Operating Systems:
Basic Concepts and History

Introduction to Operating Systems

An operating system is the interface between the user and the
architecture.

‘ User Applications

< L T L Virtual Machine Interface
‘ Operating System

T 1= I 1T Physical Machine Interface
‘ Hardware

OS as juggler: providing the illusion of a dedicated machine with
infinite memory and CPU.

OS as government: protecting users from each other, allocating
resources efficiently and fairly, and providing secure and safe
communication

OS as complex system: keeping OS design and implementation
as simple as possible is the key to getting the OS to work

What is an Operating System?

4

L]

Any code that runs with the hardware kernel bit set
» An abstract virtual machine
» A set of abstractions that simplify application design
< Files instead of “bytes on a disk”
Core OS services, written by “pros”
» Processes, process scheduling
» Address spaces
» Device control
» ~30% of Linux source code. Basis of stability and security
Device drivers written by “whoever”
» Software run in kernel to manages a particular vendor’s
hardware
<+ E.g. Homer Simpson doll with USB
» ~70% of Linux source code
» OS is extensible
» Drivers are the biggest source of OS instability

What is an Operating System?

¢ For any OS area (CPU scheduling, file systems, memory
management), begin by asking two questions
» What's the hardware interface? (The Physical Reality)

» What is the application interface? (The Nicer Interface for
programmer producivity)

+ Key questions:
» Why is the application interface defined the way it is?

» Should we push more functionality into applications, the OS, or the
hardware?

» What are the tradeoffs between programmability, complexity, and
flexibility?

Operating System Functions

+ Service provider
» Provide standard facilities
< File system
« Standard libraries
<+ Window system

« Coordinator: three aspects
» Protection: prevent jobs from interfering with each other
» Communication: enable jobs to interact with each other

» Resource management: facilitate sharing of resources across jobs.

+ Operating systems are everywhere
» Single-function devices (embedded controllers, Nintendo, ...)
<« OS provides a collection of standard services
+ Sometimes OS/middleware distinction is blurry
» Multi-function/application devices (workstations and servers)
<+ OS manages application interactions

Why do we need operating systems?

+ Convenience
» Provide a high-level abstraction of physical resources.
< Make hardware usable by getting rid of warts & specifics.
» Enable the construction of more complex software systems
» Enable portable code.
<+ MS-DOS version 1 boots on the latest 3+ GHz Pentium.
< Would games that ran on MS-DOSv1 work well today?

+ Efficiency
» Share limited or expensive physical resources.
» Provide protection.

Computer Architecture & Processes

(disk) disk peinter tape drive

Disk Printer Tape Drive
Cach Controller Controller Controller
ache

Memarics.
System Bus

Memory Controller

Memory

+ CPU - the processor that performs the actual computation
+ I/0 devices - terminal, disks, video board, printer, etc.

+ Memory - RAM containing data and programs used by the
CPU

+ System bus - the communication medium between the CPU,
memory, and peripherals

Evolution of Operating Systems

+ Why do operating systems change?
> Key functions: hardware abstraction and coordination
> Principle: Design tradeoffs change as technology changes.

+ Comparing computing systems from 1981 and 2007

1981 2007 Factor
MIPS 1 57,000 57,000
$/SPECInt $100K $2 50,000
DRAM size 128KB 2GB 16,000
Disk size 10MB 1TB 100,000
Net BW 9600 bps | 100 Mb/s | 10,000
Address bits 16 64 4
Users/machine 100 <1 100

+ Energy efficiency and parallelism loom on the horizon.

+ Data centers projected to consume 3% of US energy by next year

+ No more single-core CPUs

From Architecture to OS to Application, and

From Architectural to OS to Application, and

Back
OS Service Hardware Support
Protection Kernel / User mode
Protected Instructions
Base and Limit Registers
Interrupts Interrupt Vectors
System calls Trap instructions and trap vectors
I/0 Interrupts or Memory-Mapping

Scheduling, error
recovery, billing

Timer

Back
Hardware Example OS Services User Abstraction
Processor Process management, Process
Scheduling, Traps,
Protections, Billing,
Synchronization
Memory Management, Protection, Address space
Virtual memory
I/0 devices |Concurrency with CPU, Terminal, Mouse,
Interrupt handling Printer, (System
Calls)
File system | Management, Persistence | Files
Distributed |Network security, RPC system calls,
systems Distributed file system Transparent file
sharing

Synchronization

Atomic instructions

Virtual Memory

Translation look-aside buffers
Register pointing to base of page table

Interrupts - Moving from Kernel to User Mode

User processes may not:

+ address I/O directly 0S Kernel

* use instructions that Trap Handler = System Service Routine
manipulate OS memory

(e.9., page tables) e Hernel Mode
+ set the mode bits that Process User Mode
determine user or kernel
mode Syea:'cm Call User Programs
« disable and enable ’
interrupts

« halt the machine

but in kernel mode, the OS does all these things

+ a status bit in a protected processor register indicates the mode
+ Protected instructions can only be executed in kernel mode.

+ On interrupts (e.g., time slice) or system calls

11

History of Operating Systems: Phases

»

Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user
» Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing/Cloud computing
» Cell phone, mp3 player, DVD player, TIVO, PDA, iPhone, eReader
» Software as a service, Amazon’s elastic compute cloud

History of Operating Systems: Phases

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user

» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing

13

A Brief History of Operating Systems
Hand programmed machines (‘45-'55)

*

Single user systems

L 4

OS = |loader + libraries of common subroutines

L]

Problem: low utilization of expensive components

Execution time

Execution time +
Card reader time

= 0 utilization

Batch/Off-line processing (‘55-65)

+ Batching v. sequential execution of jobs

Card Reader: I Read Job 1 I Job 2 I Job 3 |
CPU: Exe b 1
Printer: [Printiob1 | Job2 [Job3
Card Reader: |ReadBatchl | Batch2 [Batch3 |
CPU: EfecuteBatcj1 [Batch2 | | Batch3 |
Printer: [PrintBatch1 [Bacch2 | Batch3

Batch processing (‘55-'65)

+ Operating system = loader + sequencer + output processor

User Data

User Program
QO Q0

Tape “System Software” Tape
Operating System
Compute
cad | [Q0 P QO
Reader Tape / & Tape rinter
Output

Input

Multiprogramming (‘65-‘80)

jobs

+ Keep several jobs in memory and multiplex CPU between

User Programn <

User Program 2

User Program 1

uSystem Software” <.

Operating System

™~ ./enda P

“| program P Simple, “synchronous” input:
begin What to do while we wait
é for the I/0 device?
Read (var)

’ system call Read()

../ end Read

begin
StartIO (input device)
WaitIO (interrupt)
EndIO (input device)

Multiprogramming (‘65-‘80)

jobs

User Program n

User Program 2
User Program 1
“System Software”

Operating System

+ Keep several jobs in memory and multiplex CPU between

|
Program 1 oS De/vci)ce
main{
k: read () _’read{
startIOo() ——————————1 g
waitIO() ——
endio () -
interrupt

k+1:

T

Multiprogramming (‘65-‘80)

jobs

User Program n

User Program 2
User Program 1
“System Software”

Operating System

+ Keep several jobs in memory and multiplex CPU between

Program 1 oS Program 2 Dé/vci)ce
main{
k:read()———»read{
startIO() ———————————1

k+1:

—

T

s}chedule () —» main{

endiof

schedule ()

interrupt

History of Operating Systems: Phases

»

Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user
» Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

Timesharing (‘70-)

History of Operating Systems: Phases

+ A timer interrupt is used to multiplex CPU among jobs

User Program n

User Program 2
User Program 1
“System Software”

Operating System

Program 1 oS Program 2
main{
timer
—— interrupt
ki=———— ——————schedule{
}
_ timer
interrupt
schedule{ +—
k+l: —"
}
timer
interrupt

schedule{

Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

»

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing

Operating Systems for PCs

+ Personal computing systems
» Single user
» Utilization is no longer a concern
» Emphasis is on user interface and API
» Many services & features not present

+ Evolution
» Initially: OS as a simple service provider
(simple libraries)
» Now: Multi-application systems with support
for coordination and communication

» Growing security issues (e.g., online
commerce, medical records)

23

Distributed Operating Systems

*

Typically support distributed services

» Sharing of data and coordination across multiple systems
Possibly employ multiple processors

» Loosely coupled v. tightly coupled systems

High availability & reliability requirements
» Amazon, CNN

User User
Program Program
__0S
oS 0S file system
process process management name services
management memory management mail services

kAN/\NAN

Networ

History of Operating Systems: Phases

What is cloud computing?

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing/Cloud computing
» Everything will have computation, from pacemakers to toasters
» Computing centralizing

» “I think there is a world market for maybe five computers” — Tomas
J. Watson, 1943 (president of IBM)

25

+ Cloud computing is where dynamically scalable and
often virtualized resources are provided as a service
over the Internet (thanks, wikipedia!)

« Infrastructure as a service (laaS)

» Amazon’s EC2 (elastic compute cloud)

+ Platform as a service (PaaS)

» Google gears
» Microsoft azure
+ Software as a service (SaaS)
» gmalil
» facebook
> flickr

Services Economies of Scale

Substantial economies of scale possible

2006 comparison of very large service with small/mid-sized: (~1000 servers):

Large Service [$13/Mb/s/mth]: 50.04/GB
Medium [$95/Mbis/mth]: $0.30/GB (7.1x)

Large Service: $4.6/GBlyear (2x in 2 DC)
Medium: $26.00/GB/year* (5.7x)

Large Service: Over 1.000 servers/admin
: ~140 server in (7.1x)

High cost of entry
— Physical plant expensive: 15MW roughly $200M
Summary: significant economies of scale but at very high cost of entry
— Small number of large players likely outcome
Thanks, James Hamilton, amazon

Richer Operating Systems
Intellectual property

+ Copyrighted material is being disseminated in digital form without
payment to copyright owners.
+ Sue them (DMCA)
» Napster (99-7/00)
» RIAA lawsuits (9/03)
» MPAA lawsuits against bittorrent operators (11/04)
+« What is the future of file sharing?
» Attempts to ban all file sharing at the university level.
» Government tapping of IP networks.
+ Can software stop intellectual property piracy?
» Why not? The consumer controls the OS.
+ What about adding hardware?
» Intel's trusted execution technology. Who is trusted? Hint: Its
not the owner of the computer...
+ A PC is an open-ended system, not an appliance. For how much
longer?

Richer Operating Systems

Information organization

¢ Is it better to search for data (google), or organize it
hierarchically (file folders)?

» Organization along a particular set of ideas (schema) might not
be ideal for a different set of ideas.

» Gmail search vs. mail folders
« Integration of search in Vista and MacOS.

» Do you use My Documents folder, or do you maintain your own
directories? use both a lot?

Course Overview

@

OS Structure, Processes and Process Management
CPU scheduling
Threads and concurrent programming
> Thread coordination, mutual exclusion, monitors
> Deadlocks
Virtual memory & Memory management
Disks & file systems
» Distributed file systems

Security

