
Condition Synchronization

1

Synchronization

Now that you have seen locks, is that all there is?

No, but what is the “right” way to build a parallel
program.

People are still trying to figure that out.

Compromises:
between making it easy to modify shared variables AND

2

restricting when you can modify shared variables.
between really flexible primitives AND
simple primitives that are easy to reason about.

Beyond Locks

Synchronizing on a condition.
When you start working on a synchronization problem, first
define the mutual exclusion constraints, then ask “when does

th d it” d t t h i ti i bla thread wait”, and create a separate synchronization variable
representing each constraint.

Bounded Buffer problem – producer puts things in a
fixed sized buffer, consumer takes them out.

What are the constraints for bounded buffer?
1) only one thread can manipulate buffer queue at a time
(mutual exclusion)

3

(mutual exclusion)
2) consumer must wait for producer to fill buffers if none full
(scheduling constraint)
3) producer must wait for consumer to empty buffers if all full
(scheduling constraint)

Beyond Locks

Locks ensure mutual exclusion
Bounded Buffer problem – producer puts things in a
fixed sized buffer, consumer takes them out.

Synchronizing on a condition.
Class BoundedBuffer{

…
void* buffer[];
Lock lock;
int count = 0;

}

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}
BoundedBuffer::Deposit(c){BoundedBuffer::Deposit(c){ BoundedBuffer::Remove(c){BoundedBuffer::Remove(c){

What is wrong
with this?

4

BoundedBuffer::Deposit(c){
lock acquire();
while (count == n); //spin
Add c to the buffer;
count++;
lock release();

}

BoundedBuffer::Deposit(c){
lock acquire();
while (count == n); //spin
Add c to the buffer;
count++;
lock release();

}

BoundedBuffer Remove(c){
lock acquire();
while (count == 0); // spin
Remove c from buffer;
count--;
lock release();

}

BoundedBuffer Remove(c){
lock acquire();
while (count == 0); // spin
Remove c from buffer;
count--;
lock release();

}

Beyond Locks

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}

BoundedBuffer::Deposit(c){BoundedBuffer::Deposit(c){ BoundedBuffer::Remove(c){BoundedBuffer::Remove(c){

What is wrong
with this?

5

BoundedBuffer::Deposit(c){
while (count == n); //spin
lock acquire();
Add c to the buffer;
count++;
lock release();

}

BoundedBuffer::Deposit(c){
while (count == n); //spin
lock acquire();
Add c to the buffer;
count++;
lock release();

}

BoundedBuffer Remove(c){
while (count == 0); // spin
lock acquire();
Remove c from buffer;
count--;
lock release();

}

BoundedBuffer Remove(c){
while (count == 0); // spin
lock acquire();
Remove c from buffer;
count--;
lock release();

}

Beyond Locks

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}

BoundedBuffer::Deposit(c){BoundedBuffer::Deposit(c){ BoundedBuffer::Remove(c){BoundedBuffer::Remove(c){

What is wrong
with this?

6

BoundedBuffer::Deposit(c){
if (count == n) sleep();
lock->acquire();
Add c to the buffer;
count++;
lock->release();
if(count == 1) wakeup(remove);

}

BoundedBuffer::Deposit(c){
if (count == n) sleep();
lock->acquire();
Add c to the buffer;
count++;
lock->release();
if(count == 1) wakeup(remove);

}

BoundedBuffer Remove(c){
if (count == 0) sleep();
lock->acquire();
Remove c from buffer;
count--;
lock->release();
if(count==n-1) wakeup(deposit);

}

BoundedBuffer Remove(c){
if (count == 0) sleep();
lock->acquire();
Remove c from buffer;
count--;
lock->release();
if(count==n-1) wakeup(deposit);

}

Beyond Locks

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}

Class BoundedBuffer{
…
void* buffer[];
Lock lock;
int count = 0;

}

BoundedBuffer::Deposit(c){BoundedBuffer::Deposit(c){ BoundedBuffer::Remove(c){BoundedBuffer::Remove(c){

What is wrong
with this?

7

BoundedBuffer::Deposit(c){
lock acquire();
if (count == n) sleep();
Add c to the buffer;
count++;
if(count == 1) wakeup(remove);
lock release();

}

BoundedBuffer::Deposit(c){
lock acquire();
if (count == n) sleep();
Add c to the buffer;
count++;
if(count == 1) wakeup(remove);
lock release();

}

BoundedBuffer Remove(c){
lock acquire();
if (count == 0) sleep();
Remove c from buffer;
count--;
if(count==n-1) wakeup(deposit);
lock release();

}

BoundedBuffer Remove(c){
lock acquire();
if (count == 0) sleep();
Remove c from buffer;
count--;
if(count==n-1) wakeup(deposit);
lock release();

}

Beyond Locks

Class BoundedBuffer{
…
void* buffer[];
L k l k

Class BoundedBuffer{
…
void* buffer[];
L k l k

What is wrong
with this?Lock lock;

int count = 0;
}

Lock lock;
int count = 0;

}

BoundedBuffer::Deposit(c){
while(1) {

lock acquire();
if(count == n) {

BoundedBuffer::Deposit(c){
while(1) {

lock acquire();
if(count == n) {

BoundedBuffer::Remove(c){
while(1) {

lock acquire();
if (count == 0) {

lock >release();

BoundedBuffer::Remove(c){
while(1) {

lock acquire();
if (count == 0) {

lock >release();

with this?

8

if(count == n) {
lock->release();
continue;}

Add c to the buffer;
count++;
lock release();
break;

}}

if(count == n) {
lock->release();
continue;}

Add c to the buffer;
count++;
lock release();
break;

}}

lock->release();
continue;

}
Remove c from buffer;
count--;
lock release();
break;

}}

lock->release();
continue;

}
Remove c from buffer;
count--;
lock release();
break;

}}

Introducing Condition Variables

Correctness requirements for bounded buffer producer-
consumer problem

Only one thread manipulates the buffer at any time (mutual
l i)exclusion)

Consumer must wait for producer when the buffer is empty
(scheduling/synchronization constraint)
Producer must wait for the consumer when the buffer is full
(scheduling/synchronization constraint)

Solution: condition variables
An abstraction that supports conditional synchronization

9

Condition variables are associated with a monitor lock
Enable threads to wait inside a critical section by releasing the
monitor lock.

Condition Variables: Operations

Three operations
Wait()

Release lock
Wait() usually specified a lock
to be released as a parameter

Go to sleep
Reacquire lock upon return
Java Condition interface await() and awaitUninterruptably()

Notify() (historically called Signal())
Wake up a waiter, if any
Condition interface signal()

NotifyAll() (historically called Broadcast())
Wake up all the waiters
Condition interface signalAll()

10

Condition interface signalAll()

Implementation
Requires a per-condition variable queue to be maintained
Threads waiting for the condition wait for a notify()

Implementing Wait() and Notify()
Condition::Notify(lock){

schedLock->acquire();
if (lock->numWaiting > 0) {

Move a TCB from waiting queue to ready queue;
lock->numWaiting--;

Condition::Notify(lock){
schedLock->acquire();
if (lock->numWaiting > 0) {

Move a TCB from waiting queue to ready queue;
lock->numWaiting--;

Condition::Wait(lock){
schedLock->acquire();
lock->numWaiting++;
lock release();
P t TCB th iti f th CV

Condition::Wait(lock){
schedLock->acquire();
lock->numWaiting++;
lock release();
P t TCB th iti f th CV

}
schedLock->release();

}

}
schedLock->release();

}

Why do we need
schedLock?

11

Put TCB on the waiting queue for the CV;
schedLock->release()
switch();
lock acquire();

}

Put TCB on the waiting queue for the CV;
schedLock->release()
switch();
lock acquire();

}

Using Condition Variables: An Example

Coke machine as a shared buffer

Two types of users
Producer: Restocks the coke machine
Consumer: Removes coke from the machine

Requirements
Only a single person can access the machine at any time
If the machine is out of coke, wait until coke is restocked
If machine is full, wait for consumers to drink coke prior to restocking

12

How will we implement this?
What is the class definition?
How many lock and condition variables do we need?

Coke Machine Example

Class CokeMachine{
…
Lock lock;
int count = 0;

Class CokeMachine{
…
Lock lock;
int count = 0;int count 0;
Condition notFull, notEmpty;

}

int count 0;
Condition notFull, notEmpty;

}

CokeMachine::Deposit(){
lock acquire();
while (count == n) {

notFull wait(&lock); }

CokeMachine::Deposit(){
lock acquire();
while (count == n) {

notFull wait(&lock); }

CokeMachine::Remove(){
lock acquire();
while (count == 0) {

notEmpty wait(&lock); }

CokeMachine::Remove(){
lock acquire();
while (count == 0) {

notEmpty wait(&lock); }

13

notFull.wait(&lock); }
Add coke to the machine;
count++;
notEmpty.notify();
lock release();

}

notFull.wait(&lock); }
Add coke to the machine;
count++;
notEmpty.notify();
lock release();

}

notEmpty.wait(&lock); }
Remove coke from to the machine;
count--;
notFull.notify();
lock release();

}

notEmpty.wait(&lock); }
Remove coke from to the machine;
count--;
notFull.notify();
lock release();

}

Coke Machine Example

Class CokeMachine{
…
Lock lock;
int count = 0;

Class CokeMachine{
…
Lock lock;
int count = 0;int count 0;
Condition notFull, notEmpty;

}

int count 0;
Condition notFull, notEmpty;

}

CokeMachine::Deposit(){
lock acquire();
while (count == n) {

notFull wait(&lock); }

CokeMachine::Deposit(){
lock acquire();
while (count == n) {

notFull wait(&lock); }

CokeMachine::Remove(){
lock acquire();
while (count == 0) {

notEmpty wait(&lock); }

CokeMachine::Remove(){
lock acquire();
while (count == 0) {

notEmpty wait(&lock); }

Liveness
issue

14

notFull.wait(&lock); }
Add coke to the machine;
count++;
notEmpty.notify();
lock release();

}

notFull.wait(&lock); }
Add coke to the machine;
count++;
notEmpty.notify();
lock release();

}

notEmpty.wait(&lock); }
Remove coke from to the machine;
count--;
lock release();
notFull.notify();

}

notEmpty.wait(&lock); }
Remove coke from to the machine;
count--;
lock release();
notFull.notify();

}

Summary

Non-deterministic order of thread execution concurrency
problems

Multiprocessing
A system may contain multiple processors cooperatingA system may contain multiple processors cooperating
threads/processes can execute simultaneously

Multi-programming
Thread/process execution can be interleaved because of time-slicing

Goal: Ensure that your concurrent program works under ALL
possible interleaving

15

Define synchronization constructs and programming style for
developing concurrent programs

Locks provide mutual exclusion
Condition variables provide conditional synchronization

