
Mutual Exclusion:
Primitives and

Implementation Considerations

1

Too Much Milk: Lessons

Software solution (Peterson’s algorithm) works, but it
is unsatisfactory

Solution is complicated; proving correctness is tricky evenSolution is complicated; proving correctness is tricky even
for the simple example
While thread is waiting, it is consuming CPU time
Asymmetric solution exists for 2 processes.

How can we do better?
Use hardware features to eliminate busy waiting

2

Use hardware features to eliminate busy waiting
Define higher-level programming abstractions to simplify
concurrent programming

Concurrency Quiz

If two threads execute this program concurrently, how
many different final values of X are there?

Initially, X == 0.

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

Thread 1 Thread 2

3

Answer:
A. 0
B. 1
C. 2
D. More than 2

Schedules/Interleavings

Model of concurrent execution
Interleave statements from each thread into a single
thread
If any interleaving yields incorrect results, some
synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;

4

p p ;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;

Mutual exclusion ensures only safe interleavings
When is mutual exclusion too safe?

temp temp + 1;
X = temp;
lock.release();

}

5

Introducing Locks

Locks – implement mutual exclusion
Two methods

Lock::Acquire() – wait until lock is free, then grab it
Lock::Release() release the lock waking up a waiter if anyLock::Release() – release the lock, waking up a waiter, if any

With locks, too much milk problem is very easy!
Check and update happen as one unit (exclusive access)

Lock.Acquire();
if (noMilk) {

buy milk;

Lock.Acquire();
if (noMilk) {

buy milk;

Lock.Acquire();
x++;
Lock Release();

Lock.Acquire();
x++;
Lock Release();

6

buy milk;
}
Lock.Release();

buy milk;
}
Lock.Release();

How can we implement locks?

Lock.Release();Lock.Release();

How to think about synchronization code

Every thread has the same pattern
Entry section: code to attempt entry to critical section
Critical section: code that requires isolation (e.g., with mutual
exclusion)exclusion)
Exit section: cleanup code after execution of critical region
Non-critical section: everything else

There can be multiple critical regions in a program
Only critical regions that access the same resource (e.g., data
structure) need to synchronize with each other

while(1) {

7

Entry section
Critical section
Exit section
Non-critical section

}

The correctness conditions

Safety
Only one thread in the critical region

Liveness
Some thread that enters the entry section eventually enters the
critical region
Even if other thread takes forever in non-critical region

Bounded waiting
A thread that enters the entry section enters the critical section
within some bounded number of operations.

Failure atomicity
It is OK for a thread to die in the critical region

8

It is OK for a thread to die in the critical region
Many techniques do not provide failure atomicity

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

ReadModifyWrite (RMW)

Implement locks using read-modify-write instructions
As an atomic and isolated action

1. read a memory location into a register, AND
2. write a new value to the location

Implementing RMW is tricky in multi-processorsp g y p
Requires cache coherence hardware. Caches snoop the memory bus.

Examples:
Test&set instructions (most architectures)

Reads a value from memory
Write “1” back to memory location

Compare & swap (68000)
Test the value against some constant

9

If the test returns true, set value in memory to different value
Report the result of the test in a flag
if [addr] == r1 then [addr] = r2;

Exchange, locked increment, locked decrement (x86)
Load linked/store conditional (PowerPC,Alpha, MIPS)

Implementing Locks with Test&set

int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

If lock is free (lock_value == 0), then
test&set reads 0 and sets value to 1

lock is set to busy and Acquire
completes

If lock is busy, the test&set reads 1
and sets value to 1 no change in
lock’s status and Acquire loops

If lock is free (lock_value == 0), then
test&set reads 0 and sets value to 1

lock is set to busy and Acquire
completes

If lock is busy, the test&set reads 1
and sets value to 1 no change in
lock’s status and Acquire loops

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

10

lock s status and Acquire loopslock s status and Acquire loops

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

Does this lock have bounded
waiting?
Does this lock have bounded
waiting?

Locks and Busy Waiting

Lock::Acquire() {
while (test&set(lock) == 1)

; // spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; // spin
}

Busy-waiting:
Threads consume CPU cycles while waiting
Low latency to acquire

Limitations
Occupies a CPU core
What happens if threads have different priorities?

}}

11

Busy-waiting thread remains runnable
If the thread waiting for a lock has higher priority than the
thread occupying the lock, then ?
Ugh, I just wanted to lock a data structure, but now I’m involved
with the scheduler!

What if programmer forgets to unlock?

Remember to always release locks

Java provides convenient mechanism.
import
java.util.concurrent.locks.ReentrantLock;java.util.concurrent.locks.ReentrantLock;

public static final aLock = new
ReentrantLock();

aLock.lock();
try {

…

12

} finally {
aLock.unlock();

}
return 0;

Cheaper Locks with Cheaper busy waiting
Using Test&Set

Lock::Acquire() {Lock::Acquire() {

Lock::Acquire() {
while(1) {
if (test&set(lock) == 0) break;
else sleep(1);

Lock::Acquire() {
while(1) {
if (test&set(lock) == 0) break;
else sleep(1);

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {Lock::Release() {

With busy-waiting

}}

With voluntary yield of CPU

Lock::Release() {Lock::Release() {

13

*lock = 0;
}

*lock = 0;
}

*lock = 0;
}
*lock = 0;
}

What is the problem with this?
A. CPU usage B. Memory usage C. Lock::Acquire() latency
D. Memory bus usage E. Messes up interrupt handling

Test & Set with Memory Hierarchies

CPU A CPU B

What happens to lock variable’s cache line when
different cpu’s contend for the same lock?

Load

lock: 1

lock: 1
…

while(test&set(lock));
// in critical region

L1

L2

…

L1

L2

while(test&set(lock));can
stall

14

0xF0 lock: 1
0xF4 …

…
L2

Main Memory

…

Cheap Locks with Cheap busy waiting
Using Test&Test&Set

Lock::Acquire() {Lock::Acquire() {

Lock::Acquire() {
while(1) {
while (*lock == 1) ; // spin just reading
if (test&set(lock) == 0) break;

Lock::Acquire() {
while(1) {
while (*lock == 1) ; // spin just reading
if (test&set(lock) == 0) break;

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {Lock::Release() {

Busy-wait on in-memory copy

}}

Busy-wait on cached copy

Lock::Release() {Lock::Release() {

15

*lock = 0;
}

*lock = 0;
}

*lock = 0;
}
*lock = 0;
}

What is the problem with this?
A. CPU usage B. Memory usage C. Lock::Acquire() latency
D. Memory bus usage E. Does not work

Test & Set with Memory Hierarchies

CPU A CPU B

What happens to lock variable’s cache line when
different cpu’s contend for the same lock?

lock: 1

lock: 1
…

// in critical region

L1

L2 lock: 1

lock: 1
…

L1

L2

while(*lock);
if(test&set(lock))brk;

16

0xF0 lock: 1
0xF4 …

…
L2

Main Memory

…

Test & Set with Memory Hierarchies

CPU A CPU B

What happens to lock variable’s cache line when
different cpu’s contend for the same lock?

lock: 0

lock: 0
…

// in critical region
*lock = 0

L1

L2

L1

L2

while(*lock);
if(test&set(lock))brk;

lock: 1

lock: 1
…
lock: 0
…

lock: 0

17

0xF0 lock: 0
0xF4 …

…
L2

Main Memory 0xF0 lock: 1
0xF4 …

……

Implementing Locks: Summary

Locks are higher-level programming abstraction
Mutual exclusion can be implemented using locks

Lock implementation generally requires some level of
hardware support

Details of hardware support affects efficiency of locking

Locks can busy-wait, and busy-waiting cheaply is
important

18

important
Soon come primitives that block rather than busy-wait

Implementing Locks without Busy Waiting (blocking)
Using Test&Set

Lock::Acquire() {
while (test&set(lock) == 1)

; // spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; // spin
}

Lock::Acquire() {
while (test&set(q_lock) == 1) ;//spin
Put TCB on wait queue for lock;
L k S it h() // di t h th d

Lock::Acquire() {
while (test&set(q_lock) == 1) ;//spin
Put TCB on wait queue for lock;
L k S it h() // di t h th d}}

Lock::Release() {
*lock := 0;

}

Lock::Release() {
*lock := 0;

}

With busy-waiting

Lock::Switch(); // dispatch threadLock::Switch(); // dispatch thread

Without busy-waiting, use a queue

Lock::Release() {
if (wait queue is not empty) {

Move a (or all?) waiting threads to ready
queue;
}
* l k 0

Lock::Release() {
if (wait queue is not empty) {

Move a (or all?) waiting threads to ready
queue;
}
* l k 0

19

*q_lock = 0;*q_lock = 0;

Must only 1 thread be awakened?

Lock::Switch() {
q_lock = 0;
pid = schedule();
if(waited_on_lock(pid))

while(test&set(q_lock)==1) ;
dispatch pid

}

Lock::Switch() {
q_lock = 0;
pid = schedule();
if(waited_on_lock(pid))

while(test&set(q_lock)==1) ;
dispatch pid

}

Implementing Locks: Summary

Locks are higher-level programming abstraction
Mutual exclusion can be implemented using locks

Lock implementation generally requires some level of
hardware support

Atomic read-modify-write instructions

Uni- and multi-processor architectures

20

Locks are good for mutual exclusion but weak for
coordination, e.g., producer/consumer patterns.

Fine-grain locks
Greater concurrency
Greater code complexity

Why Locks are Hard

Coarse-grain locks
Simple to develop
Easy to avoid deadlock Greater code complexity

Potential deadlocks
Not composable

Potential data races
Which lock to lock?

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){

LOCK(s); Thread 0 Thread 1

Easy to avoid deadlock
Few data races
Limited concurrency

21

()
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

