Deadlock

Concurrency Issues

+ Pastlectures:
» Problem: Safely coordinate access to shared resource
» Solutions:
«+ Use semaphores, monitors, locks, condition variables
<+ Coordinate access within shared objects

+ What about coordinated access across multiple objects?
» If you are not careful, it can lead to deadlock

+ Today’s lecture:
» What is deadlock?
» How can we address deadlock?

Deadlocks
Motivating Examples

+ Two producer processes share a buffer but use a different
protocol for accessing the buffers

Producer1() { Producer2(){
P(emptyBuffer) P(producerMutexlock)
P(producerMutexlock) P(emptyBufter)

} }

+ A postscript interpreter and a visualization program compete for
memory frames

PS_Interpreter() { Visualize() {
request(memory_frames, 10) request(frame_buffer, 1)
<process files <display data
request(frame_buffer, 1) request(memory_frames, 20)
<draw file on screem <update display

}

The TENEX Case

+ If a process requests all systems buffers, operator
console tries to print an error message

+ Todoso
» lock the console
» request a buffer

DUH!

Deadlock

Definition

Head —» = - semaphore/
Tail — N condition queues

+ A set of processes is deadlocked when every process in the set is
waiting for an event that can only be generated by some process in
the set

+ Starvation vs. deadlock

» Starvation: threads wait indefinitely (e.g., because some other thread is
using a resource)

» Deadlock: circular waiting for resources
» Deadlock = starvation, but not the other way

A Graph Theoretic Model of Deadlock

The resource allocation graph (RAG)

+ Basic components of any resource allocation problem
» Processes and resources

+ Model the state of a computer system as a directed graph
> G=(V,E)
> V =the set of vertices = {Py, ..., P.,} U{Ry, ..., R}

@
2O w;

» E=the set of edges =
{edges from a resource to a process} u

{edges from a process to a resource}

o—]
/ -
O request : allocation

P edge - edge P,

Resource Allocation Graphs
Examples

+ A PostScript interpreter that is waiting for the frame buffer lock
and a visualization process that is waiting for memory
V = {PS interpret, visualization} u {memory frames, frame buffer lock}

o—!
o—
o—]
Visualization Memor F;meg,\
Process y PostScript
Interpreter
_.

Frame Buffer

A Graph Theoretic Model of Deadlock

Resource allocation graphs & deadlock

+ Theorem: If a resource allocation graph does not contain a cycle then
no processes are deadlocked

A cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

° - O Game

S Memory Frames
Visualization PostScript

Process Interpreter

o

Frame Buffer

A Graph Theoretic Model of Deadlock

Resource allocation graphs & deadlock

s Theorem: If there is only a single unit of all resources then a set of
processes are deadlocked iff there is a cycle in the resource
allocation graph

o—

Memory Frames

Visualization PostScript
Process Interpreter

Frame Buffer

Using the Theory

An operational definition of deadlock

o—
o—
o—
Visualization _\,
Process Memory Frames PostScript

Interpreter

Qme Buy
—o

+ A set of processes are deadlocked iff the following conditions hold
simultaneously
1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

Dealing With Deadlock

Deadlock prevention & avoidance

+ Adopt some resource allocation protocol that ensures
deadlock can never occur

» Deadlock prevention/avoidance
< Guarantee that deadlock will never occur
<+ Generally breaks one of the following conditions:
¢ Mutex
+ Hold-and-wait
+ No preemption
« Circular wait *This is usually the weak link*

» Deadlock detection and recovery
< Admit the possibility of deadlock occurring and periodically check for it
< On detecting deadlock, abort
¢ Breaks the no-preemption condition

What does the RAG for a lock look like?

Deadlock Avoidance
Resource Ordering

+ Recall this situation. How can we avoid it?

Produceri1() { Producer2(X
P(emptyBuffer) P(producerMutexlock)
P(producermMutexlock) P(emptyBuffer)

} }

« Eliminate circular waiting by ordering all locks (or
semaphores, or resoruces). All code grabs locks ina
predefined order. Problems?

> Maintaining global order is difficult, especially in a large project.

» Global order can force a client to grab a lock earlier than it
would like, tying up a resource for too long.

> Deadlock is a global property, but lock manipulation is local.

Deadlock Detection & Recovery
Recovering from deadlock

© R

P))) TR

+ Abort all deadlocked processes & reclaim their resources
= Abort one process at a time until all cycles in the RAG
are eliminated
+ Where to start?
» Select low priority process
» Processes with most allocation of resources
Caveat: ensure that system is in consistent state (e.g., transactions)
Optimization:
» Checkpoint processes periodically; rollback processes to checkpointed state

Dealing With Deadlock

Deadlock avoidance

+ Examine each resource request and determine whether or not
granting the request can lead to deadlock

Define a set of vectors and matrices that characterize the
current state of all resources and processes

» resource allocation state matrix

Alloc,; = the number of units of Ri R, Ry .. R
resource j held by process / P, (n,; NN, .o ng,
> maximum claim matrix P | Nz n2,2.
Max;; = the maximum number of units P, | Ny,
of resource jthat the process /will N
ever require simultaneously
PP npvl np,r

» available vector

Avail; = the number of units of
resource j that are unallocated

Dealing With Deadlock

Deadlock detection & recovery

+« What are some problems with the banker’s algorithm?
> Very slow O(n?m)

» Too slow to run on every allocation. What else can we do?

+ Deadlock prevention and avoidance:

» Develop and use resource allocation mechanisms and protocols that
prohibit deadlock

Deadlock detection and recovery:

» Let the system deadlock and tAen deal with it
Detect that a set of processes are deadlocked
Recover from the deadlock

