
1

Web Services
versus

Distributed
Objects

William R. Cook, Janel Barfield
University of Texas at Austin

2

How many times
have you
heard…

3

“Web Services
suck…”

?

4

“WS are a bad
version

of distributed
objects”

(CORBA, DCOM, RMI, etc.)

5

Criteria

Performance

Ease of Use

6

Past Studies

Distributed Objects

10 to 100

times faster than

Web Services

7

Test Case

Call a remote service
that

returns an integer

(or an array, etc)

Demare 2005, Elfwing 2002, Juric 2004

8

Biased

9

Typical of RPC…

typical of
Web Services?

10

Web services

support

“document-oriented

messaging”

11

My Study

Also biased

…in the
other direction

12

HTTP designed
with distributed

objects

13

RMI Document Server
interface Item {

File Get();
File Invoke(HashMap p);

Item Sub(String n)
throws FileNotFound;

}

interface File {
int Length();
String Text();
String Type();
String Encoding();
long Modified();
}

14

Abstraction
is great

15

Distance
doesn’t
matter

16

unless…

17

property being
abstracted

=
essence of
problem

-Steve Cook
18

distance
=

essence of
problem

19

Calling RMI

Container c;

c = root.Sub(“papers").Sub("index.htm");

String s = c.Get().Text();

Can’t take something that works
locally and make it remote. But taking
something that works remotely and
using it locally is ok. – Don Box

“.” =
Round-trip

20

Service

Client

21

Things are
only going
to get
worse

Latency Lags
Bandwidth

David Patterson
CACM

October 2004 22

The Web would
have failed

23

“but nobody
would do it
that way…

24

…you need:
value objects,

custom marshalling /
serialization

custom client stubs,
blah…blah…blah…

blah…blah…blah…
blah…blah…blah… blah…blah…blah…

blah…blah…blah… blah…blah…blah…
blah…blah…blah… blah…blah…blah…

blah…blah…blah… blah…blah…blah… blah…blah…blah…
blah…blah…blah… blah…blah…blah… blah…blah…blah… blah…blah…blah…

blah…blah…blah… blah…blah…blah…

25

Result…

•Defeat abstraction

•Tightly couple client
and server

•Complex

26

Web Services

27

Can’t easily convert
RMI interface into a

web service

interface Item {

File Get();
File Invoke(HashMap p);
Item Sub(String n)

throws FileNotFound;
}

28

Actions vs. Docs

Objects:

methods = Actions

Web Service:

in/out = Document

Description
of work

29

Nominalization
verb � noun

traverse � traversal

collect � collection

implement � implementation

30

WS Document Server
class Request {

String name;

bool doGet;

Request[] subItems;

Param[] params;

} class ResourceServer
{
File[] perform(Request doc);

}

31

Calling WS
Request base = new Request("base");
Request index = new Request("index.htm");
index.doGet = true;
base.subItems.Add(index);

File[] docs = server.perform(base);

String s = docs[0].getText();

32

Performance
WS Service

Client

Dist. Obj.

Client

33 34

35 36

Ease
of
Use

37

Actions

Open the “talk” folder
and get “index.htm”

38

Nominalization

Execute a retrieval of
the document whose
location is “talk”

and name is
“index.htm”

39

Web Service

Execute a retrieval of
the document whose
location is “talk”

and name is
“index.htm”

40

Better Wrappers

Object-oriented
wrappers to

document-oriented
service

41

Background

Explicit variant

of Liskov’s

“batched futures”

42

Calling Wrapper

Container c;

c = root.Sub(“papers").Sub("index.htm");

File doc = c.Get();

root.perform();

String s = doc.Text();

Can’t take something that works
locally and make it remote. But taking
something that works remotely and
using it locally is ok. – Don Box

Future

traverse
use results

43

Wrapper

44

Benefits

Looks like RMI

Works like Web Service

45

Natural RMI:
Usable

¬¬¬¬Scalable

Natural WS:

¬¬¬¬Usable

Scalable

OO/WS Wrapper:
Usable + Scalable

46

Observation

WS Document can be

“thing”: purchase order

“actions”: insert,
update, delete, search,
traverse…

47

Conclusion

•Web Services are not
distributed objects

•Can simulate each other

•With natural design,
WS are faster than RMI

48

Questions?

