
Synchronization via
Transactions

1

Concurrency Quiz

If two threads execute this program concurrently, how
many different final values of X are there?

Initially, X == 0.

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

Thread 1 Thread 2

2

Answer:
A. 0
B. 1
C. 2
D. More than 2

Schedules/Interleavings

Model of concurrent execution
Interleave statements from each thread into a single
thread
If any interleaving yields incorrect results, some
synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;

3

p p ;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;

Is mutual exclusion really what we want? Don’t we
just want the correct result?

temp temp + 1;
X = temp;
lock.release();

}

4

j
Some interleavings may give the correct result. Why
can’t we keep these?

Providing atomicity and isolation directly

Critical regions need atomicity and isolation

Definition: An atomic operation’s effects either allDefinition: An atomic operation s effects either all
happen or none happen.

Money transfer either debits one acct and credits the other, or no
money is transferred

Definition: An isolated operation is not affected by
concurrent operations.

Partial results are not visible

5

Partial results are not visible
This allows isolated operations to be put in a single, global order

Providing atomicity and isolation directly

Implementing atomicity and isolation
Changes to memory are buffered (isolation)
Other processors see old values (isolation)p ()
If something goes wrong (e.g., exception), system rolls back
state to start of critical section (atomicity)
When critical region ends, changes become visible all at
once (atomicity)

Hardware
Processor support for buffering and committing values

6

Software
Runtime system buffers and commits values

Transactions

Transaction begin (xbegin)
Start of critical region

T ti d (d)Transaction end (xend)
End of critical region

xbegin/xend can be implicit with atomic{}
Transaction restart (or abort)

User decides to abort transaction
In Java throwing an exception aborts the transaction

7

atomic {
acctA -= 100;
acctB += 100;

}

Transaction to transfer
$100 from acctA to
acctB.

Atomicity and Isolation

AcctA starts with $150
Different blocks to update balance

Overnight batch process to read/process/write accounts
Debit $100

Telephone transaction to read/process/write quickly
Debit $90

Isolation guarantees that phone update is not lost
It is allowed by atomicity
In fact, both transactions (in either order) should result in
overdraft

8

overdraft
AcctA = -$40

Atomicity and Isolation

AcctA starts with $150
Different blocks to update balance

Overnight batch process to read/process/write accounts
Debit $100

Telephone transaction to read/process/write quickly
Debit $90

Isolation guarantees that phone update is not lost
This is a lost update

atomic{

9

atomic{
Read AcctA (150)

Decrement AcctA
by 100

Write AcctA (50)

atomic{
AcctA -= 90

}

tim
e

AcctA == 200 initially. After these two concurrent
transactions AcctA==350. What property does that
violate?

A. No property is violated
B. Atomicity
C. Isolation
D. Durability

atomic{

10

AcctA += 150

}

atomic{
AcctA -= 90

}

Atomicity and Isolation

Atomicity is hard because
Programs make many small changes.

Most operations are not atomic, like x++;
System must be able to restore state at start of atomic operation

What about actions like dispensing money or firing missles?

Isolation is hard because
More concurrency == more performance
…but system must disallow certain interleavings
System usually does not allow visibility of isolated state
(hence the term isolated)
Data structures have multiple invariants that dictate

t i t i t t d t

11

constraints on a consistent update
Mutual exclusion provides isolation

Most popular parallel programming technique

Parallel programming: how to provide isolation (and
possibly atomicity)

Concrete Syntax for Transactions

The concrete syntax of JDASTM.

Transaction tx = new Transaction(id);Transaction tx = new Transaction(id);
boolean done = false;
while(!done) {

try {
tx.BeginTransaction();
// party on my data structure!
done = tx.CommitTransaction();

} t h(Ab tE ti) {

12

} catch(AbortException e) {
tx.AbortTransaction();
done = false;

}
}

Transaction’s System Bookkeeping

Transaction A’s read set is RA
Set of objects (addresses) read by transaction A

T ti B’ it t i WTransaction B’s write set is WB
Set of objects (addresses) written by transaction B

Transaction A’s address set is RA UNION WA
Set of objects (addresses) read or written by transaction A

atomic {

13

atomic {
acctA -= 100;
acctB = acctA;

}

Read: acctA
Write: acctA, acctB

Transactional Safety

Conflict serializability – If one transaction writes data
read or written by another transaction, then abort one
transaction.transaction.
Recoverability – No transaction that has read data
from an uncommitted transaction may commit.

atomic {
x++;

}

atomic {
load t0, [x]
add t0, 1

14

} add t0, 1
store t0, [x]

}

Safe if abort transaction A or B whenever
WA ∩ (RB UNION WB) ≠ EMPTYSET

Safety examples

Transaction 0 Transaction 1

atomic {
load t0 [x]

atomic {
l d t0 []load t0, [x]

add t0, 1
store t0, [x]

}

load t0, [x]
add t0, 1

15

Read:
Write:

x Read:
Write:

x
x

Conflict: Transaction 1 should restart

How Isolation Could Be Violated

Dirty reads
Non-repeatable reads
Lost updates

16

Restarting + I/O = Confusion

Transactions can restart!
What kind of output should I expect?

Transaction tx new Transaction(id);Transaction tx = new Transaction(id);
boolean done = false;
while(!done) {

try {
tx.BeginTransaction();
…
System.out.println(“Deja vu all over again”);
done = tx CommitTransaction();

17

done = tx.CommitTransaction();
} catch(AbortException e) {

tx.AbortTransaction();
done = false;

}
}

Reading Uncommitted State

What about transactional data read outside a
transaction?

H d t t i l ti f ll dHardware support: strong isolation for all reads
Software: Uncommitted state is visible

In your lab, a lane can go from colored to white when
a transaction rolls back

The GUI updating thread reads uncommitted state outside of
a transaction

Why would we want to read data outside of a

18

Why would we want to read data outside of a
transaction?

Performance

Transactional Communication

Conflict serializability is good for keeping transactions
out of each other’s address sets
Sometimes transactions must communicateSometimes transactions must communicate

One transaction produces a memory value
Other transaction consumes the memory value

Communication is easy to do with busy waiting
Just read the variable that will change
Transaction will restart when its written by other thread

19

Communicating Transactions

Class CokeMachine{
…
int count = 0;

}

Class CokeMachine{
…
int count = 0;

}

CokeMachine::Deposit(){
atomic {

while (count == n) ;
Add coke to the machine;
count++;

}
}

CokeMachine::Deposit(){
atomic {

while (count == n) ;
Add coke to the machine;
count++;

}
}

CokeMachine::Remove(){
atomic {

while (count == 0) ;
Remove coke from machine;
count--;

}
}

CokeMachine::Remove(){
atomic {

while (count == 0) ;
Remove coke from machine;
count--;

}
}

20

Transactions busy-wait for each other.
The variable count is in the read set, so any write to count will restart the
transaction

}} }}

Tx Communication Without Busy‐Waiting

Retry: how to block with transactions
Pause transaction
deschedule this threaddeschedule this thread
Reschedule whenever another transaction conflicts with this
transaction

Transactional thread is suspended until another
thread modifies data it read

E.g., count variable

21

Retry: Communication Without Busy‐Wait

Class CokeMachine{
…
int count = 0;

}

Class CokeMachine{
…
int count = 0;

}

CokeMachine::Deposit(){
atomic {

if(count == n) {retry; }
Add coke to the machine;
count++;

}
}

CokeMachine::Deposit(){
atomic {

if(count == n) {retry; }
Add coke to the machine;
count++;

}
}

CokeMachine::Remove(){
atomic {

if(count == 0) { retry; }
Remove coke from machine;
count--;

}
}

CokeMachine::Remove(){
atomic {

if(count == 0) { retry; }
Remove coke from machine;
count--;

}
}

22

Scheduler and runtime cooperate to monitor address sets of
transactions that are descheduled

}} }}

Comparing Transactions and Monitors

CokeMachine::Deposit(){
lock acquire();
while (count == n) {

notFull.wait(&lock); }
Add coke to the machine;

CokeMachine::Deposit(){
lock acquire();
while (count == n) {

notFull.wait(&lock); }
Add coke to the machine;

CokeMachine::Deposit(){
atomic {

if(count == n) {retry; }
Add coke to the machine;
count++;

CokeMachine::Deposit(){
atomic {

if(count == n) {retry; }
Add coke to the machine;
count++;

count++;
notEmpty.notify();
lock release();

}

count++;
notEmpty.notify();
lock release();

}

CokeMachine::Remove(){
lock acquire();
while (count == 0) {

CokeMachine::Remove(){
lock acquire();
while (count == 0) {

count ;
}

}

count ;
}

}

CokeMachine::Remove(){
atomic {

if(count == 0) {retry; }
Remove coke from machine;
count--;

}

CokeMachine::Remove(){
atomic {

if(count == 0) {retry; }
Remove coke from machine;
count--;

}

23

while (count 0) {
notEmpty.wait(&lock); }

Remove coke from to the machine;
count--;
notFull.notify();
lock release();

}

while (count 0) {
notEmpty.wait(&lock); }

Remove coke from to the machine;
count--;
notFull.notify();
lock release();

}
Which is better?
A. Transactions
B. Monitors

}
}

}
}

Load linked/Store Conditional

Load linked/store conditional.
Idea is to let user load a data item, compute, then store back
and if “no one else” (i e another processor or an I/O device)and if no one else (i.e., another processor or an I/O device)
has touched that memory location, then allow the store since
the read-modify-write was atomic.

tmp = r1 = [addr]; // Load linked into r1
do_whatever (some restrictions);

// Store conditional from r2
if(tmp == [addr]) then [addr] = r2; r2 = 1;

else r2 = 0;

24

else r2 = 0;
Restrictions on compute: no memory accesses, limited
number of instructions, no interrupts or exceptions.

Hardware queue locks

Load linked/Store Conditional

All of these events, if they happen between the load
linked and the store conditional will cause the store
conditional to fail EXCEPT which?conditional to fail. EXCEPT which?

A. Breakpoint instruction
B. Branch instruction
C. External write to loaded memory address
D. Return from exception instruction

25

