Concurrent Programming Issues
& Readers/Writers

Summary of Our Discussions

+ Developing and debugging concurrent programs is
hard
» Non-deterministic interleaving of instructions

+ Safety: isolation and atomicity

+ Scheduling: busy-waiting and blocking

« Synchronization constructs
» Locks: mutual exclusion
» Condition variables: wait while holding a lock
» Transactions: isolation by conflict detection and rollback,
atomicity by buffering
» Semaphores: Mutual exclusion (binary) and condition
synchronization (counting)
+ How can you use these constructs effectively?
» Develop and follow strict programming style/strategy

Programming Strategy

+« Decompose the problem into objects

+ Object-oriented style of programming
» |dentify shared chunk of state
» Encapsulate shared state and synchronization variables
inside objects

Don’t manipulate shared variables or synchronization
variables along with the logic associated with a
thread
Programs with race conditions always fail.

» A. True, B. False

&

*

General Programming Strategy

+ Two step process

+« Threads:
» Identify units of concurrency — these are your threads

» ldentify chunks of shared state — make each shared “thing” an
object; identify methods for these objects (how will the thread
access the objects?)

» Write down the main loop for the thread

+ Shared objects:
» ldentify synchronization constructs
< Mutual exclusion vs. conditional synchronization
» Create a lock/condition variable for each constraint
» Develop the methods —using locks and condition variables — for
coordination

Coding Style and Standards

¢ Always do things the same way

¢ Always use locks and condition variables

Always hold locks while operating on condition variables

Always acquire lock at the beginning of a procedure and release it at

the end
» If it does not make sense to do this = split your procedures further

*

Always use while to check conditions, not if

»

while (predicate on state variable) {
conditionVariable>wait(&lock):
¥

* (Almost) never sleep(), yield(), or isLocked() in your code
» Use condition variables to synchronize

Readers/Writers: A Complete Example

+ Motivation
» Shared databases accesses
< Examples: bank accounts, airline seats, ...
+ Two types of users
» Readers: Never modify data
» Writers: read and modify data

+ Problem constraints

» Using a single lock is too restrictive
< Allow multiple readers at the same time
< ...but only one writer at any time

» Specific constraints
<+ Readers can access database when there are no writers
< Writers can access database when there are no readers/writers
< Only one thread can manipulate shared variables at any time

Readers/Writer: Solution Structure

+ Basic structure: two methods

Database::Read() {
Wait until no writers;
Block any writers;
Access database;
Let in one writer or reader;

Database::Write() {
Wait until no readers/writers;
Wprite database;
Let all readers/writers in;

Solution Details

Lock dbLock:
Condition dbAvail;
int reader = O;
bool writer = false;

Public Database::Read() { Public Database::Write() {
dbLock.lock(): dbLock.lock();
while(writer) { while(reader > 0 || writer){

dbAvail.wait(): dbAvail.wait();}
U writer = true;

; dbLock.unlock();
dbLock.unlock(); Write dcn‘abas(l;
Read database; dbLock.lock();
dbLé)ck.lock(): writer = false;
reader--; dbAvail.signal All():
if(reader == 0) { ;

dbAveil.emgal(1} : dbLock.unlock();
dbLock.unlock();
}
This solution favors
1. Readers
2. Writers

3. Neither, it is fair

Self-criticism can lead to self-understanding

L]

Our solution works, but it favors readers over writers.
» Any reader blocks all writers
> All readers must finish before a writer can start

» Last reader will wake any writer, but a writer will wake
readers and writers (statistically which is more likely?)

> If a writer exits and a reader goes next, then all readers that
are waiting will get through
Are threads guaranteed to make progress?
> A.Yes B.No

&

Readers/Writer: Using Monitors

« Basic structure: two methods

Database::Read() {
Wiait until no writers;
Access database;
Wake up waiting writers;

}

Database::Write() {
Wiait until no readers/writers;
Access database;
Wake up waiting readers/writers;

}

+ State variables

AR =0; // # of active readers

AW = false; // is there an active writer
WR =0 //# of waiting readers

WW = 0; // # of waiting writers
Condition okToRead;

Condition okToWrite;

Lock lock:

Solution Details: Readers

AR=0; //# of active readers

AW = false; // is there an active writer
WR = 0; // # of waiting readers

WW = 0; // # of waiting writers
Condition okToRead:;

Condition okToWrite;

Lock lock;

Private Database::StartRead() {
lock.Acquire();
while (AW || WW > 0) {

WR++;
okToRead.wait(&lock);
WR--;

}

AR++;

lock.Release();

Public Database::Read() {
StartRead();
Access database;
DoneRead();

Private Database::DoneRead() {
lock.Acquire();

if (AR =20 && WW > 0) {
okToWrite.notify();

lock.Release();

Solution Details: Writers

AR =0; // # of active readers

AW = false; // is there an active writer
WR = 0; //# of waiting readers

WW = 0; // # of waiting writers
Condition okToRead;

Condition okToWrite;

Lock lock;

Private Database::StartWrite() {
lock.Acquire();
while (AW || AR >0) {

WW++;
okToWrite.wait(&lock);
WW--;

}

AW = true;

lock.Release();

Database::Write() {
StartWrite();
Access database;
DoneWrite();

Private Database::DoneWrite() {
lock.Acquire();
AW = false;
if (WR>0)({
okToRead.notifyAll():

}
else if (WW >0){
okToWrite.notify();

lock.Release();

}

What if okToWrite.notify() is called first?

