
Concurrent Programing:
Why you should care, deeply

1

Student Questions

1. it is said that user-level threads are
implemented by a library at the user-level. we have
POSIX for starting user threads in C++ How do I POSIX for starting user threads in C++. How do I
start a kernel thread?
2. we all know that creating a kernel thread is
more expensive than creating a user thread. can
you explain more about _how_ it is expensive?

System call 1,000s of cycles
Function call 10s of cycles

2

Function call 10s of cycles
3. Why is creating a process more expensive than
creating a kernel thread?

Uniprocessor Performance Not Scaling

10000
-1

1/
78

0)
20%/year

10

100

1000

rm
an

ce
 (v

s.
 V

AX
-

25% /year

52% /year

20% /year

3

1
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo

Graph by Dave Patterson

Power and heat lay waste to processor makers

Intel P4 (2000-2007)
1.3GHz to 3.8GHz, 31 stage pipeline
“Prescott” in 02/04 was too hot. Needed 5.2GHz to beat
2.6GHz Athalon

Intel Pentium Core, (2006-)
1.06GHz to 3GHz, 14 stage pipeline
Based on mobile (Pentium M) micro-architecture

Power efficient
2% of electricity in the U.S. feeds computers

4

% o e ec c y e U S eeds co pu e s
Doubled in last 5 years

What about Moore’s law?

5

Number of transistors double every 24 months
Not performance!

Architectural trends that favor multicore

Power is a first class design constraint
Performance per watt the important metric

Leakage power significant with small transisitorsLeakage power significant with small transisitors
Chip dissipates power even when idle!

Small transistors fail more frequently
Lower yield, or CPUs that fail?

Wires are slow
Light in vacuum can travel ~1m in 1 cycle at 3GHz
Motivates multicore designs (simpler lower-power cores)

6

Motivates multicore designs (simpler, lower-power cores)

Quantum effects
Motivates multicore designs (simpler, lower-power
cores)

Multicores are here, and coming fast!

4 cores in 2007 16 cores in 2009 80 cores in 20??

Sun Rock Intel TeraFLOPAMD Quad Core

7

Sun Rock

“[AMD] quad-core processors … are just the beginning….”
http://www.amd.com

“Intel has more than 15 multi-core related projects underway”
http://www.intel.com

Intel TeraFLOPAMD Quad Core

Multicore programming will be in demand

Hardware manufacturers betting big on multicore
Software developers are needed
Writing concurrent programs is not easyWriting concurrent programs is not easy
You will learn how to do it in this class

8

Concurrency Problem

Order of thread execution is non-deterministic
Multiprocessing

A system may contain multiple processors cooperatingA system may contain multiple processors cooperating
threads/processes can execute simultaneously

Multi-programming
Thread/process execution can be interleaved because of time-
slicing

Operations often consist of multiple, visible steps
Example: x = x + 1 is not a single operation

read x from memory into a register Thread 2

9

increment register
store register back to memory

Goal:
Ensure that your concurrent program works under ALL
possible interleaving

read
increment
store

Questions

Do the following either completely succeed or
completely fail?
Writing an 8 bit byte to memoryWriting an 8-bit byte to memory

A. Yes B. No
Creating a file

A. Yes B. No
Writing a 512-byte disk sector

A. Yes B. No

10

Sharing among threads increases performance…

int a = 1, b = 2;
main() {

C (f)CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++;
}
fn2(int arg1) {

What are the value of a & b
at the end of execution?

11

a = arg1;
}

Sharing among theads increases performance, but can
lead to problems!!

int a = 1, b = 2;
main() {

C (f)CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++;
}
fn2(int arg1) {

What are the values of a & b
at the end of execution?

12

a = 0;
}

Some More Examples

What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

13

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

Critical Sections

A critical section is an abstraction
Consists of a number of consecutive program instructions
Usually, crit sec are mutually exclusive and can wait/signal

Later, we will talk about atomicity and isolationLater, we will talk about atomicity and isolation
Critical sections are used frequently in an OS to protect data
structures (e.g., queues, shared variables, lists, …)
A critical section implementation must be:

Correct: the system behaves as if only 1 thread can execute
in the critical section at any given time
Efficient: getting into and out of critical section must be fast.
Critical sections should be as short as possible.

14

Concurrency control: a good implementation allows
maximum concurrency while preserving correctness
Flexible: a good implementation must have as few
restrictions as practically possible

The Need For Mutual Exclusion

Running multiple processes/threads in parallel
increases performance
Some computer resources cannot be accessed bySome computer resources cannot be accessed by
multiple threads at the same time

E.g., a printer can’t print two documents at once

Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time

Active thread excludes its peers

For shared memory architectures data structures are

15

For shared memory architectures, data structures are
often mutually exclusive

Two threads adding to a linked list can corrupt the list

Exclusion Problems, Real Life Example

Imagine multiple chefs in the same kitchen
Each chef follows a different recipe

Chef 1Chef 1
Grab butter, grab salt, do other stuff

Chef 2
Grab salt, grab butter, do other stuff

What if Chef 1 grabs the butter and Chef 2 grabs the
salt?

Y ll t h th (t t i l ti)

16

Yell at each other (not a computer science solution)
Chef 1 grabs salt from Chef 2 (preempt resource)
Chefs all grab ingredients in the same order

Current best solution, but difficult as recipes get complex
Ingredient like cheese might be sans refrigeration for a while

The Need To Wait

Very often, synchronization consists of one thread
waiting for another to make a condition true

Master tells worker a request has arrivedMaster tells worker a request has arrived
Cleaning thread waits until all lanes are colored

Until condition is true, thread can sleep
Ties synchronization to scheduling

Mutual exclusion for data structure
Code can wait (await)
Another thread signals (notify)

17

Another thread signals (notify)

Even more real life, linked lists

lprev = elt = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
elt = lptr;p ;
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

18

Where is the critical section?

break;
}
lprev = lptr;

} return elt;

Even more real life, linked lists

// Move cell to head
lprev->next = lptr->next;
lptr >next = lhead

Thread 1 Thread 2

lptr->next = lhead
lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

lhead
elt
lptrlprev

lhead

19

A critical section often needs to be larger than it first
appears

The 3 key lines are not enough of a critical section

lhead
elt
lptrlprev

Even more real life, linked lists

if(lptr->val == target){
elt = lptr;
// Al d h d? b k

Thread 1 Thread 2

// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
// lptr no longer in list

for(lptr = lhead; lptr;
lptr = lptr->next) {
if(l t l t t){

20

Putting entire search in a critical section reduces
concurrency, but it is safe.

Mutual exclusion is conservative
Transactions are optimistic

if(lptr->val == target){

Safety and Liveness

Safety property : “nothing bad happens”
holds in every finite execution prefix

Windows™ never crashesWindows never crashes
a program never terminates with a wrong answer

Liveness property: “something good eventually happens”
no partial execution is irremediable

Windows™ always reboots
a program eventually terminates

21

Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

Safety and liveness for critical sections

At most k threads are concurrently in the critical section
A. Safety
B. Liveness
C. Both

A thread that wants to enter the critical section will eventually
succeed

A. Safety
B. Liveness
C. Both

22

Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.

A. Safety B. Liveness C. Both

