
Safe Query Objects:
Statically Typed Objects as Remotely Executable Queries

William R. Cook
Department of Computer Sciences

University of Texas at Austin

wcook@cs.utexas.edu

Siddhartha Rai
Department of Computer Sciences

University of Texas at Austin

ABSTRACT
Developers of data-intensive applications are increasingly
using persistence frameworks such as EJB, Hibernate and
JDO to access relational data. These frameworks support
both transparent persistence for individual objects and ex-
plicit queries to efficiently search large collections of ob-
jects. While transparent persistence is statically typed, ex-
plicit queries do not support static checking of types or syn-
tax because queries are manipulated as strings and inter-
preted at runtime. This paper presents Safe Query Objects,
a technique for representing queries as statically typed ob-
jects while still supporting remote execution by a database
server. Safe query objects use object-relational mapping and
reflective metaprogramming to translate query classes into
traditional database queries. The model supports complex
queries with joins, parameters, existentials, and dynamic
criteria. A prototype implementation for JDO provides a
type-safe interface to the full query functionality in the JDO
1.0 standard.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; D.3.0
[Programming Languages]: General; H.2.3 [Database
Management]: Languages

General Terms
Languages, Design, Reliability

1. INTRODUCTION
Developers of data-intensive applications are increasingly

using persistence frameworks such as EJB [17], Hibernate [6]
and JDO [21] to access relational data. These frameworks
support transparent persistence for individual objects and
explicit queries to efficiently search large collections of ob-
jects. Transparent persistence is statically typed, but query
execution does not support static checking of types or syn-
tax. The query interfaces are similar to older database in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05,May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

terfaces, ODBC [24] and JDBC [12], but use object-based
query languages instead of SQL.

The fundamental problem with existing query interfaces
is that they force significant parts of program behavior to be
encoded inside strings or other runtime data structures. The
queries are disconnected from the rest of the program, and
the linkage between the program and queries, by passing pa-
rameters and decoding results, is awkward and error-prone.
For dynamic queries, which include a set of criteria that is
determined at runtime, the query strings themselves must
be constructed dynamically. In addition, programmers must
learn two languages that provide overlapping functionality
yet subtly different semantics.

These problems are illustrated by the following program
fragment [11], which motivated the use of static analysis
to perform syntax and type checking on programs that use
JDBC:

ResultSet getPerishablePrices(String lowerBound) {
String query = "SELECT ’$’ || (RETAIL/100) "

+ "FROM INVENTORY WHERE ";

if (lowerBound != null) {
query += "WHOLESALE > " + lowerBound + " AND ";

}
query += "TYPE IN (" + getTypeCodes() + ");";

return statement.executeQuery(query);

}
String getTypeCodes() {

return "SELECT TYPECODE, TYPEDESC FROM TYPES "

+ "WHERE NAME = ’fish’ OR NAME = ’meat’";

}

To resolve these problems, we present safe query objects,
an alternative technique for specifying type-safe queries. Safe
queries combine object-relational mapping with object-oriented
languages to specify queries like the one above in a more un-
derstandable and maintainable form:

class PerishablePrices

{
Integer lowerBound;

boolean filter(Inventory item) {
return (lowerBound == null

|| item.Wholesale > lowerBound.intValue())

&& (item.Type.Name.equals("fish")

|| item.Type.Name.equals("meat"));

}
}

interface javax.jdo.PersistenceManager {
Object getObjectById(Object id);

javax.jdo.Query newQuery(Class class);

// methods for transactions not listed
}

interface javax.jdo.Query {
void setFilter(String filter);

void setOrdering(String ordering);

void declareImports(String imports);

void declareParameters(String params);

void declareVariables(String vars);

Object execute();

Object execute(Object arg1);

Object executeWithMap(Map parameters);

// bookkeeping methods not listed
}

Figure 1: Selections from the JDO API

A key aspect of safe queries is a database-friendly eval-
uation strategy: the PerishablePrices class can be trans-
lated into code that generates and executes query strings us-
ing standard database interfaces such as JDBC [12] or JDO
[21]. The generated code is similar to the first version given
above, but is safe because it is automatically generated from
a type-checked class. The translation requires reflective ac-
cess to the code of the class, but it is performed at compile
time or load time, so there is no runtime overhead. A few
differences between the safe query and the original version
are discussed in Section 5.

Safe query objects support filtering, sorting, relationships
(joins), parameters, existential quantification, and dynamic
queries. A prototype of safe query objects for JDO provides
a statically typed interface to the dynamically typed func-
tionality in the JDO 1.0 specification [21]. The prototype
has been successfully applied to existing programs that use
JDO and a range of queries from a large enterprise applica-
tion.

The prototype highlights some limitations of JDO 1.0 and
Java. For example, JDO allows filters to access related ob-
jects (via joins in where clauses) but does not support the
return of multiple related objects (via joins in select clauses).
In addition, Java does not support the semantics used for
computations involving NULL values in the database. Al-
though the current JDO-based prototype inherits these lim-
itations, the concept of safe query objects can be applied to
other languages and support more powerful query languages.

2. BACKGROUND
JDO provides access to persistent objects through an in-

stance of the PersistenceManager interface shown in Fig-
ure 1. Individual objects can be loaded explicitly using
getObjectById, or implicitly when traversing references to
related objects. Query execution is provided by the Query

interface. The newQuery method creates a query to return
objects of the given candidate class. Candidate classes con-
tain fields and relationships that are mapped to correspond-
ing tables in a relational database. We will use a simple

class Employee

{
String name;

float salary;

Department department;

Employee manager;

}

class Department

{
String name;

Collection<Employee> employees;

}

Figure 2: Example classes

database of employees and departments, whose schema is
represented by the Java 1.5 classes in Figure 2. Given these
definitions, it is easy to write a JDO query to find all em-
ployees whose salary is greater than their manager’s salary.

Collection<Employee> execute(

javax.jdo.PersistenceManager pm)

{
javax.jdo.Query payCheck =

pm.newQuery(Employee.class);

payCheck.setFilter("salary > maneger.salary");

Object result = payCheck.execute();

return (Collection<Employee>) result;

}

Filter conditions are written in the JDOQL language,
whose grammar is based on Java expressions. However, the
semantics of JDOQL and Java are different: JDOQL al-
lows more automatic conversions between types; overloads
comparisons like <, ==, and > for boxed values including
dates, integers, and strings; and interprets the contains

method in a non-standard way to support existential quan-
tification. JDO uses joins to implement navigation through
object-valued fields, as in manager.salary, but it ignores
the Java access control restrictions on class members. In
this paper all members are assumed to be public.

This program is syntactically correct Java code, but there
is a problem in the embedded code: manager is misspelled as
maneger. The problem will not be discovered until runtime.

Although the static return type of the execute method is
Object, at runtime the return value is a read-only Collection

containing instances of the candidate class. Although the
current JDO specification does not make use of generic types
in Java 1.5, the backward compatibility of generics allows
JDO to work with generic classes. Generic types are used
throughout this paper to increase precision of static typing
for queries.

The example above illustrates problems with filtering. The
other methods in the Query interface have similar problems.
What they have in common is that they are all forms of
metaprogramming: their arguments are textual representa-
tions of programs, which are manipulated and executed by a
JDO implementation. The following sections present a stat-
ically typed solution for each Query method, leading to a
completely type-safe interface to the full query functionality
of JDO.

3. SAFE QUERY OBJECTS
In its simplest form, a safe query object is just an object

containing a boolean method that can be used to filter a
collection of candidate objects.

class PayCheck extends SafeQuery<Employee>

instantiates RemoteQueryJDO

{
boolean filter(Employee emp) {
return emp.salary > emp.manager.salary;

}
}

A safe query is a subclass of SafeQuery<T>, a default im-
plementation of the ISafeQuery<T> interface in Figure 3.
The generic type parameter Employee is the candidate class
of the query. Because this filter is normal Java code, the
compiler checks syntax and types and it will produce an er-
ror when it finds the misspelled manager reference in the
filter method.

The key to safe query objects is that type-checked class
definitions are translated into code to call standard database
interfaces like JDO. This new code is added to the query
class to override the execute method in the SafeQuery base
class. The translation could be performed on the classes dur-
ing compilation, on byte-codes after compilation, or during
loading. Our prototype uses OpenJava [22], which follows
the first approach.

The query translation is encapsulated in the RemoteQuery-
JDO metaclass, which is applied to the safe query using the
OpenJava instantiates keyword. OpenJava runs the meta-
class at compile time, supplying the definition of the PayCheck
class as input. When applied to PayCheck, the Remote-

QueryJDO metaclass examines the user-defined filter method
and generates the corresponding execute method given in
the previous section. Although the JDO code is unsafe and
difficult to maintain by hand, it is safe and easy to use when
automatically generated from a safe query object.

The execute method provides a statically typed interface
to the query.

javax.jdo.PersistenceManager pm;

PayCheck query = new PayCheck();

Collection<Employee> r = query.execute(pm);

The current version of OpenJava does not support generics,
so generic type erasing [5] has been done manually in the
prototype implementation. The details of the translation
are given in Section 4.

In the prototype, the actual SQL query sent to the database
depends on the JDO implementation. However, the follow-
ing query is an example of what might be generated. The
Employee table is joined to itself through the ManagerID at-
tribute. The automatically generated labels E1 and E2 rep-
resent the candidate employee and manager, respectively.

SELECT E1.*

FROM Employee E1 INNER JOIN Employee E2

ON E1.ManagerID = E2.ID

WHERE E1.salary > E2.salary

To enable remote execution in a database server, the filter
method in a safe query class must be free of side-effects: it
must not modify any state or call any methods that modify
state. An additional restriction is that the filter method

interface ISafeQuery<T>

{
boolean filter(T item);

Sort order(T item);

Collection<T>

execute(javax.jdo.PersistenceManager pm);

<R> boolean exists(Collection<R> items,

ISafeQuery<R> query);

}

Figure 3: SafeQuery interface

must not contain any iterative constructs, as certain classes
of iterative statements may not have a closed form boolean
representation needed by database queries.

Queries may also be executed locally within the Java VM,
by iterating through a collection to select the items for which
the filter returns true. Potential differences between Java ex-
ecution semantics and remote SQL execution are discussed
in Section 3.5.

3.1 Sorting Results
Queries often specify sort order for the set of query results.

Relational query languages define sort order with a list of
sort expressions that are annotated to indicate whether to
sort in ascending or descending order. A similar approach
is used in JDO, as shown in Figure 4.

To specify sorting, a safe query must associate a list of
sortable values with each object in the result set. This is
done by adding an order method that takes a candidate
element and returns a linked list of sortable values, as shown
in Figure 5.

Each sort object contains a value, a flag indicating ascend-
ing or descending order, and an optional secondary Sort

value.

class Sort implements Comparable<Sort>

{
enum Direction ASCENDING, DESCENDING;

Sort(Comparable v, Direction dir)...

Sort(Comparable v, Direction dir, Sort next)...

// Rest of class definition...
}

It is possible to write an order method that is not well-
behaved. For example, the method might return lists with
different lengths or containing different types of Comparable
values. The OpenJava metaclass rejects such methods and
signal a compile-time error.

3.2 Parameterized Queries
Parameterized queries are needed when a query’s behav-

ior depends upon one or more input values. For exam-
ple, the parameterized query in Figure 6 finds all employ-
ees whose salary is greater than a limit. The parameter is
used in the string passed to setFilter. It is declared by
passing a string containing a fragment of Java syntax to
declareParameters. It is bound to a value when the query
is executed; the execute method supports variable number
of arguments of type Object. Although JDO parameters
resemble Java parameters, they are awkward to specify and

Collection sortEmployees()

{
javax.jdo.Query q = pm.newQuery(Employee.class);

q.setOrdering("department.name ascending,"

+ "salary descending");

return (Collection) q.execute();

}

Figure 4: Sorting with JDO

class SortQuery instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
Sort order(Employee emp) {

return new Sort(emp.department.name,

Sort.Direction.ASCENDING,

new Sort(emp.salary,

Sort.Direction.DESCENDING));

}
}

Figure 5: Safe query with sorting

lack the basic static checks provided by Java. For example,
if the call to declareParameters is omitted or the wrong
type of value is passed to execute, the problem will be un-
detected until runtime.

For a safe query, shown in Figure 7, query parameters
are defined as standard Java function parameters. They are
declared as arguments to the query constructor and stored
in member variables of the query object. Thus they are
accessible in both the filter and order methods.

The resulting code is idiomatic object-oriented program-
ming and could be maintained by any programmer. Note
that the parameters were not added to the filter method
itself because that would require the filter method to have
a different type in each parameterized query.

SafeQuery<Employee> q = new SalaryLimit(50000.00);

Collection<Employee> result = q.execute(pm);

After typechecking, the safe query class is processed to
generate the declaration strings and parameter arguments
needed by JDO to execute the query remotely in the database
server. The resulting code is the same as the unsafe JDO
code at the start of this section.

3.3 Dynamic Queries
Dynamic queries involve filters, parameters, or sort orders

that are constructed at runtime. They are used when differ-
ent filter criteria must be combined to form a complete filter.
For example, if a search form in a user interface allows a set
of optional search criteria to be specified, the filters that
result from different combinations of criteria will be differ-
ent. A similar situation arises when optional criteria must
be conditionally included in a query. Dynamic queries also
arise in implementing fine-grained authorization rules that
apply to individually to each user [20].

Since the different filters have structurally different crite-
ria, rather than simply different parameter values, parame-

Collection salaryLimitEmployees(double limit)

{
javax.jdo.Query q = pm.newQuery(Employee.class);

q.setFilter("salary > limit");

q.declareParameters("Double limit");

Collection r = (Collection)

q.execute(new Double(limit));

}

Figure 6: Passing parameters in JDO

class SalaryLimit instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
double limit; /* parameter */

SalaryLimit(double limit) {
this.limit = limit;

}

boolean filter(Employee employee) {
return employee.salary > limit;

}
}

Figure 7: Parameterized safe query

terized queries alone are not sufficient. Dynamic queries are
sometimes used instead of parameterized queries, because
it is easier to concatenate a parameter text into a query
string than to declare and invoke a complete parameterized
query. However, this practice is notoriously unsafe and can
interfere with reuse of query plans.

Dynamic filters are commonly created by concatenating
portions of a filter string together to create the complete fil-
ter. If optional components have parameters, the parameter
list of the overall query will also be dynamic. Figure 8 illus-
trates the creation of dynamic filters and parameters using
JDO. In this example, a user can search for employees by
name, salary range, or both. Different filters are constructed
to respond to user-selected criteria.

In a safe query, a dynamic filter is simply a normal filter in
which some sub-expressions depend only on query parame-
ters, not the database. Figure 9 illustrates this technique for
the dynamic query given in Figure 8. Short-circuit evalua-
tion of disjunction allows new DynQuery("F", null) to find
employees whose name begins with “F”, but with no limit
on salary. The translation of dynamic queries takes advan-
tage of the inherent staging [9] of the execute method: the
parts of the filter that do not depend on the database are
evaluated as Java expressions in the execute method, while
the rest of the filter is translated to a query string for exe-
cution in the database. The generated code is similar to the
hand-written version in Figure 8. Details of the translation,
including the mechanism for staging operations, are given
in Section 4.

Collection search(String namePrefix,

Double minSalary)

{
String filter = null;

String paramDecl = "";

HashMap paramMap = new HashMap();

if (namePrefix != null) {
q.declareParameters("String namePrefix");

paramMap.put("namePrefix", namePrefix);

filter = and(filter,

"(name.startsWith(namePrefix))");

}

if (minSalary != null) {
q.declareParameters("double minSalary");

paramMap.put("minSalary", minSalary);

filter = and(filter, "(salary >= minSalary)");

}

javax.jdo.Query q = makeQuery(Employee.class);

q.setFilter(filter);

return q.executeWithMap(paramMap);

}

String and(String a, String b) {
return (a == null) ? b : (a + " && " + b);

}

Figure 8: Dynamic query using JDO

class DynQuery instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
private String namePrefix; // may be null
private Double minSalary; // may be null

DynQuery(String namePrefix, Double minSalary) {
this.namePrefix = namePrefix;

this.minSalary = minSalary;

}

boolean filter(Employee item) {
return (namePrefix == null

|| item.name.startsWith(namePrefix))

&& (minSalary == null

|| item.salary >= minSalary);

}
}

Figure 9: Safe query with dynamic filter

3.4 Existential Quantification
Most query languages support existential quantification

to test whether any member of a set meets a condition. The
query in Figure 10 finds departments whose names begin
with a given prefix and have an employee whose salary is
above a given minimum. The query uses the exists method
defined in the ISafeQuery interface (Figure 3). The first pa-
rameter defines the extent of quantification, while the sec-
ond parameter is another safe query. The query reuses the
SalaryLimit query defined in Section 3.2. The approach
is similar to the use of Boolean-valued functions for mem-
bership tests in languages with first-class functions: the
detect:ifNone: method in Smalltalk [7], or the any func-
tion in Haskell [14].

In JDOQL, existentials are expressed by a nonstandard in-
terpretation of the contains method as a binding construct.
C.contains(v) normally tests if a collection C contains the
value of the variable v, but in JDO the form C.contains(v)

&& P is interpreted to mean ∃v.P where P is a predicate
that may mention v. The entire form returns true if there
exists a member of C for which P is true. The variable v
must be listed in the string passed to declareVariables.

The query in Figure 11 is a hand-written equivalent to
Figure 10. This query illustrates the kind of complexity
that programmers face in writing even fairly simple queries.
Although we define a parameterized query to find employ-
ees whose salary is above a minimum in Section 3.2, reusing
this query here would require complex and unsafe string ma-
nipulation. As in previous examples, after type checking is
complete, the safe query is translated to code that is similar
to the hand-written form.

3.5 Null Values
The interpretation of null values is a significant compli-

cation in the integration of databases and programming lan-
guages. Most relational databases allow columns to be marked
as nullable, so that null values can be used to indicate miss-
ing data. Taking null as an undefined value, databases
define most operations involving null as returning null, al-
though logical and (or) returns false (true) if at least one of
its arguments is false (true). Object-oriented programming
languages typically allow object references to be null, but
primitive types like integer cannot be null. Our goal is to
find a common ground in which database and programming
language semantics are equivalent.

If nullable fields are avoided, as some recommend [8], then
query and Java semantics are the same. To allow primitive
data types to be nullable, there are two standard approaches:
boxing and data abstraction.

When primitive values are boxed as objects, null refer-
ences can represent null values. To support operations on
boxed values, the safe query base class contains operators
that enable uniform handling of null values. Arithmetic and
comparison operators equal, add, etc. on boxed types return
null if either of their arguments is null. Logical operators
implement three-valued logic, where null represents the un-
known value. Unfortunately there is no way to overload or
rebind the built-in operators in Java. The expression

salary > min || name.startsWith("F")

must be written as

or(greater(salary, min), startsWith(name, "F")).

class DeptQuery instantiates RemoteQueryJDO

extends SafeQuery<Department>

{
double min;

String deptPrefix;

DeptQuery(double min, String deptPrefix) {
this.min = min;

this.deptPrefix = deptPrefix;

}

boolean filter(Department dept) {
SafeQuery<Employee> sub = new SalaryLimit(min);

return dept.name.startsWith(deptPrefix)

&& exists(dept.employees, sub);

}
}

Figure 10: Safe query with existential subquery

Collection<Employee> execute(

javax.jdo.PersistenceManager pm)

{
javax.jdo.Query q = pm.newQuery(Employee.class);

HashMap paramMap = new HashMap();

paramMap.put("min", min);

paramMap.put("namePrefix", namePrefix);

q.declareParameters("double min");

q.declareParameters("String namePrefix");

q.declareVariables("Employee e");

String filter = "name.startsWith(deptPrefix)"

+ " && (employees.contains(e)"

+ " && e.salary > min)");

q.setFilter(filter);

Object r = q.executeWithMap(paramMap);

return (Collection<Employee>) r;

}

Figure 11: Existential quantification in JDO

This solution provides consistent semantics between remote
and local execution on nullable types.

Navigation is also difficult. JDO specifies that “Naviga-
tion through a null-valued field, which would throw Null-

PointerException, is treated as if the filter expression re-
turned false for the evaluation of the current set of variable
values.”[21] But given this query

or(emp.department == dept, emp.salary > min),

an employee with a null department would not be included in
the result, even if their salary was over the minimum. This
behavior is not consistent with SQL semantics, and it is not
implemented by at least one JDO vendor [23]. It would be
more consistent if a navigation through a null relationship
returned null. Assuming this, all navigation through a nul-
lable reference E must use the form (E == null ? null :

E.F). Unfortunately this pattern cannot be expressed as a
reusable abstraction in Java. However, it is easily imple-
mented using metaprogramming; this solution ensures con-
sistency between local and remote execution of a filter, but
it does subtly change the semantics of java code appearing
in a filter.

Although it is not supported by Java, a better solution
would be to define a data abstraction to represent nullable
values or references. The appropriate semantics for opera-
tions could then be built into these abstractions, rather than
implemented as separate functions. C# or C++ support
value objects which can be used to define nullable abstrac-
tions.

4. IMPLEMENTATION DETAILS
In the prototype implementation of safe query objects,

OpenJava is used as a framework for compile-time metapro-
gramming for analysis and generation of code. The transla-
tion system is implemented as a metaclass that is executed
within the OpenJava system. It examines the query class
and generates methods for remote execution. Figure 12
specifies a pattern that identifies the components of the
query class used in the derivation. The scope of a repeated
element ai is identified by 〈. . .〉i. The “+” operator is used to
denote string concatenation. Figure 13 defines the template
for generating the execute method, based on the bindings
of variables from the pattern.

The bulk of the translation involves converting the fil-
ter and sort methods into strings that can be passed to
JDO. However, the treatment of subqueries is more com-
plex. To enable separate compilation and reuse of query
libraries, subquery strings are concatenated together, with
appropriate variable renaming, to build a complete query.
The function Φ converts a Java expression e into a Java ex-
pression that creates a string representation of e in JDOQL.

Φ : V ariable× Set(V ariable)× JavaExpr → JavaExpr
Φ(v, s, x) → if v=x then "" else if x ∈ s then x else "x"
Φ(v, s, e.f) → Φ(v, s, e) + ".f "
Φ(v, s, exists(e, new Q(〈 ai, 〉i))) →

Φ(v, s, e) + "." + Q.exists(q, 〈Φ(v, s, ai)〉i)

The first argument of Φ is the parameter of the filter
method, which identifies the object being filtered. This ob-
ject is implicit in JDOQL, so Φ must strip off uses of this
variable from the Java code. The second argument is a set
of variables that must be renamed when reusing a query for

〈 import importm; 〉m
class QueryName instantiates RemoteQueryJDO

extends SafeQuery<Type>
{

// all members are parameters:
〈 ParamTypei parami; 〉i

boolean filter(Type elem)

{
return filter;

}

Sort order(Type orderVar)
{

return new Sort(orderj,

Sort.Direction.dirj,

sortj+1);

}
}

Figure 12: Safe query pattern

// constructor for QueryName class
QueryName(〈 ParamTypei parami; 〉i)
{
〈 this.parami = parami; 〉i
}

// remote execution method
Collection<Type> execute(

javax.jdo.PersistenceManager pm)

{
javax.jdo.Query q = pm.newQuery(Type.class);
Map paramMap = new HashMap();

〈 paramMap.put("parami", parami); 〉i
〈 q.declareParameters("ParamTypei parami"); 〉i

q.setFilter(Φ(elem, ∅, filter));

q.setOrdering(〈Φ(elem, ∅, orderj) + " dirj,"〉j);
Object result = q.executeWithMap(paramMap);

return (Collection<Type>) result;

}

// exists query and JDO declarations
static String exists(javax.jdo.Query q,

〈 String parami, 〉i)
{

q.declareVariables("Type uniqueName");
q.declareImports("〈 import importm; 〉m");

return "contains(uniqueName) && "

+ Φ(_, { "uniqueName", 〈 parami 〉i }, filter);
}

Figure 13: Template for generated methods

existential quantification. The third argument is the Java
expression syntax being translated.

The first case handles variables. Uses of the filter param-
eter v are deleted; parameter variables in s are translated to
java variables which at runtime contain JDOQL expressions
representing the actual parameter for the variable; other
variables are converted to literal JDOQL variables. The
second case translates java field access to the correspond-
ing JDOQL field access. The last case converts existentials
to JDOQL syntax using the helper function exists, which
returns a new contains expression. The exists clause al-
lows a query to be used from within another query. To en-
able parameters to be passed from one query to anther, the
calling query creates JDOQL expressions which are passed
as parameters to the exists function. Query parameters
are passed as strings to exists, which constructs a new ex-
pression in which the parameters have been replaced by the
actual parameters from the calling query. Because these pa-
rameters are JDOQL expressions, not actual user-defined
values, substitution is always safe.

Here is the translation of the SalaryLimit class:

static String exists(javax.jdo.query q,

String limit)

{
q.declareVariables("Employee v32");

return "contains(v32) && v32.salary > " + limit;

}

The variable limit is a query parameter which must be
replaced before the exists clause can be embedded into a
larger query. limit is bound to the text of an expression
that defines the limit in the context of the calling query; it
is not the actual numeric limit value.

The following expression, which uses SalaryLimit,

exists(d.employees, new SalaryLimit(min))

is translated by Φ to

"employees." + SalaryLimit.exists(q, "min")

The final query string sent to JDO is:

"employees.contains(v32) && v32.salary > min"

Dynamic queries are translated by separating the eval-
uation of filters into stages. Local sub-expressions, which
only involve parameters, are identified and inlined into the
Java code that constructs the remote query. Remote sub-
expressions are converted to query strings. When a local
and a remote expression are involved in a conjunction or dis-
junction, evaluation of the local expression creates two code
paths which generate different query strings. For example,
if e1 is local and e2 is remote, then e1 || e2 generates:

if (e1)

filter = "true";

else

filter = "e2";

The branches may have different parameter sets, and addi-
tional local sub-expressions in e2 can create nested alterna-
tives.

5. EVALUATION
We used safe query objects to create type-safe versions of

JDO sample applications and problems posted in the litera-
ture. We also evaluated how well safe query objects handle
the query patterns in a large open-source enterprise applica-
tion. Most of the queries in the applications that we studied
are parameterized. Many of these queries also use dynamic
criteria and sort orders. We found that our model of safe
query objects can handle common patterns of query con-
struction. Our evaluations also brought to light some limi-
tations of our model in handling dynamic data-driven query
construction.

In many programs the query strings passed to JDO are
static, literal strings. Almost all queries in the JDO sam-
ple programs are of this form. These programs are easily
converted to use safe query objects. The resulting code is
simpler, clearer, and statically type-safe. The performance
is unchanged because the safe query version is translated
at compile time into code equivalent to the original unsafe
version.

Programs that create queries dynamically are a more in-
teresting case. The getPerishablePrices query mentioned
in the introduction is an example. Previous work [11] used
static analysis to check the syntax and types of dynamic
queries. One advantage of this approach is that it can check
existing programs. Using safe queries requires rewriting
code, although the resulting program is clearer and easier
to maintain.

Safe query objects directly support a particular style of
dynamic queries - queries where the inclusion of optional
criteria is decided by locally evaluated conditionals:

if (<java condition>)

sql.append(" AND <SQL condition> ");

Some dynamic query constructions cannot be directly ex-
pressed with safe query objects, but may be expressible after
sufficient redesign.

The key question is whether safe queries can handle the
kinds of dynamic queries used in real programs. The Com-
piere ERP application [13] provides a sophisticated range of
queries for evaluation. With 314K commented lines of code
in 1059 java source files, there are 871 places where SQL
“select” queries are defined. Most involve joins, complex
conditions, and parameters. There are over 200 cases where
criteria are dynamically added to a query condition. Most
of these fit the pattern of conditional criteria or sorting that
is supported by safe query objects. The remainder are dis-
cussed below. In a few cases Compiere creates SQL “select”
clauses dynamically. To translate these, a safe query must
be written for each dynamic variation.

Compiere also uses data-driven query construction, where
a generic algorithm builds a query based on a data struc-
ture. For the ten Info classes in the compiere.apps.search
package, the data structure is static, so data-driven queries
can be rewritten as safe queries.

The class MQuery builds queries based on field lists stored
in the database itself. Although some of this dynamic ma-
chinery may be accidental (and dangerous) rather than es-
sential, the core of this pattern is support for highly config-
urable user interfaces. Such explicit reflective programming,
in which the system manipulates a dynamic representation
of its own user interface, is difficult to capture in a static
query. Not all applications provide this feature, although

Compiere uses it extensively. More work is needed to de-
termine if building a query that loads just the data needed
in highly configurable user interfaces can be described in a
way that supports static typing.

One potential issue with safe queries is a loss of code lo-
cality, because queries must be specified in their own class.
In most cases we reviewed, query execution was already en-
capsulated in a method, so placing the query in an inner
class provides a similar degree of locality.

We also note a few differences between the original JDBC
version of the getPerishablePrices and the safe query ver-
sion. In the JDBC version, the query formats the output by
prepending “$” to the result of dividing the retail price by
100. Safe queries currently can only return objects, so the
formatting of the result must be performed in the applica-
tion server after the query results are returned.

Though we have gained significant insights by studying
Compiere and other examples in literature, more work will
be needed to extract and evaluate a complete set of query
patterns from real-world applications. Our experience also
identified some limitations in JDO. Although joins can be
used for filters, the result of a JDO query is always a set of
objects of a single type – no related objects can be returned
at the same time. We are currently developing a version of
safe query objects for JDBC to overcome these limitations.

6. RELATED WORK
The full integration of persistence and programming lan-

guages has been the focus of intense research over the last
20 years [4, 3]. This effort has demonstrated the impor-
tance of orthogonal persistence, static type systems, and re-
flection, and significantly influenced the design of modern
database interfaces like EJB, Hibernate, and JDO. Research
languages included specialized syntax for query operations,
which could be compiled to SQL for remote execution against
a relational database [18]. However, this line of research did
not provide guidance on how to express type-safe queries
in an existing programming language. As a result, existing
languages have adopted the model of call level interfaces
[24] in which queries are represented as strings or runtime
data structures. These interfaces do not support traditional
static type checking.

Query languages may also be embedded into program-
ming languages [2]. These interfaces do not support dy-
namic queries, so they are not able to handle the full range
of queries needed in complete applications. They also re-
quire programmers to learn two languages.

HaskellDB [16] is a domain-specific language for relational
queries embedded in Haskell. The language includes op-
erators to scan and join tables, test conditions and define
query results. Special operators must be used in place of
the normal functions for comparison of values and Boolean
connectives. Expressions in the embedded query language
are statically typed at compile time. The current version
of HaskellDB does not support existential quantification or
sorting. Parameterized queries are easily defined because
HaskellDB is embedded cleanly within the general-purpose
Haskell language. However, the parameters are embedded in
dynamic query strings, unlike the JDBC parameter passing
mechanisms. HaskellDB differs from the approach described
here in that it uses Haskell as a meta language to define
a strongly typed embedded language that generates SQL
queries when executed, while we use standard Java classes

to represent queries and reflection to convert these classes
into JDO queries at compile time.

The Xen language [19] adapts the approach of HaskellDB
for an object-oriented language. Xen is still under develop-
ment and its capabilities for accessing relational databases
have not been published yet.

Linguistic reflection is another form of metaprogramming
that can be applied to database interfaces. It has been used
to generate code for relational joins [15], although the us-
ability of this approach as a general programming model
has not been demonstrated. Linguistic reflection can also be
used to compile query strings into class definitions [1]. This
approach is the inverse of the model proposed here: dynamic
query strings are compiled at runtime into classes that re-
semble safe queries, while we convert statically typed query
classes into dynamic query strings for remote execution. As
a result, this approach provides neither compile-time type
checking nor the ability to leverage external databases.

SchemeQL [25] is a SQL library for Scheme. It provides an
interface for creating and composing queries as data struc-
tures, much like Hibernate-QL. In keeping with the dynamic
typing of the Scheme language, SchemeQL validates queries
at runtime and provides no static checks.

Gould, Su and Devanbu [11] and Deline and Fahndrich
[10] use static analysis to type check programs with embed-
ded SQL. They track the construction of strings containing
SQL so that they can be checked against the SQL gram-
mar and typing rules. Their analysis does not currently
cover query parameters or result types. In addition, it can
generate false positives when separate compilation is used.
Type checking embedded SQL is a pragmatic solution, given
that many existing program can benefit from more static
analysis. However, the programming model based on string
manipulation is still complex, and programmers must work
with two different languages at the same time. Safe query
objects provide an alternative that simplifies access to rela-
tional development, provides a single uniform programming
model, and scales well to separate compilation.

7. CONCLUSIONS
Safe query objects are a new technique for expressing

type-safe queries that support remote execution in a database
server. Queries are defined using object-oriented classes and
methods, which are translated into code that invokes stan-
dard database APIs. We evaluated the design by converting
existing programs and examples in the literature. We found
that the majority of queries were static. A significant num-
ber of queries were dynamic or used data-driven generation
based on static tables. Finally, we identified cases where
queries were dynamic and data driven, with the query def-
inition itself being loaded from the database. Any program
using the first three techniques can be converted to use safe
query objects, while the last case is still an open problem.

Acknowledgments
Thanks to Kevin Loo for initial development, and Shriram
Krishnamurthi, Dan Miranker, Jim Browne, Mark Grechanik,
Dave Thomas, Ralph Johnson, Martin Gannholm, Nini Silk,
Joe Yoder and the anonymous reviewers for their input.

8. REFERENCES

[1] S. Alagic and J. Solorzano. Java and OQL: A
reflective solution for the impedance mismatch.
L’OBJET, 6(2), 2000.

[2] ANSI/INCITS. Database languages - SQLJ - part 1:
SQL routines using the Java programming language.
Technical Report 331.1-1999, ANSI/INCITS, 1999.

[3] M. Atkinson and R. Welland. Fully Integrated Data
Environments: Persistence programming languages,
object stores, and programming environments.
Springer, 2000.

[4] M. P. Atkinson and O. P. Buneman. Types and
persistence in database programming languages. ACM
Comput. Surv., 19(2):105–170, 1987.

[5] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity
to the Java programming language. In Proc. of ACM
Conf. on Object-Oriented Programming, Systems,
Languages and Applications, pages 183–200, 1998.

[6] D. Cengija. Hibernate your data. onJava.com, 2004.

[7] W. Cook. Interfaces and specifications for the
Smalltalk collection classes. In Proc. of ACM Conf. on
Object-Oriented Programming, Systems, Languages
and Applications, 1992.

[8] H. Darwen and C. J. Date. The third manifesto.
SIGMOD Record, 24(1):39–49, 1995.

[9] R. Davies and F. Pfenning. A modal analysis of staged
computation. J. ACM, 48(3):555–604, 2001.

[10] R. DeLine and M. Fahndrich. Typestates for objects,
2004.

[11] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In Proc. 26th International Conference
on Software Engineering (ICSE). IEEE Press, 2004.

[12] G. Hamilton and R. Cattell. JDBCTM: A Java SQL
API. Sun Microsystems, 1997.

[13] J. Janke. Compiere project overview. compiere.com,
2004.

[14] S. P. Jones. Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[15] G. Kirby, R. Morrison, and D. Stemple. Linguistic
reflection in Java. Software–Practice and Experience,
28(10):1045–1077, 1998.

[16] D. Leijen and E. Meijer. Domain specific embedded
compilers. In Proceedings of the 2nd conference on
Domain-specific languages, pages 109–122. ACM
Press, 1999.

[17] V. Matena and M. Hapner. Enterprise Java Beans
Specification 1.0. Sun Microsystems, 1998.

[18] F. Matthes, A. Rudloff, J. Schmidt, and K. Subieta. A
gateway from DBPL to Ingres. In W. Litwin and
T. Risch, editors, Applications of Databases, First
International Conference, ADB-94, volume 819, pages
365–380. Springer-Verlag, 1994.

[19] E. Meijer and W. Schulte. Programming with
rectangles, triangles, and circles. In Proceedings of
Conference on XML, 2003.

[20] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on

Management of data, pages 551–562. ACM Press,
2004.

[21] C. Russell. Java Data Objects (JDO) Specification
JSR-12. Sun Microsystems, 2003.

[22] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian.
OpenJava: A class-based macro system for Java. In
OORaSE’99 Workshop on Object-Oriented Reflection
and Software Engineering, pages 117–133. ACM, 1999.

[23] D. Tinker. High performance JDO. JDOGenie.com,
2003.

[24] M. Venkatrao and M. Pizzo. SQL/CLI – a new binding
style for SQL. SIGMOD Record, 24(4):72–77, 1995.

[25] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and
SchemeQL: Two little languages. In Third Workshop
on Scheme and Functional Programming, 2002.

