-trip

20

Service

Client
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Things are 
only going 
to get 
worse

Latency Lags 
Bandwidth

David Patterson
CACM

October 2004 22

The Web would 
have failed

23

“but nobody 
would do it 
that way…
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…you need: 
value objects,

custom marshalling / 
serialization 

custom client stubs,
blah…blah…blah…

blah…blah…blah…
blah…blah…blah… blah…blah…blah…

blah…blah…blah… blah…blah…blah…
blah…blah…blah… blah…blah…blah…

blah…blah…blah… blah…blah…blah… blah…blah…blah…
blah…blah…blah… blah…blah…blah… blah…blah…blah… blah…blah…blah…

blah…blah…blah… blah…blah…blah…
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Result…

•Defeat abstraction

•Tightly couple client 
and server

•Complex
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Web Services
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Can’t easily convert 
RMI interface into a 

web service 

interface Item {

File Get();
File Invoke(HashMap p);
Item Sub(String n)

throws FileNotFound;
}
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Actions vs. Docs

Objects:

methods = Actions

Web Service:

in/out  = Document

Description 
of work
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Nominalization
verb � noun

traverse � traversal

collect � collection

implement � implementation
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WS Document Server
class Request {

String name;

bool doGet;

Request[] subItems;

Param[] params;

} class ResourceServer
{
File[] perform(Request doc);

}
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Calling WS
Request base = new Request("base");
Request index = new Request("index.htm");
index.doGet = true;
base.subItems.Add(index);

File[] docs = server.perform(base);

String s = docs[0].getText();
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Performance
WS Service

Client

Dist. Obj.

Client



33 34

35 36

Ease
of
Use
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Actions

Open the “talk” folder 
and get “index.htm”

38

Nominalization

Execute a retrieval of 
the document whose 
location is “talk”

and name is 
“index.htm”
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Web Service

Execute a retrieval of 
the document whose 
location is “talk”

and name is 
“index.htm”

40

Better Wrappers

Object-oriented 
wrappers to

document-oriented 
service
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Background

Explicit variant 

of Liskov’s

“batched futures”
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Calling Wrapper

Container c;

c = root.Sub(“papers").Sub("index.htm");

File doc = c.Get();

root.perform();

String s = doc.Text();

Can’t take something that works 
locally and make it remote. But taking 
something that works remotely and 
using it locally is ok. – Don Box

Future

traverse
use results
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Wrapper

44

Benefits

Looks like RMI

Works like Web Service
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Natural RMI: 
Usable

¬¬¬¬Scalable

Natural WS:

¬¬¬¬Usable

Scalable

OO/WS Wrapper: 
Usable + Scalable
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Observation

WS Document can be

“thing”: purchase order

“actions”: insert, 
update, delete, search, 
traverse…
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Conclusion

•Web Services are not
distributed objects

•Can simulate each other

•With natural design, 
WS are faster than RMI
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Questions?


