
A Denotational Semantics of Inheritance

and its Correctness

William Cook
Hewlett-Packard Laboratories

P.O. Box 10490
Palo Alto, CA 94303-0969

cook@hplabs.hp.com

Jens Palsberg
Computer Science Department

Aarhus University
Ny Munkegade, DK-8000

Aarhus C, Denmark
palsberg@daimi.aau.dk

Abstract

This paper presents a denotational model of inheritance. The model is based on an
intuitive motivation of inheritance as a mechanism for deriving modified versions of
recursive definitions. The correctness of the model is demonstrated by proving it
equivalent to an operational semantics of inheritance based upon the method lookup
algorithm of object-oriented languages.

Information and Computation, 114(2):329350, 1994. Also in Proc. Fourth ACM
Conference on Object-Oriented Programming: Systems, Languages and Applica-
tions, New Orleans, October 1989, pages 433-443.

1

1 Introduction

Inheritance is one of the central concepts in object-oriented programming. Despite
its importance, there seems to be a lack of consensus on the proper way to describe
inheritance. This is evident from the following review of various formalizations of
inheritance that have been proposed.

The concept of prefixing in Simula (Dahl and Nygaard, 1970), which evolved into
the modern concept of inheritance, was defined in terms of textual concatenation of
program blocks. However, this definition was informal, and only partially accounted
for more sophisticated aspects of prefixing like the pseudo-variable this and virtual
operations.

The most precise and widely used definition of inheritance is given by the opera-
tional semantics of object-oriented languages. The canonical operational semantics
is the “method lookup” algorithm of Smalltalk:

When a message is sent, the methods in the receiver’s class are
searched for one with a matching selector. If none is found, the methods
in that class’s superclass are searched next. The search continues up the
superclass chain until a matching method is found. . . .

When a method contains a message whose receiver is self, the search
for the method for that message begins in the instance’s class, regardless
of which class contains the method containing self. . . .

When a message is sent to super, the search for a method . . . begins
in the superclass of the class containing the method. The use of super
allows a method to access methods defined in a superclass even if the
methods have been overridden in the subclasses. (Goldberg and Robson,
1983, pp. 61–64)

Unfortunately, such operational definitions do not necessarily foster intuitive under-
standing. As a result, insight into the proper use and purpose of inheritance is often
gained only through an “Aha!” experience (Borning and O’Shea, 1987).

Cardelli (1984) identifies inheritance with the subtype relation on record types: “a
record type τ is a subtype (written ≤) of a record type τ ′ if τ has all the fields of τ ′,
and possibly more, and the common fields of τ and τ ′ are in the≤ relation.” His work
shows that a sound type-checking algorithm exists for strongly-typed, statically-
scoped languages with inheritance, but it doesn’t give their dynamic semantics.

More recently, McAllister and Zabih (1987) suggested a system of “boolean
classes” similar to inheritance as used in knowledge representation. Stein (1987)
focused on shared attributes and methods. Minsky and Rozenshtein (1987) char-
acterized inheritance by “laws” regulating message sending. Although they express
various aspects of inheritance, none of these presentations are convincing because
they provide no verifiable evidence that the formal model corresponds to the form
of inheritance actually used in object-oriented programming.

This paper presents a denotational model of inheritance. The model is based
upon an intuitive explanation of the proper use and purpose of inheritance. It is
well-known that inheritance is a mechanism for “differential programming” by allow-
ing a new class to be defined by incremental modification of an existing class. We

2

show that self-reference complicates the mechanism of incremental programming.
In order for a derivation to have the same conceptual effect as direct modification,
self-reference in the original definition must be changed to refer to the modified def-
inition. This conceptual argument is useful for explaining the complex functionality
of the pseudovariables self and super in Smalltalk.

Although the model was originally developed to describe inheritance in object-
oriented languages, it shows that inheritance is a general mechanism that is appli-
cable to any kind of recursive definition.

Essentially the same technical interpretation of inheritance was discovered in-
dependently by Reddy (1988). A closely related model was presented by Kamin
(1988). However, Kamin describes inheritance as a global operation on programs, a
formulation that blurs scope issues and inheritance.

These duplications, by themselves, are evidence for the validity of the model. This
paper provides, in addition, a formal proof that the inheritance model is equivalent
to the operational definition of inheritance quoted above.

Our denotational semantics of inheritance can be used as a basis for semantics-
directed compiler generation for object-oriented langauges, as shown by Khoo and
Sundaresh (1991).

In Section 2 we develop an intuitive motivation of inheritance. In Section 3 this
intuition is formalized as a denotational model of inheritance. In Section 4 we
demonstrate the correctness of the model by proving equivalence of two semantics
of object-oriented systems, one based on the operational model and the other based
upon the denotational model.

2 Motivating Inheritance

Inheritance is a mechanism for differential, or incremental, programming. Incremen-
tal programming is the construction of new program components by specifying how
they differ from existing components. Incremental programming may be achieved
by text editing, but this approach has a number of obvious disadvantages. A more
disciplined approach to incremental programming is based upon using a form of
“filter” to modify the external behavior of the original component. For example,
to define a modified version of a function one simply defines a new function that
performs some special computations and possibly calls the original function. This
simple form of derivation is illustrated in Figure 1, where P is the original function,
M is the modification, and the arrows represent invocation.

-client M - P

Figure 1: Derivation.

Incremental programming by explicit derivation is obviously more restrictive than
text-editing; changes can be made either to the input passed to the original module

3

or the output it returns, but the way in which the original works cannot be changed.
Thus this form of derivation does not violate encapsulation (Snyder, 1986): the orig-
inal structure can be replaced with an equivalent implementation and the derivation
will have the same effect (text-editing is inherently unencapsulated).

However, there is one way in which this naive interpretation of derivation is rad-
ically different from text-editing: in the treatment of self-reference or recursion in
the original structure. Figure 2 illustrates a naive derivation from a self-referential
component.

-client M - P �
��6

Figure 2: Naive derivation from a recursive structure.

Notice that the modification only affects external clients of the function — it does
not modify the function’s recursive calls. Thus naive derivation does not represent
a true modification of the original component. To achieve the effect of a true mod-
ification of the original component, self-reference in the original function must be
changed to refer to the modification, as illustrated in Figure 3.

-client M - P �
��6

Figure 3: Inheritance.

This construction represents the essence of inheritance: it is a mechanism for
deriving modified versions of recursive definitions.

3 A Model of Inheritance

This section develops the informal account of inheritance into a formal model of
inheritance in object-oriented languages.

3.1 Self-referential Objects

Manipulation of self-reference is an essential feature of inheritance. Hence, the
fixed point semantics of recursive definitions, developed by Scott (1976), provides
the mathematical setting for the inheritance model. Introductions to fixed point
semantics are given by Stoy (1977), Gordon (1979), and Schmidt (1986). The central
theorem may be stated as follows.

4

Theorem 1 (Fixed Point) If D is a cpo and f ∈ D → D is continuous, then
there is a least x ∈ D such that x = f(x). This x is called the least fixed point of
f , written fix(f). It is given by

⊔
n fn(⊥).

Throughout, functions like f will be called generators.
The following example illustrates a fixed point semantics of self-referential

objects—essentially the standard interpretation of mutually recursive procedures.
The example involves a simple class of points given in Figure 4. Points have x and
y components to specify their location. The distFromOrig method computes their
distance from the origin. closerToOrg is a method that takes another point object
and returns true if the point is closer to the origin than the other point, and false
otherwise.

class Point(a, b)
method x = a

method y = b

method distFromOrig =
sqrt(square(self.x) + square(self.y))

method closerToOrg(p) =
(self.distFromOrig < p.distFromOrig)

Figure 4: The class Point.

Objects are modeled as record values whose fields represent methods (Reddy, 1988,
Cardelli and Wegner, 1985). The notation { l1 7→ v1, . . . , ln 7→ vn } represents a
record associating the value vi with label li. Records may in turn be viewed as finite
functions from a domain of labels to a heterogeneous domain of values. Selection of
the field l from a record m is achieved by applying the record to the label: m.l or
m(l).

Class Point is modeled as a generator MakeGenPoint(a, b), defined in Figure 5.
MakeGenPoint takes the coordinates of the new point and returns a generator, whose
fixed point is a point.

A point (3, 4) is created as shown in Figure 6. The closerToOrg function takes
a single argument which is assumed to be a point. Actually, all that is required is
that it be a record with a distFromOrig component, whose value is a number.

3.2 Class Inheritance

Inheritance allows a new class to be defined by adding or replacing methods in an
existing class. In the following example, the Point class is inherited to define a class
of circles. Circles have a radius and thus a different notion of distance from the
origin. The definition in Figure 7 gives only the differences between circles and
points.

Inheritance is modeled as an operation on generators that yields a new generator.
There are three aspects to this process: (1) the addition or replacement of methods,

5

MakeGenPoint(a, b) = λ self .
{ x 7→ a,

y 7→ b,
distFromOrig 7→

sqrt(self.x2 + self.y2),
closerToOrg 7→

λ p . (self.distFromOrig < p.distFromOrig)
}

Figure 5: The generator associated with Point.

p = fix(MakeGenPoint(3, 4))
= { x 7→ 3,

y 7→ 4,
distFromOrig 7→ 5,
closerToOrg 7→

λ p . (5 < p.distFromOrig)
}

Figure 6: A point at location (3,4).

(2) the redirection of self-reference in the original generator to refer to the modified
methods, and (3) the binding of super in the modification to refer to the original
methods.

The modifications effected during class inheritance are naturally expressed as a
record of methods to be combined with the inherited methods. The new methods
M and the original methods O are combined into a new record M ⊕ O such that
any method defined in M replaces the corresponding method in O.

The modifications, however, are also defined in terms of the original methods
(via super). In addition, the modifications refer to the resulting structure (via self).
Thus a modification is naturally expressed as a function of two arguments, one
representing self and the other representing super, that returns a record of locally
defined methods. Such functions will be called wrappers. A wrapper contains just
the information in the subclass definition. The wrapper for the subclass Circle is
given in Figure 8.

The appropriate operation on generators is wrapper application, which is defined
as follows.

� : (Wrapper×Generator) → Generator

W � G = λ self . (W (self)(G(self)))⊕G(self)

For an illustration of wrapper application, see Figure 9. A wrapper is applied to a
generator to produce a new generator by first distributing self to both the wrapper

6

class Circle(a, b, r) inherit Point(a, b)
method radius = r

method distFromOrig =
max(super.distFromOrig − self.radius, 0)

Figure 7: The class Circle.

CircleWrapper = λ a, b, r . λ self . λ super . {
{ radius 7→ r,

distFromOrig 7→
max(super.distFromOrig − self.radius, 0)

}

Figure 8: The wrapper associated with Circle.

and the original generator. Then the modifications defined by the wrapper are
applied to the original record definition to produce a modification record. This is
then combined with the original record using ⊕.

W � G

@
@

@@ @
@

@@

W

self -

super

�
�

�
�

-

���
��

�
���

��

G

self �

�
⊕

Figure 9: Wrapper application.

The generator associated with the class Circle can now be defined by wrapper
application of CircleWrapper to MakeGenPoint, as shown in Figure 10. The figure
also shows an expansion of the expression into a form that represents what one might
write if circles had been defined without using inheritance. Note that distFromOrig
has changed in such a way that closerToOrg uses the notion of distance for circles,
instead of the original one for points. Thus inheritance has achieved a consistent
modification of the point class.

7

MakeGenCircle = λ a, b, r . CircleWrapper(a, b, r) � MakeGenPoint(a, b)
= λ a, b, r . λ self . (CircleWrapper(a, b, r, self)(MakeGenPoint(a, b, self)))⊕

MakeGenPoint(a, b, self)
= λ a, b, r . λ self .

{ x 7→ a,
y 7→ b,
radius 7→ r,
distFromOrig 7→

max(sqrt(self.x2 + self.y2) − self.radius, 0),
closerToOrg 7→

λ p . (self.distFromOrig < p.distFromOrig)
}

Figure 10: The generator associated with Circle.

4 Correctness of the Model

To show the correctness of the inheritance model, we prove that it is equivalent
to the definition of inheritance provided by the operational semantics of an object-
oriented language. We introduce method systems as a useful framework in which
to prove correctness. Two different semantics for method systems are then defined,
based on the operational and denotational definitions of inheritance. Finally, we
prove the equivalence of the two semantics.

4.1 Method Systems

Method systems are a simple formalization of object-oriented programming that
support semantics based upon both the operational and the denotational models
of inheritance. Method systems encompass only those aspects of object-oriented
programming that are directly related to inheritance or method determination. As
such, many important aspects are omitted, including instance variables, assignment,
and object creation.

A method system may be understood as part of a snapshot of an object-oriented
system. It consists of all the objects and relationships that exist at a given point
during execution of an object-oriented program. The basic ontology for method
systems includes instances, classes, and method descriptions, which are mappings
from message keys to method expressions. Each object is an instance of a class.
Classes have an associated method description and may inherit methods from other
classes. These (flat) domains and their (monotone) interconnections are introduced
in Figure 11. Figure 12 illustrates a method system.

The syntax of method expressions is defined by the Exp domain which defines
a restricted language used to implement the behavior of objects. For simplicity,
methods all have exactly one argument, referenced by the symbol arg within the
body of the method. Self-reference is denoted by the symbol self, which may be

8

Method System Domains
Instances ρ ∈ Instance
Classes κ ∈ Class
Messages m ∈ Key
Primitives f ∈ Primitive
Methods e ∈ Exp::= self | super | arg

| e1 m e2 | f(e1, . . . , eq)

Method System Operations
class : Instance → Class

parent : Class → (Class + ?)
methods : Class → Key → (Exp + ?)

Figure 11: Syntactic domains and interconnections.

returned as the value of a method, passed as an actual argument, or sent additional
messages. A subclass method may invoke the previous definition of a redefined
method with the expression super. Message-passing is represented by the expression
e1 m e2, in which the message consisting of the key m and the argument e2 is sent
to the object e1. Finally, primitive values and computations are represented by the
expression f(e1, . . . , eq). If q = 0 then the primitive represents a constant.

class gives the class of an instance. Every instance has exactly one class, although
a class may have many instances.

parent defines the inheritance hierarchy, which is required to be a tree. For any
class κ, the value of parent(κ) is the parent class of κ, or else ⊥? if κ is the root.
? is a one-point domain consisting of only ⊥?. The use of (Class + ?) allows us to
test monotonically whether a class is the root. Note that + denotes “separated”
sum, so that the elements of (Class + ?) are (distinguished copies of) the elements
of Class, the element ⊥?, and a new bottom element. We omit the injections into
sum domains; the meaning of expressions, in particular ⊥?, is always unambiguously
implied by the context.

methods specifies the local method expressions defined by a class. For any class κ
and any message key m, the value of methods(κ)m is either an expression or ⊥? if
κ doesn’t define an expression for m. Let us assume that the root of the inheritance
hierarchy doesn’t define any methods. Note that inheritance allows instances of a
class to respond to more than the locally defined methods.

In the following two sections we give the method system both a conventional
method lookup semantics and a denotational semantics. To do so we need a notion
of a program, and we choose the simplest possible one. Informally, it is “create an
instance and send a message to it”. Both the semantics give a denotation of such
an instance; the denotation define the result of sending a message to the instance.

9

��
��

��1

-
PPq

C1

��
��

��1

-
PPq

C2

�
�

�
���

�
�

�
���

��
��

��1

-
PPq

C3

@
@

@
@@I

@
@

@
@@I

��
��

��1

-
PPq

C4

66

Classi
Key → Exp
Instance
parent--

methods
class-

Figure 12: A method system.

4.2 Method Lookup Semantics

The method lookup semantics given in Figure 14 closely resembles the implemen-
tation of method lookup in object-oriented languages like Smalltalk (Goldberg and
Robson, 1983). It is given in a denotational style due to the abstract nature of
method systems. A more traditional operational semantics is not needed because of
the absence of updatable storage.

The domains used to represent the behavior an of instance are defined in Figure 13.
A behavior is a mapping from message keys to functions or ⊥?. This is clearly
contrasted with the methods of a class, which are given by a mapping from message
keys to expressions or ⊥?. Thus a behavior is a semantic entity, while methods
are syntactic. Another difference between the behavior of an instance and its class’s
methods is that the behavior contains a function for every message the class handles,
while methods associate an expression only with messages that are different from the
class’s parent. In the rest of this paper, ⊥ (without subscript) denotes the bottom
element of Behavior.

The semantics also uses an auxiliary function root, defined in Figure 13, that
determines whether a class is the root of the inheritance hierarchy. Boolean is
the flat three-point domain of truth values. [f, g] denotes the case analysis of two
functions f ∈ Df → D and g ∈ Dg → D with result in the domain D, mapping
x ∈ Df + Dg to f(x) if x ∈ Df or to g(x) if x ∈ Dg.

Sending a message m to an instance ρ is performed by looking up the message in
the instance’s class. The lookup process yields a function that takes a message key
and an actual argument and computes the value of the message send.

Performing message m in a class κ on behalf of an instance ρ involves searching
the sequence of class parents until a method is found to handle the message. This

10

Semantic Domains
Number

α ∈ Value = Behavior + Number
σ, π ∈ Behavior = Key → (Fun + ?)

φ ∈ Fun = Value → Value

root : Class → Boolean
root(κ) = [λ κ′ ∈ Class . false,

λ v ∈ ? . true
](parent(κ))

Figure 13: Semantic domains and root.

method is then evaluated. In lookup, the instance and message remain constant,
while the class argument is recursively bound to each of the parents in sequence.
At each stage there are two possibilities: (1) the message key has an associated
method expression in class κ, in which case it is evaluated, and (2) the method is
not defined, in which case a recursive call is made to lookup after computing the
parent of the class. Note that when do is called from lookup, then the value of the
argument κ is the class in which the method was found. This class need not be the
class of the instance ρ, hence ρ is a separate argument to lookup so that it later can
be used in the semantics of self. The tail-recursion in lookup would be replaced by
iteration in a real interpreter.

Evaluation of methods is complicated by the need to interpret occurrences of self
and super. The do function has three extra arguments, besides the expression being
evaluated: the original instance ρ that received the message whose method is being
evaluated, the class κ in which the method was found, and an actual argument α.
The expression self evaluates to the behavior of the original instance. The expression
super requires a continuation of the method search starting from the superclass of
the class in which the method occurs. The expression arg evaluates to α. The
expression e1 m e2 evaluates to the result of applying the behavior of the object
denoted by e1 to m and the meaning of the argument e2. Finally, the semantics
of primitive values and computations is given using the operation id, which maps
primitives to constants or functions. Since we omitted a detailed description of
Primitive, we also omit that of id.

For an illustration of the semantics of super, consider three classes A, B, and C,
where B inherits A, and C inherits B. Assume that a method m is defined in A,
overridden in B, and simply inherited in C. Suppose that the message m is sent to
an instance of A. Method lookup for m will yield the method in B. Should this
method send the message m to super, however, the method yielded will the one in
A, not that in the superclass of C.

One important aspect of the method lookup semantics is that the functions are

11

send : Instance → Behavior
send(ρ) = lookup(class(ρ))ρ

lookup : Class → Instance → Behavior
lookup(κ)ρ = λ m ∈ Key .

[λ e ∈ Exp .do[[e]]ρκ,

λ v ∈ ? . if root(κ)
then ⊥?

else lookup(parent(κ))ρm

](methods(κ)m)

do : Exp → Instance → Class → Fun
do[[self]]ρκ = λ α ∈ Value . send(ρ)
do[[super]]ρκ = λ α ∈ Value . lookup(parent(κ))ρ
do[[arg]]ρκ = λ α ∈ Value . α
do[[e1 m e2]]ρκ = λ α ∈ Value . (do[[e1]]ρκα)m(do[[e2]]ρκα)
do[[f(e1, . . . , eq)]]ρκ =

λ α ∈ Value . (idf)(do[[e1]]ρκα, . . . , do[[eq]]ρκα)

send - lookup

�	�
?

- do

�	�
?

� ��66

Figure 14: The method lookup semantics.

mutually recursive, because do contains calls to send and lookup.

4.3 Denotational Semantics

The denotational semantics based on generator modification given in Figure 16 uses
two additional domains representing behavior generators and wrappers, defined in
Figure 15. A formal definition of ⊕ is also given in Figure 15.

The behavior of an instance is defined as the fixed point of the generator associated
with its class. The generator specifies a self-referential behavior, and its fixed point
is that behavior. The generator of the root class produces a behavior in which all
messages are undefined.

The generator of a class that isn’t the root is created by modifying the generator
of the class’s parent. The modifications to be made are found in the wrapper of
the class, which is a semantic entity derived from the block of syntactic method
expressions defined by the class. These modifications are effected by the inheritance
operator � . Recall that � : (1) distributes a fresh self to both the wrapper and
the parent generator, (2) applies the wrapper to the parent generator to produce a
modification behavior, and (3) combines the modification and the parent behavior,

12

Generator Semantics Domains
Generator = Behavior → Behavior
Wrapper = Behavior → Behavior → Behavior

⊕ : (Behavior×Behavior) → Behavior
r1 ⊕ r2 = λ m ∈ Key . [λ φ ∈ Fun . φ,

λ v ∈ ? . r2(m)
]r1(m)

Figure 15: Semantic domains and ⊕.

using ⊕.
The function wrap computes the wrapper of a class as a mapping from messages to

the evaluation of the corresponding method, or to ⊥?. A wrapper has two behavioral
arguments, one used for self-reference, and the other for reference to the parent
behavior (i.e. the behavior being ‘wrapped’). These arguments may be understood
as representing the behavior of self and the behavior of super. In the definitions,
the behavior for self is named σ and the one for super is named π.

A method is always evaluated in the context of a behavior for self (represented by
σ) and super (represented by π). The evaluation of the corresponding expressions,
self and super, is therefore simple. The evaluation of the other expressions is
essentially the same as in the method lookup semantics.

Note that each of the functions in the denotational semantics is recursive only
within itself: there is no mutual recursion among the functions, except that which
is achieved by the explicit fixed point.

For illustration of the denotational semantics, let us briefly reexamine the ex-
amples in section 3. The meaning of class Point(a,b) in figure 4 is essentially
gen(Point(a,b)), called MakeGenPoint(a,b) in figure 5. The meaning of an instance of
Point(a,b) is shown in figure 6. The wrapper for the class Circle(a,b,r) in figure 7 is
essentially wrap(Circle(a,b,r)), called CircleWrapper in figure 8. Finally, the genera-
tor associated with Circle(a,b,r) is essentially gen(Circle(a,b,r)), called MakeGenCircle
in figure 10.

4.4 Equivalence

The method lookup semantics and the denotational semantics are equivalent because
they assign the same behavior to an instance. This proposition is captured by
theorem 2.

Theorem 2 send = behave

In the proof of the theorem we use an “intermediate semantics” defined in Fig-
ure 17 and inspired by the one used by Mosses and Plotkin (1987) in their proof

13

behave : Instance → Behavior
behave(ρ) = fix(gen(class(ρ)))

gen : Class → Generator
gen(κ) = if root(κ)

then λ σ ∈ Behavior . λ m ∈ Key .⊥?

else wrap(κ) � gen(parent(κ))

wrap : Class → Wrapper
wrap(κ) = λ σ ∈ Behavior . λ π ∈ Behavior . λ m ∈ Key .

[λ e ∈ Exp . eval[[e]]σπ
λ v ∈ ? .⊥?

]methods(κ)m

eval : Exp → Behavior → Behavior → Fun
eval[[self]]σπ = λ α ∈ Value . σ
eval[[super]]σπ = λ α ∈ Value . π
eval[[arg]]σπ = λ α ∈ Value . α
eval[[e1 m e2]]σπ =

λ α ∈ Value . (eval[[e1]]σπα)m(eval[[e2]]σπα)
eval[[f(e1, . . . , eq)]]σπ =

λ α ∈ Value . (idf)(eval[[e1]]σπα, . . . , eval[[eq]]σπα)

behave - gen

�	�
?

- wrap - eval

�	�
?

Figure 16: The denotational semantics.

of limiting completeness. The semantics uses n ∈ Nat, the flat domain of natural
numbers.

The intermediate semantics resembles the method lookup semantics but differs in
that each of the syntactic domains of instances, classes, and expressions has a whole
family of semantic equations, indexed by natural numbers. The intuition behind
the definition is that send′

nρ allows (n−1) evaluations of self before it stops and
gives ⊥. send′

nρ is defined in terms of send′
n−ρ via lookup′n and do′n because the

self expression evaluates to the result of send′
n−ρ, which allows one less evaluation

of self. (The values of lookup′κρ and do′[[e]]ρκ are irrelevant; let them be ⊥ and
λ α .⊥.)

The following four lemmas state useful properties of the intermediate semantics.
Here we only outline their proofs, leaving the full proofs to appendix A.

Lemma 1 If n > 0 then

do′n[[e]]ρκ = eval[[e]](send′
n−ρ)(lookup′n(parent(κ))ρ)

14

send′ : Nat → Instance → Behavior
send′

(ρ) = ⊥
if n > 0 then

send′
n(ρ) = lookup′n(class(ρ))ρ

lookup′ : Nat → Class → Instance → Behavior
lookup′κρ = ⊥
if n > 0 then

lookup′nκρ = λ m ∈ Key .
[λ e ∈ Exp .do′n[[e]]ρκ,

λ v ∈ ? . if root(κ)
then ⊥?

else lookup′n(parent(κ))ρm

](methods(κ)m)

do′ : Nat → Exp → Instance → Class → Fun
do′[[e]]ρκ = λ α ∈ Value .⊥
if n > 0 then

do′n[[self]]ρκ = λ α ∈ Value . send′
n−ρ

do′n[[super]]ρκ = λ α ∈ Value . lookup′n(parent(κ))ρ
do′n[[arg]]ρκ = λ α ∈ Value . α
do′n[[e1 m e2]]ρκ =

λ α ∈ Value . (do′n[[e1]]ρκα)m(do′n[[e2]]ρκα)
do′n[[f(e1, . . . , eq)]]ρκ =

λ α ∈ Value . (idf)(do′n[[e1]]ρκα, . . . , do′n[[eq]]ρκα)

Figure 17: The intermediate semantics.

proof: By induction on the structure of e, using the definitions of do′ and eval.

Lemma 2 If n > 0 then

lookup′nκρ = gen(κ)(send′
n−ρ)

proof: By induction on the number of ancestors of κ, using the definitions of gen,
� , ⊕, and wrap, Lemma 1, and the definition of lookup′.

Lemma 3 send′
nρ = (gen(class(ρ)))n(⊥)

proof: By induction on n, using Lemma 2 and the definition of send′.

Lemma 4 send′, lookup′, and do′ are monotone functions of the natural numbers
with the usual ordering.

15

proof: Immediate from Lemma 1–3.

Lemma 4 expresses that the family of send′
n’s is an increasing sequence of functions.

Definition 1

interpret : Instance → Behavior
interpret =

⊔
n(send′

n)

The following three propositions express the relations among the method lookup
semantics, the intermediate semantics, and the denotational semantics.

Proposition 1 interpret = behave

proof: The following proof uses the definition of interpret, Lemma 3, the fixed
point theorem, and the definition of behave. The fixed point theorem is applicable
since gen(class(ρ)) is continuous (we omit the proof).

interpret(ρ) =
⊔

n(send′
n(ρ))

=
⊔

n(gen(class(ρ)))n(⊥)
= fix(gen(class(ρ)))
= behave(ρ)

QED

Proposition 2 send w behave

proof: The following facts have proofs analogous to those of Lemma 1–2 (we omit
the proofs).

1. do[[e]]ρκ = eval[[e]](send(ρ))(lookup(parent(κ))ρ)

2. lookup(κ)ρ = gen(κ)(send(ρ))

From the definition of send and the second fact we get
send(ρ) = lookup(class(ρ))ρ = gen(class(ρ))(send(ρ)). Hence send(ρ) is a fixed
point of gen(class(ρ)). The definition of behave expresses that behave(ρ) is the
least fixed point of gen(class(ρ)); thus send(ρ) w behave(ρ).
QED

Proposition 3 send v interpret

proof: The functions defined in the method lookup semantics are mutually recur-
sive. Their meaning is the least fixed point of the generator g defined in the obvious
way, as outlined below.

D = (Instance → Behavior)
×(Class → Instance → Behavior)
×(Exp → Instance → Class → Fun)

16

Let g : D → D be defined by

g(s, l, d) = (λ i ∈ Instance . l(class(ρ))ρ, . . . , . . .)

The three components of g correspond to send, lookup, and do, and they are defined
similarly, except that they refer to each other instead of send, lookup, and do. Now
we can prove by induction on n that

gn(⊥D) v (send′
n, lookup′n,do′n)

In the base case, where n = 0, the inequality holds trivially. Then assume that
the inequality holds for (n−1), where n > 0. The following proof of the induction
step uses the monotonicity of g (we omit the proof), the induction hypothesis, and
Lemma 4.

gn(⊥D) = g(gn−(⊥D))
v g(send′

n−, lookup′n−,do′n−)
v (send′

n, lookup′n,do′n)

The following calculation uses the fixed point theorem, which is applicable since g
is continuous (we omit the proof).

(send, lookup,do) = fix(g)
=

⊔
n gn(⊥D)

v
⊔

n(send′
n, lookup′n,do′n)

In particular, we have send v
⊔

n(send′
n) = interpret.

QED

proof of Theorem 2: Combine Propositions 1–3. QED

5 Conclusion

A denotational semantics of inheritance was presented, using a general notation that
is applicable to the analysis of different object-oriented languages (Cook, 1989). The
semantics was supported by an intuitive explanation of inheritance as a mechanism
for incremental programming that derives modified versions of recursive structures.
An explanation of the binding of self- and super-reference was given at this con-
ceptual level. To provide evidence for the correctness of the model, it was proven
equivalent to the most widely accepted definition of inheritance, the operational
method lookup semantics used in object-oriented languages.

In comparing the denotational semantics with the operational semantics, the de-
notational one does not seem to be much simpler. It may even be argued that it
is a great deal more complex, because it requires an understanding of fixed points.

17

The primary advantage of the denotational semantics is the intuitive explanation
it provides. It suggests that inheritance may be useful for other kinds of recursive
structures, like types and functions, in addition to classes. It also reveals that in-
heritance, while a natural extension of existing mechanisms, does provide expressive
power not found in conventional languages by allowing more flexible use of the fixed
point function.

Acknowledgement. The authors would like to thank Peter Wegner for the original
motivation for an equivalence proof, Peter Mosses for helpful comments on the
second part of the paper, and John Mitchell for comments on an earlier draft.

References

Borning, A. H., and O’Shea, T. (1987), Deltatalk: An empirically and
aesthetically motivated simplification of the Smalltalk-80 language, in “European
Conference on Object-Oriented Programming”, pp. 1–10.

Cardelli, L. (1984), A semantics of multiple inheritance, in “Semantics of
Data Types”, LNCS 173, Springer-Verlag, pp. 51–68.

Cardelli, L., and Wegner, P. (1985), On understanding types, data ab-
straction, and polymorphism, Computing Surveys, 17(4), pp. 471–522.

Cook, W. (1989), “A Denotational Semantics of Inheritance”, PhD thesis,
Brown University.

Dahl, O.-J., and Nygaard, K. (1970), “The SIMULA 67 Common Base
Language”.

Goldberg, A., and Robson, D. (1983), “Smalltalk-80: the Language and
Its Implementation”, Addison-Wesley.

Gordon, M. J. C. (1979), “The Denotational Description of Programming
Languages”, Springer-Verlag.

Kamin, S. (1988), Inheritance in Smalltalk-80: A denotational definition,
in “Proceedings, 15th Symposium on Principles of Programming Languages”,
pp. 80–87.

Khoo, S. C., and Sundaresh, R. S. (1991), Compiling inheritance using
partial evaluation, in “Proceedings, ACM Symposium on Partial Evaluation and
Semantics-Based Program Manipulation”, pp. 211–222.

McAllester, D., and Zabih, R. (1987), Boolean Classes, in “Proceedings,
ACM Conference on Object-Oriented Programming: Systems, Languages and
Applications”, pp. 417–423.

Minsky, N., and Rozenshtein, D. (1987), A law-based approach to object-
oriented programming, in “Proceedings, ACM Conference on Object-Oriented
Programming: Systems, Languages and Applications”, pp. 482–493.

18

Mosses, P. D., and Plotkin, G. D. (1987), On proving limiting complete-
ness, SIAM Journal of Computing, 16, pp. 179–194.

Reddy, U. S. (1988), Objects as closures: Abstract semantics of object-
oriented languages, in “Proceedings, ACM Conference on Lisp and Functional
Programming”, pp. 289–297.

Schmidt, D. A. (1986), “Denotational Semantics: A Methodology for Lan-
guage Development”, Allyn & Bacon.

Scott, D. A. (1976), Data types as lattices. SIAM Journal, 5(3), pp. 522–586.

Snyder, A. (1986), Encapsulation and inheritance in object-oriented program-
ming languages, in “Proceedings, ACM Conference on Object-Oriented Program-
ming: Systems, Languages and Applications”, pp. 38–45.

Stein, L. A. (1987), Delegation is inheritance, in “Proceedings, ACM Confer-
ence on Object-Oriented Programming: Systems, Languages and Applications”,
pp. 138–146.

Stoy, J. (1977), “Denotational Semantics: The Scott-Strachey Approach to
Programming Language Semantics”, MIT Press.

19

Appendix A: Proofs of Lemmas

In this appendix we give the full proofs of Lemmas 1–4. A summary of definitions,
except the three semantics, is given in appendix B.

proof of Lemma 1: Recall that we want to prove, for n > 0, that

do′n[[e]]ρκ = eval[[e]](send′
n−ρ)(lookup′n(parent(κ))ρ)

by induction on the structure of e. The base case is proved as follows.

do′n[[self]]ρκα = send′
n−ρ

= eval[[self]](send′
n−ρ)(lookup′n(parent(κ))ρ)α

do′n[[super]]ρκα = lookup′n(parent(κ))ρ
= eval[[super]](send′

n−ρ)(lookup′n(parent(κ))ρ)α

do′n[[arg]]ρκα = α

= eval[[arg]](send′
n−ρ)(lookup′n(parent(κ))ρ)α

The induction step is proven below using the abbreviation π = lookup′n(parent(κ))ρ.

do′n[[e1 m e2]]ρκα = do′n[[e1]]ρκαm(do′n[[e2]]ρκα)
= eval[[e1]](send′

n−ρ)παm(eval[[e2]](send′
n−ρ)πα)

= eval[[e1 m e2]](send′
n−ρ)πα

do′n[[f(e1, . . . , eq)]]ρκα = (idf)(do′n[[e1]]ρκα, . . . , do′n[[eq]]ρκα)
= (idf)(eval[[e1]](send′

n−ρ)πα, . . . ,

eval[[eq]](send′
n−ρ)πα)

= eval[[f(e1, . . . , eq)]](send′
n−ρ)πα

QED

proof of Lemma 2: Recall that we want to prove lookup′nκρ = gen(κ)(send′
n−ρ),

where n > 0, by induction on the number of ancestors of κ. In the base case, where
κ is the root, both sides evaluate to (λ m ∈ Key .⊥?) because κ doesn’t define
any methods. Then assume that the lemma holds for parent(κ). The proof of the
induction step given below uses the definition of gen (root(κ) is false), the definition
of � , the induction hypothesis, the definitions of ⊕ and wrap, the properties of
case analysis, Lemma 1, and the definition of lookup′ (root(κ) is false). Note that
we use the abbreviation π = lookup′n(parent(κ))ρ.

gen(κ)(send′
n−ρ) = (wrap(κ) � gen(parent(κ)))(send′

n−ρ)
= (wrap(κ)(send′

n−ρ)(gen(parent(κ))(send′
n−ρ)))

⊕ (gen(parent(κ))(send′
n−ρ))

20

= (wrap(κ)(send′
n−ρ)π)⊕ π

= λ m ∈ Key . [λ φ ∈ Fun . φ,
λ v ∈ ? . πm

](wrap(κ)(send′
n−ρ)πm)

= λ m ∈ Key . [λ φ ∈ Fun . φ,
λ v ∈ ? . πm

]([λ e ∈ Exp . eval[[e]](send′
n−ρ)π,

λ v ∈ ? .⊥?

](methods(κ)m))
= λ m ∈ Key . [λ e ∈ Exp . eval[[e]](send′

n−ρ)π,

λ v ∈ ? . πm
](methods(κ)m)

= λ m ∈ Key . [λ e ∈ Exp .do′n[[e]]ρκ,
λ v ∈ ? . πm

](methods(κ)m)
= lookup′n(κ)ρ

QED

proof of Lemma 3: Recall that we want to prove send′
nρ = (gen(class(ρ)))n(⊥)

by induction on n. In the base case, where n = 0, both sides evaluate to ⊥.
Then assume that the lemma holds for (n−1), where n > 0. The following proof
of the induction step uses the associativity of function composition, the induction
hypothesis, Lemma 2, and the definition of send′.

(gen(class(ρ)))n(⊥) = gen(class(ρ))((gen(class(ρ)))n−(⊥))
= gen(class(ρ))(send′

n−ρ)
= lookup′n(class(ρ))ρ
= send′

nρ

QED

proof of Lemma 4: We must prove that send′, lookup′, and do′ are monotone
functions of the natural numbers with the usual ordering. From Lemma 3 it follows
that send′ is monotone. Then, if n ≤ m we have lookup′nκρ = gen(κ)(send′

n−ρ) v
gen(κ)(send′

m−ρ) = lookup′mκρ using Lemma 2, that send′ is monotone, and
Lemma 2 again. Finally, we can in the same way prove that do′ is monotone using
Lemma 1, that send′ and lookup′ are monotone, and Lemma 1 again. Note that we
also use that gen(κ) and eval[[e]] are monotone (we omit the proof).
QED

21

Appendix B: Summary of Definitions

� : (Wrapper×Generator) → Generator

W � G = λ self . (W (self)(G(self)))⊕G(self)

Method System Domains
Instances ρ ∈ Instance
Classes κ ∈ Class
Messages m ∈ Key
Primitives f ∈ Primitive
Methods e ∈ Exp::= self | super | arg

| e1 m e2 | f(e1, . . . , eq)

Method System Operations
class : Instance → Class

parent : Class → (Class + ?)
methods : Class → Key → (Exp + ?)

Semantic Domains
Number

α ∈ Value = Behavior + Number
σ, π ∈ Behavior = Key → (Fun + ?)

φ ∈ Fun = Value → Value

root : Class → Boolean
root(κ) = [λ κ′ ∈ Class . false,

λ v ∈ ? . true
](parent(κ))

22

