Page Replacement Algorithms

Virtual Memory Management
Fundamental issues : A Recap

+ Key concept: Demand paging
» Load pages into memory only when a
page fault occurs

+ |Issues:
» Placement strategies

<+ Place pages anywhere — no placement
policy required

» Replacement strategies

<+ What to do when there exist more jobs
than can fit in memory

» Load control strategies

< Determining how many jobs can be
in memory at one time
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Page Replacement Algorithms
Concept

Typically Z; VAS, >> Physical Memory
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+ With demand paging, physical memory fills quickly
+ When a process faults & memory is full, some page must be
swapped out
» Handling a page fault now requires 2 disk accesses not 1!
» Though writes are more efficient than reads (why?)

Which page should be replaced?

Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

Page Replacement Algorithms
Evaluation methodology

+ Record a trace of the pages accessed by a process
» Example: (Virtual) address trace...
(3,0), (1.9), (4.1), (2,1), (6.3), (2,0), (1.9). (24), (3.1), (4.8)
» generates page trace
3,1,4,2,5,2,1,2,3,4 (represented as ¢, a,d, b, e, b,a, b, c, d)
¢+ Hardware can tell OS when a new page is loaded into the TLB
» Set a used bit in the page table entry
» Increment or shift a register

Simulate the behavior of a page replacement algorithm on the
trace and record the number of page faults generated
fewer faults better performance




Optimal Page Replacement
Clairvoyant replacement

+ Replace the page that won’t be needed for the longest time in the

future
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Optimal Page Replacement
Clairvoyant replacement

+ Replace the page that won’t be needed for the longest time in the

future
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Local Page Replacement

FIFO replacement

Physicat

+ Simple to implement Nemory
> A single pointer suffices g
Frame List

+ Performance with 4 page frames:
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Local Page Replacement

FIFO replacement
Physicat
+ Simple to implement —L3 e
» A single pointer suffices g
+ Performance with 4 page frames: Frame List
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Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

+ Replace the page that hasn’t been referenced for the longest time

Time 0Oj1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c¢c d
L9 01]a
I 2]c
31d
Faults
Time page
last used

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

+ Replace the page that hasn’t been referenced for the longest time

Time oj1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b ¢ d
»n0lala a a a a a a a a a
%f’g’ 1|blJb b b b b b b b b b
D-E 2 1cjc ¢c ¢ cC @ e e e e @
3Jd]d d d d d d d d (c)c
Faults . O O
) a=2 a=7 a=/7
Time page h=4 b=8 b=8
last used c=1 e=5 e=5
d=3 d=3 c=9




Least Recently Used Page Replacement
Implementation

+ Maintain a “stack” of recently used pages

Time 011 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b ¢ d
n 0 aJa a a a a a a a a a
e 1|bflb b b b b b b b b b
T
s 2 c|c c G G @ e e e e @
-
3 |d|ld d d d d d d (c) ¢
Faults o o o

page stack E E E E
HiEEE

Page to replace

LT T]

i

LT
LT

Least Recently Used Page Replacement
Implementation

+ Maintain a “stack” of recently used pages
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+ What is the goal of a page replacement algorithm?
» A. Make life easier for OS implementer
» B. Reduce the number of page faults
» C. Reduce the penalty for page faults when they occur
» D. Minimize CPU time of algorithm

The Clock algorithm

Approximate LRU Page Replacement
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+ Maintain a circular list of pages resident in memory
» Use a clock (or used/referenced) bit to track how often a page is accessed
» The bit is set whenever a page is referenced

+ Clock hand sweeps over pages looking for one with used bit =0

» Replace pages that haven’t been referenced for one complete revolution
of the clock

func Clock Replacement
begin
while (victim page not found) do
if (used bit for current page =0) then
replace current page
else
reset used bit
end if
advance clock pointer
end while
end Clock Replacement
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Clock Page Replacement

Example
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Optimizing Approximate LRU Replacement
The Second Chance algorithm

+ There is a significant cost to replacing “dirty” pages

+« Modify the Clock algorithm to allow dirty pages to always survive one
sweep of the clock hand

» Use both the dirty bit and the used bit to drive replacement

Second Chance Algorithm
Before clock  After clock
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The Second Chance Algorithm
Example
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The Second Chance Algorithm
Example
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The Problem With Local Page Replacement
How much memory do we allocate to a process?
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The Problem With Local Page Replacement
How much memory do we allocate to a process?
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Page Replacement Algorithms
Performance

+ Local page replacement
» LRU — Ages pages based on when they were last used
» FIFO — Ages pages based on when they’re brought into memory
+ Towards global page replacement ... with variable number of
page frames allocated to processes

The principle of locality

> 90% of the execution of a program is sequential

» Most iterative constructs consist of a relatively small number of
instructions

» When processing large data structures, the dominant cost is sequential
processing on individual structure elements

» Temporal vs. physical locality




Optimal Page Replacement

For processes with a variable number of frames

accesses

+ Example: 7=4

+ VMIN — Replace a page that is not referenced in the next ¢
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Optimal Page Replacement

For processes with a variable number of frames

accesses

+ Example: r=4

+ VMIN — Replace a page that is not referenced in the next ¢
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Explicitly Using Locality
The working set model of page replacement

¢+ Assume recently referenced pages are likely to be referenced again
soon...

+ ... and only keep those pages recently referenced in memory (called
the working set)

» Thus pages may be removed even when no page fault occurs
» The number of frames allocated to a process will vary over time

A process is allowed to execute only if its working set fits into
memory
» The working set model performs implicit load control

&

Working Set Page Replacement
Implementation

+ Keep track of the last rreferences
» The pages referenced during the last z memory accesses are
the working set
» ris called the window size

+ Example: Working set computation, = 4 references:
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Working Set Page Replacement
Implementation

+ Keep track of the last rreferences
» The pages referenced during the last z memory accesses are
the working set
» ris called the window size

+« Example: Working set computation, 7 = 4 references:
» What if zis too small? too large?
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Page-Fault-Frequency Page Replacement
An alternate working set computation

+ Explicitly attempt to minimize page faults
» When page fault frequency is high — increase working set
» When page fault frequency is low — decrease working set

Algorithm:
Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault
Record the time, #,,,, of the last page fault

Iff’rhe time between page faults is “large” then reduce the working

se
If t.uprent = Tust> T, Then remove from memory all pages not
referenced in [ 1., Toyrrenr ]

If the time between page faults is "small” then increase working set

If t.iprent = Tusr ¢ T, then add faulting page to the working set




Page-Fault-Frequency Page Replacement
Example, window size =2

= I to rent — Last > 2, remove pages not referenced in [t,q;, teyrrent 1 from
the working set

# I tourent — tast < 2, just add faulting page to the working set
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Page-Fault-Frequency Page Replacement
Example, window size =2

+ Iftorent — tast > 2, remove pages not referenced in [t,q;, teyrent 1 from
the working set

o Iftoren — tast < 2, just add faulting page to the working set
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Load Control
Fundamental tradeoff

+ High multiprogramming level

> MPL,o = number of page frames

minimum number of frames required for a process to execute

+ Low paging overhead
» MPL,;,=1process

+ Issues
» What criterion should be used to determine when to increase or
decrease the MPL?

> Which task should be swapped out if the MPL must be reduced?

Load Control
How not to do it: Base load control on CPU utilization

/10 \_
Device
¢ Assume memory is nearly full | -

& A chain of page faults occur =
aging

» A queue of processes forms at | INg\__|
the paging device Device

& CPU utilization falls

Operating system increases MPL
» New processes fault, taking memory away from existing processes

CPU utilization goes to 0, the OS increases the MPL further...

]

*

*

System is thrashing — spending all of its time paging




Load Control
Thrashing

4

Thrashing can be ameliorated by local page replacement

Better criteria for load control: Adjust MPL so that:
> mean time between page faults (MTBF) = page fault service time
(PFST)

> X WS, = size of memory

1.0 I \ 1.0

MTBF
PFST

CPU
Utilization

Nmax NI/O-BALANCE
Multiprogramming Level

Load Control
Thrashing

Physical
Memory

susgded E E E r

queue semaphore/condition queues

+ When the multiprogramming level should be
dec?reased, which process should be swapped
out?

> Lowest priority process?
» Smallest process?
> Largest process?
» Oldest process?
» Faulting process?
Paging Disk




