
Operating Systems:
Basic Concepts and History

1

Introduction to Operating Systems

An operating system is the interface between the user and the
architecture.

User Applications

OS as juggler: providing the illusion of a dedicated machine with
infinite memory and CPU.
OS t t ti f h th ll ti

Operating System

Hardware

Virtual Machine Interface

Physical Machine Interface

2

OS as government: protecting users from each other, allocating
resources efficiently and fairly, and providing secure and safe
communication
OS as complex system: keeping OS design and implementation
as simple as possible is the key to getting the OS to work

What is an Operating System?

Any code that runs with the hardware kernel bit set
An abstract virtual machine
A set of abstractions that simplify application design

Files instead of “bytes on a disk”Files instead of bytes on a disk

Core OS services, written by “pros”
Processes, process scheduling
Address spaces
Device control
~30% of Linux source code. Basis of stability and security

Device drivers written by “whoever”
Software run in kernel to manages a particular vendor’s

3

Software run in kernel to manages a particular vendor s
hardware

E.g. Homer Simpson doll with USB
~70% of Linux source code
OS is extensible
Drivers are the biggest source of OS instability

What is an Operating System?

For any OS area (CPU scheduling, file systems, memory
management), begin by asking two questions

What’s the hardware interface? (The Physical Reality)
What is the application interface? (The Nicer Interface forWhat is the application interface? (The Nicer Interface for
programmer producivity)

Key questions:
Why is the application interface defined the way it is?
Should we push more functionality into applications, the OS, or the
hardware?
What are the tradeoffs between programmability, complexity, and
flexibility?

4

flexibility?

Operating System Functions

Service provider
Provide standard facilities

File system
Standard libraries
Wi d tWindow system
…

Coordinator: three aspects
Protection: prevent jobs from interfering with each other
Communication: enable jobs to interact with each other
Resource management: facilitate sharing of resources across jobs.

Operating systems are everywhere
Single function devices (embedded controllers Nintendo)

5

Single-function devices (embedded controllers, Nintendo, …)
OS provides a collection of standard services
Sometimes OS/middleware distinction is blurry

Multi-function/application devices (workstations and servers)
OS manages application interactions

Why do we need operating systems?

Convenience
Provide a high-level abstraction of physical resources.

Make hardware usable by getting rid of warts & specificsMake hardware usable by getting rid of warts & specifics.
Enable the construction of more complex software systems
Enable portable code.

MS-DOS version 1 boots on the latest 3+ GHz Pentium.
Would games that ran on MS-DOSv1 work well today?

Efficiency

6

y
Share limited or expensive physical resources.
Provide protection.

Computer Architecture & Processes

CPU - the processor that performs the actual computation

7

CPU the processor that performs the actual computation
I/O devices - terminal, disks, video board, printer, etc.
Memory - RAM containing data and programs used by the
CPU
System bus - the communication medium between the CPU,
memory, and peripherals

Evolution of Operating Systems

Why do operating systems change?
Key functions: hardware abstraction and coordination
Principle: Design tradeoffs change as technology changes.

Comparing computing systems from 1981 and 2007Comparing computing systems from 1981 and 2007

1981 2007 Factor
MIPS 1 57,000 57,000
$/SPECInt $100K $2 50,000
DRAM size 128KB 2GB 16,000
Disk size 10MB 1TB 100,000
Net BW 9600 bps 100 Mb/s 10 000

8

Net BW 9600 bps 100 Mb/s 10,000
Address bits 16 64 4
Users/machine 100 <1 100

Energy efficiency and parallelism loom on the horizon.
Data centers projected to consume 3% of US energy by next year
No more single-core CPUs

From Architecture to OS to Application, and
Back

Hardware Example OS Services User Abstraction
Processor Process management,

Scheduling, Traps,
Process

g, p ,
Protections, Billing,
Synchronization

Memory Management, Protection,
Virtual memory

Address space

I/O devices Concurrency with CPU,
Interrupt handling

Terminal, Mouse,
Printer, (System
Calls)

9

Calls)
File system Management, Persistence Files
Distributed
systems

Network security,
Distributed file system

RPC system calls,
Transparent file
sharing

From Architectural to OS to Application, and
Back

OS Service Hardware Support
Protection Kernel / User mode

Protected InstructionsProtected Instructions
Base and Limit Registers

Interrupts Interrupt Vectors

System calls Trap instructions and trap vectors

I/O Interrupts or Memory-Mapping
Scheduling error Timer

10

Scheduling, error
recovery, billing

Timer

Synchronization Atomic instructions

Virtual Memory Translation look-aside buffers
Register pointing to base of page table

Interrupts - Moving from Kernel to User Mode

User processes may not:
address I/O directly
use instructions that
manipulate OS memory p y
(e.g., page tables)
set the mode bits that
determine user or kernel
mode
disable and enable
interrupts
halt the machine

11

but in kernel mode, the OS does all these things
a status bit in a protected processor register indicates the mode
Protected instructions can only be executed in kernel mode.
On interrupts (e.g., time slice) or system calls

History of Operating Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems
Batching systems
M lti i tMulti-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user
Distributed computing: lots of systems per user

12

Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing/Cloud computing
Cell phone, mp3 player, DVD player, TIVO, PDA, iPhone, eReader
Software as a service, Amazon’s elastic compute cloud

History of Operating Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems
Batching systems
M lti i tMulti-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user
Distributed computing: lots of systems per user

13

Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

A Brief History of Operating Systems
Hand programmed machines (‘45­‘55)

Single user systems

OS = loader + libraries of common subroutines

Problem: low utilization of expensive components

% tili ti
Execution time

14

= % utilization Execution time +
Card reader time

Batch/Off­line processing (‘55­‘65)

Batching v. sequential execution of jobs

Card Reader:

CPU:

Printer:

Read Job 1

Execute Job 1 Job 2 Job 3

Job 2 Job 3

Print Job 1 Job 2 Job 3

15

Card Reader:

CPU:

Printer:

Read Batch 1

Execute Batch 1 Batch 2 Batch 3

Batch 2 Batch 3

Print Batch 1 Batch 2 Batch 3

Batch processing (‘55­‘65)

Operating system = loader + sequencer + output processor

Tape Tape

Operating System

“System Software”

User Program

User Data

16

TapeTape

Input

Compute

Output

Card
Reader Printer

Ope at g Syste

Multiprogramming (‘65­‘80)

Keep several jobs in memory and multiplex CPU between
jobs

P Simple “synchronous” input:

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...

program P
begin

:
Read(var)
:

end P

system call Read()

Simple, synchronous input:
What to do while we wait
for the I/O device?

17

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1 begin
StartIO(input device)
WaitIO(interrupt)
EndIO(input device)
:

end Read

Multiprogramming (‘65­‘80)

Keep several jobs in memory and multiplex CPU between
jobs

I/O

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...

Program 1 I/O
Device

k: read()

main{

OS

read{

startIO()
waitIO()

18

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

k+1:

endio()
interrupt

}

}

Multiprogramming (‘65­‘80)

Keep several jobs in memory and multiplex CPU between
jobs

I/O

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...

Program 1 Program 2OS I/O
Device

k: read()

startIO()

main{

read{

main{
}
schedule()

19

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

interrupt
endio{

}
schedule()k+1:

}

}

History of Operating Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems
Batching systems
M lti i tMulti-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user
Distributed computing: lots of systems per user

20

Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

Timesharing (‘70­)

A timer interrupt is used to multiplex CPU among jobs

Program 1 Program 2OS

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...

Program 1 Program 2OS

timer
interrupt

schedule{

timer

k:

main{

}
main{

21

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

k+1:
schedule{

timer
interrupt

}

timer
interrupt

schedule{

History of Operating Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems
Batching systems
M lti i tMulti-programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user
Distributed computing: lots of systems per user

22

Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

Operating Systems for PCs

Personal computing systems
Single user
Utilization is no longer a concernUtilization is no longer a concern
Emphasis is on user interface and API
Many services & features not present

Evolution
Initially: OS as a simple service provider
(simple libraries)

23

(p)
Now: Multi-application systems with support
for coordination and communication
Growing security issues (e.g., online
commerce, medical records)

Distributed Operating Systems

Typically support distributed services
Sharing of data and coordination across multiple systems

Possibly employ multiple processors
Loosely coupled v. tightly coupled systems

High availability & reliability requirements
Amazon, CNN

OSOS

User
Program

User
Program

OSOS

User
Program

User
Program

OS
file system

OS
file system

24

OS
process

management

OS
process

management

CPU

LAN/WAN

OS
process management
memory management

OS
process management
memory management

CPU

f y
name services
mail services

f y
name services
mail services

CPU

Network

History of Operating Systems: Phases

Phase 1: Hardware is expensive, humans are cheap
User at console: single-user systems
Batching systems
Multi-programming systemsMulti programming systems

Phase 2: Hardware is cheap, humans are expensive
Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Personal computing: One system per user
Distributed computing: lots of systems per user

25

Phase 4: Ubiquitous computing/Cloud computing
Everything will have computation, from pacemakers to toasters
Computing centralizing
“I think there is a world market for maybe five computers” – Tomas
J. Watson, 1943 (president of IBM)

What is cloud computing?

Cloud computing is where dynamically scalable and
often virtualized resources are provided as a service
over the Internet (thanks wikipedia!)over the Internet (thanks, wikipedia!)
Infrastructure as a service (IaaS)

Amazon’s EC2 (elastic compute cloud)

Platform as a service (PaaS)
Google gears
Microsoft azure

26

Software as a service (SaaS)
gmail
facebook
flickr

27

Thanks, James Hamilton, amazon

Richer Operating Systems
Intellectual property

Copyrighted material is being disseminated in digital form without
payment to copyright owners.
Sue them (DMCA)

Napster (99-7/00)
RIAA lawsuits (9/03)
MPAA lawsuits against bittorrent operators (11/04)

What is the future of file sharing?
Attempts to ban all file sharing at the university level.
Government tapping of IP networks.

Can software stop intellectual property piracy?
Why not? The consumer controls the OS.

Wh t b t ddi h d ?

28

What about adding hardware?
Intel’s trusted execution technology. Who is trusted? Hint: Its
not the owner of the computer…

A PC is an open-ended system, not an appliance. For how much
longer?

Richer Operating Systems
Information organization

Is it better to search for data (google), or organize it
hierarchically (file folders)?

Organization along a particular set of ideas (schema) might not
be ideal for a different set of ideas.
Gmail search vs. mail folders

Integration of search in Vista and MacOS.
Do you use My Documents folder, or do you maintain your own
directories? use both a lot?

29

Course Overview

OS Structure, Processes and Process Management

CPU scheduling

Threads and concurrent programming

Thread coordination, mutual exclusion, monitors

Deadlocks

Virtual memory & Memory management

Disks & file systems

30

Distributed file systems

Security

