
OS Structure,
Processes & Process Management

1

What is a Process?

A process is a program during execution.
Program = static file (image)
Process = executing program = program + execution state.

A process is the basic unit of execution in an operating system
Each process has a number, its process identifier (pid).

Different processes may run different instances of the same
program

E.g., my javac and your javac process both run the Java compiler

2

At a minimum, process execution requires following resources:
Memory to contain the program code and data
A set of CPU registers to support execution

Program to Process

We write a program in e.g., Java.
A compiler turns that program into an instruction list.
The CPU interprets the instruction list (which is more a graph of p (g p
basic blocks).

void X (int b) {
if(b == 1) {

…
int main() {

3

int main() {

int a = 2;
X(a);

}

Process in Memory

Program to process.

What you wrote

What is in memory.

main; a = 2
X; b = 2

Stack

void X (int b) {
if(b == 1) {

…
int main() {

int a = 2;

void X (int b) {
if(b == 1) {

X; b 2

Heap

4

X(a);
}

…
int main() {

int a = 2;
X(a);

} CodeWhat must the OS track for a
process?

Processes and Process Management
Details for running a program

A program consists of code and data

On running a program, the loader:
reads and interprets the executable file
sets up the process’s memory to contain the code & data fromsets up the process s memory to contain the code & data from
executable
pushes “argc”, “argv” on the stack
sets the CPU registers properly & calls “_start()”

Program starts running at _start()
_start(args) {

initialize_java();
ret = main(args);

it(t)

5

exit(ret)
}
we say “process” is now running, and no longer think of “program”

When main() returns, OS calls “exit()” which destroys the
process and returns all resources

Keeping track of a process

A process has code.
OS must track program counter (code location).

A process has a stack.
OS must track stack pointer.

OS stores state of processes’ computation in
a process control block (PCB).

E.g., each process has an identifier (process

6

g p (p
identifier, or PID)

Data (program instructions, stack & heap)
resides in memory, metadata is in PCB (which
is a kernel data structure in memory)

Process Life Cycle

Processes are always either executing, waiting to
execute or blocked waiting for an event to occur

RunningReady

Start Done

7

Blocked

A preemptive scheduler will force a transition from
running to ready. A non-preemptive scheduler waits.

Process Contexts
Example: Multiprogramming

User Program nUser Program n

Program 1 Program 2OS I/O
Device

main{

“System Software”“System Software”

User Program 1User Program 1

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

... k: read()

startIO()

a {

main{

read{

}

save
state
save
state schedule()

8

Operating SystemOperating System

System SoftwareSystem Software

k+1:

endio{ interrupt

}

}

schedule()

Memory restore
state

restore
state

save
state
save
state

When a process is waiting for I/O what is its
scheduling state?

1. Ready
2. Running
3. Blocked
4. Zombie
5. Exited

9

Scheduling Processes

OS has PCBs for active processes.
OS puts PCB on an appropriate queue.p pp p q

Ready to run queue.
Blocked for IO queue (Queue per device).
Zombie queue.

Stopping a process and starting another is
called a context switch.

10

100-10,000 per second, so must be fast.

Why Use Processes?

Consider a Web server
get network message (URL) from client
fetch URL data from diskfetch URL data from disk
compose response
send response

How well does this web server perform?

With i i t ?

11

With many incoming requests?

That access data all over the disk?

Why Use Processes?

Consider a Web server
get network message (URL) from client
create child process, send it URL

Child
fetch URL data from disk
compose response
send response

If server has configuration file open for writing

12

g p g
Prevent child from overwriting configuration

How does server know child serviced request?
Need return code from child process

The Genius of Separating Fork/Exec

Life with CreateProcess(filename);
But I want to close a file in the child.
CreateProcess(filename list of files);CreateProcess(filename, list of files);

And I want to change the child’s environment.
CreateProcess(filename, CLOSE_FD, new_envp);

Etc. (and a very ugly etc.)
fork() = split this process into 2 (new PID)

Returns 0 in child
Returns pid of child in parent

13

Returns pid of child in parent
exec() = overlay this process with new program

(PID does not change)

The Genius of Separating Fork/Exec

Decoupling fork and exec lets you do anything to the
child’s process environment without adding it to the
CreateProcess API.
int ppid = getpid(); // Remember parent’s pid
fork(); // create a child
if(getpid() != ppid) { // child continues here

// Do anything (unmap memory, close net connections…)
exec(“program”, argc, argv0, argv1, …);

}fork() creates a child process that inherits:
identical copy of all parent’s variables & memory

14

de ca copy o a pa e s a ab es & e o y
identical copy of all parent’s CPU registers (except one)

Parent and child execute at the same point after fork() returns:
by convention, for the child, fork() returns 0
by convention, for the parent, fork() returns the process identifier of
the child
fork() return code a convenience, could always use getpid()

Program Loading: exec()

The exec() call allows a process to “load” a different
program and start execution at main (actually _start).

It allows a process to specify the number of
arguments (argc) and the string argument array
(argv).

If the call is successful
it is the same process …
b t it diff t !!

15

but it runs a different program !!

Code, stack & heap is overwritten
Sometimes memory mapped files are preserved.

What creates a process?

1 Fork1. Fork
2. Exec
3. Both

16

General Purpose Process Creation

In the parent process:
main()
…
int ppid = getpid(); // Remember parent’s pid
fork(); // create a child
if(getpid() != ppid) { // child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);
printf(“Why would I execute?”);

}

17

else { // parent continues here
printf(“Who’s your daddy?”);
…
child_status = wait(pid);

}

A shell forks and then execs a calculator

int pid = fork();
if(pid == 0) {
close(“.history”);

int pid = fork();
if(pid == 0) {
close(“.history”);

int pid = fork();
if(pid == 0) {
close(“.history”);

int calc_main(){
int q = 7;
do_init();

int pid = fork();
if(pid == 0) {
close(“.history”);

pid = 127pid = 128

exec(“/bin/calc”);
} else {
wait(pid);

exec(“/bin/calc”);
} else {
wait(pid);

OS

USER

exec(“/bin/calc”);
} else {
wait(pid);

ln = get_input();
exec_in(ln);

exec(“/bin/calc”);
} else {
wait(pid);

18

p
open files = “.history”
last_cpu = 0

p
open files = “.history”
last_cpu = 0

Process Control
Blocks (PCBs)

pid = 128
open files =
last_cpu = 0

A shell forks and then execs a calculator

main; a = 2

Heap

Stack

0xFC0933CA

main; a = 2

Heap

Stack

0xFC0933CA Heap

Stack

0x43178050

pid = 127pid = 128

int shell_main() {
int a = 2;
… Code

Heap0xFC0933CA

int shell_main() {
int a = 2;
… Code

Heap0xFC0933CA

int calc_main() {
int q = 7;
… Code

Heap0x43178050

OS

USER

19

p
open files = “.history”
last_cpu = 0

p
open files = “.history”
last_cpu = 0

pid = 128
open files =
last_cpu = 0

Process Control
Blocks (PCBs)

At what cost, fork()?

Simple implementation of fork():
allocate memory for the child process
copy parent’s memory and CPU registers to child’scopy parent s memory and CPU registers to child s
Expensive !!

In 99% of the time, we call exec() after calling fork()
the memory copying during fork() operation is useless
the child process will likely close the open files & connections
overhead is therefore high

vfork()
a system call that creates a process “without” creating an identical

20

a system call that creates a process “without” creating an identical
memory image
child process should call exec() almost immediately
Unfortunate example of implementation influence on interface

Current Linux & BSD 4.4 have it for backwards compatibility
Copy-on-write to implement fork avoids need for vfork

Orderly Termination: exit()

After the program finishes execution, it calls exit()
This system call:

takes the “result” of the program as an argumenttakes the result of the program as an argument
closes all open files, connections, etc.
deallocates memory
deallocates most of the OS structures supporting the process
checks if parent is alive:

If so, it holds the result value until parent requests it; in this case,
process does not really die, but it enters the zombie/defunct state
If not, it deallocates all data structures, the process is dead

21

cleans up all waiting zombies
Process termination is the ultimate garbage collection (resource
reclamation).

The wait() System Call

A child program returns a value to the parent, so the parent
must arrange to receive that value

The wait() system call serves this purpose
it puts the parent to sleep waiting for a child’s result
when a child calls exit(), the OS unblocks the parent and returns
the value passed by exit() as a result of the wait call (along with the
pid of the child)
if there are no children alive, wait() returns immediately
also, if there are zombies waiting for their parents, wait() returns

22

one of the values immediately (and deallocates the zombie)

Process Control

OS must include calls to enable special control of a process:

Priority manipulation:y p
nice(), which specifies base process priority (initial priority)
In UNIX, process priority decays as the process consumes CPU

Debugging support:
ptrace(), allows a process to be put under control of another
process
The other process can set breakpoints, examine registers, etc.

Alarms and time:

23

Alarms and time:
Sleep puts a process on a timer queue waiting for some number of
seconds, supporting an alarm functionality

Tying it All Together: The Unix Shell

while(! EOF) {
read input
handle regular expressions
int pid = fork(); // create a childp ()
if(pid == 0) { // child continues here

exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

24

Translates <CTRL-C> to the kill() system call with SIGKILL

Translates <CTRL-Z> to the kill() system call with SIGSTOP

Allows input-output redirections, pipes, and a lot of other stuff that
we will see later

A Dose of Reality: Scheduling in Solaris

25

Close to our scheduling diagram, but more complicated

Anatomy of a Process

Code

Header

Stack

DLL’s

mapped segments

Process’s

Initialized data

Initialized data

Heap

Stack
address space

PC
Stack Pointer

Process Control
Block

26

Executable File Code

Initialized dataStack Pointer
Registers

PID
UID

Scheduling Priority
List of open files

…

Unix fork() example

The execution context for the child process is a copy of the
parent’s context at the time of the call

fork() returns child PID in parent, and 0 in child

main {
int childPID;
S1;

childPID = fork();

if(childPID == 0)
<code for child process> Code Code

fork()

childPID
0

childPID
0

27

f p
else {

<code for parent process>
wait();

}

S2;
}

Data

Stack

Data

Stack

Parent Child

= 0= 0

childPID
= xxx

childPID
= xxx

