
Deadlock

1

Concurrency Issues

Past lectures:
Problem: Safely coordinate access to shared resource
Solutions:Solutions:

Use semaphores, monitors, locks, condition variables
Coordinate access within shared objects

What about coordinated access across multiple objects?
If you are not careful, it can lead to deadlock

Today’s lecture:

2

Today s lecture:
What is deadlock?
How can we address deadlock?

Deadlocks
Motivating Examples

Two producer processes share a buffer but use a different
protocol for accessing the buffers

Producer1() {
P(B ff)

Producer2(){
P(d M L k)

A postscript interpreter and a visualization program compete for
memory frames

P(emptyBuffer)
P(producerMutexLock)
:

}

P(producerMutexLock)
P(emptyBuffer)
:

}

P () { l () {

3

PS_Interpreter() {
request(memory_frames, 10)
<process file>
request(frame_buffer, 1)
<draw file on screen>

}

Visualize() {
request(frame_buffer, 1)
<display data>
request(memory_frames, 20)
<update display>

}

The TENEX Case

If a process requests all systems buffers, operator
console tries to print an error message

To do so
lock the console
request a buffer

4

DUH!

Deadlock
Definition

RunningReady
Head

A set of processes is deadlocked when every process in the set is
waiting for an event that can only be generated by some process in

Waiting
Tail

ready queue

Head
Tail

semaphore/
condition queues

5

g y g y p
the set

Starvation vs. deadlock
Starvation: threads wait indefinitely (e.g., because some other thread is
using a resource)
Deadlock: circular waiting for resources
Deadlock starvation, but not the other way

A Graph Theoretic Model of Deadlock
The resource allocation graph (RAG)

Basic components of any resource allocation problem
Processes and resources

Model the state of a computer system as a directed graph
G (V E)G = (V, E)
V = the set of vertices = {P1, ..., Pn} ∪ {R1, ..., Rm}

Pi Rj

E = the set of edges =
{edges from a resource to a process} ∪

6

Pi Pk

request
edge

allocation
edge

Rj

{ g f m p }
{edges from a process to a resource}

Resource Allocation Graphs
Examples

A PostScript interpreter that is waiting for the frame buffer lock
and a visualization process that is waiting for memory

V = {PS interpret, visualization} ∪ {memory frames, frame buffer lock}

Visualization
Process

Memory Frames
PostScript
Interpreter

7

Frame Buffer

Interpreter

A Graph Theoretic Model of Deadlock
Resource allocation graphs & deadlock

Theorem: If a resource allocation graph does not contain a cycle then
no processes are deadlocked

A cycle in a RAG is a necessary condition for deadlockA cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

Game

8

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

A Graph Theoretic Model of Deadlock
Resource allocation graphs & deadlock

Theorem: If there is only a single unit of all resources then a set of
processes are deadlocked iff there is a cycle in the resource
allocation graphallocation graph

Visualization

Memory Frames

PostScript

9

Visualization
Process

Frame Buffer

PostScript
Interpreter

Using the Theory
An operational definition of deadlock

Visualization
P Memory Frames P S i

A set of processes are deadlocked iff the following conditions hold
simultaneously

Process Memory Frames

Frame Buffer

PostScript
Interpreter

10

simultaneously
1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

Dealing With Deadlock
Deadlock prevention & avoidance

Adopt some resource allocation protocol that ensures
deadlock can never occur

D dl k ti / idDeadlock prevention/avoidance
Guarantee that deadlock will never occur
Generally breaks one of the following conditions:

Mutex
Hold-and-wait
No preemption
Circular wait *This is usually the weak link*

Deadlock detection and recovery

11

y
Admit the possibility of deadlock occurring and periodically check for it
On detecting deadlock, abort

Breaks the no-preemption condition

What does the RAG for a lock look like?

Deadlock Avoidance
Resource Ordering

Recall this situation. How can we avoid it?

Producer1() {
P(emptyBuffer)
P(d M t L k)

Producer2(){
P(producerMutexLock)
P(t B ff)P(producerMutexLock)

:
}

P(emptyBuffer)
:

}

Eliminate circular waiting by ordering all locks (or
semaphores, or resoruces). All code grabs locks in a
predefined order. Problems?

Maintaining global order is difficult, especially in a large project.
Global order can force a client to grab a lock earlier than it

12

f g
would like, tying up a resource for too long.
Deadlock is a global property, but lock manipulation is local.

Deadlock Detection & Recovery
Recovering from deadlock

R1 R2 R3 R4

Abort all deadlocked processes & reclaim their resources
Abort one process at a time until all cycles in the RAG
are eliminated
Where to start?

P4P1 P2 P3 P5P5

13

Select low priority process
Processes with most allocation of resources

Caveat: ensure that system is in consistent state (e.g., transactions)
Optimization:

Checkpoint processes periodically; rollback processes to checkpointed state

Dealing With Deadlock
Deadlock avoidance

Examine each resource request and determine whether or not
granting the request can lead to deadlock

Define a set of vectors and matrices that characterize the

resource allocation state matrix
R1 R2 R3 ... Rr

P1

P2

P3

n1,1 n1,2 n1,3 ... n1,r

n2,1

n3 1

n2,2 ..

Define a set of vectors and matrices that characterize the
current state of all resources and processes

maximum claim matrix
Maxij = the maximum number of units

Allocij = the number of units of
resource j held by process i

14

<n1, n2, n3, ..., nr>

P3

Pp

n3,1

np,1 np,r

...

.

...

...

Maxij = the maximum number of units
of resource j that the process i will
ever require simultaneously

available vector

Availj = the number of units of
resource j that are unallocated

Dealing With Deadlock
Deadlock detection & recovery

What are some problems with the banker’s algorithm?
Very slow O(n2m)
Too slow to run on every allocation. What else can we do?Too slow to run on every allocation. What else can we do?

Deadlock prevention and avoidance:
Develop and use resource allocation mechanisms and protocols that
prohibit deadlock

Deadlock detection and recovery:
Let the system deadlock and then deal with it

15

y
Detect that a set of processes are deadlocked
Recover from the deadlock

