Page Replacement Algorithms

Virtual Memory Management
Fundamental issues : A Recap

+ Key concept: Demand paging
» Load pages into memory only when a
page fault occurs

+ |Issues:
» Placement strategies

<+ Place pages anywhere — no placement
policy required

» Replacement strategies

<+ What to do when there exist more jobs
than can fit in memory

» Load control strategies

< Determining how many jobs can be
in memory at one time

User Program n

User Program 2

User Program 1

Operating System

Memory

Page Replacement Algorithms
Concept

Typically Z; VAS, >> Physical Memory

4

+ With demand paging, physical memory fills quickly
+ When a process faults & memory is full, some page must be
swapped out
» Handling a page fault now requires 2 disk accesses not 1!
» Though writes are more efficient than reads (why?)

Which page should be replaced?

Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

Page Replacement Algorithms
Evaluation methodology

+ Record a trace of the pages accessed by a process
» Example: (Virtual) address trace...
(3,0), (1.9), (4.1), (2,1), (6.3), (2,0), (1.9). (24), (3.1), (4.8)
» generates page trace
3,1,4,2,5,2,1,2,3,4 (represented as ¢, a,d, b, e, b,a, b, c, d)
¢+ Hardware can tell OS when a new page is loaded into the TLB
» Set a used bit in the page table entry
» Increment or shift a register

Simulate the behavior of a page replacement algorithm on the
trace and record the number of page faults generated
fewer faults better performance

Optimal Page Replacement
Clairvoyant replacement

+ Replace the page that won’t be needed for the longest time in the

future

Time

Requests

0

Page
Frames

1
2
3

o O T

Faults

Time page
needed next

Optimal Page Replacement
Clairvoyant replacement

+ Replace the page that won’t be needed for the longest time in the

future
Time o1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b ¢ d
" 0OJalJ]a a a a a a a a a @
%% 1b b b b b b b b b b b
o 2Jlcj]c ¢ ¢c ¢ ¢c ¢ ¢ ¢ ¢ ¢
3]d|d d d d(e) e e e e e
Faults . .
a=7 a=15
Time page b=6 b=11
needed next c=9 c=13
d=10 d=14

Local Page Replacement

FIFO replacement

Physicat

+ Simple to implement Nemory
> A single pointer suffices g
Frame List

+ Performance with 4 page frames:

Time O0}J1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c¢c d
8Oa
%’)glb
ar 2 |c

3 1]d
Faults

Local Page Replacement

FIFO replacement
Physicat
+ Simple to implement —L3 e
» A single pointer suffices g
+ Performance with 4 page frames: Frame List
Time o111 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d
@ OlajJa a a a @ @ B @ G @
Sc 1 |b|lb b b b b b (@ a a a
T S
ar 2]clc ¢ ¢c ¢c ¢ ¢ ¢ @ b b
31d|ld d d d d d d d () ¢
Faults ° ° ° ° °

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

+ Replace the page that hasn’t been referenced for the longest time

Time 0Oj1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c¢c d
L9 01]a
I 2]c
31d
Faults
Time page
last used

Least Recently Used Page Replacement
Use the recent past as a predictor of the near future

+ Replace the page that hasn’t been referenced for the longest time

Time oj1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b ¢ d
»n0lala a a a a a a a a a
%f’g’ 1|blJb b b b b b b b b b
D-E 2 1cjc ¢c ¢ cC @ e e e e @
3Jd]d d d d d d d d (c)c
Faults . O O
) a=2 a=7 a=/7
Time page h=4 b=8 b=8
last used c=1 e=5 e=5
d=3 d=3 c=9

Least Recently Used Page Replacement
Implementation

+ Maintain a “stack” of recently used pages

Time 011 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b ¢ d
n 0 aJa a a a a a a a a a
e 1|bflb b b b b b b b b b
T
s 2 c|c c G G @ e e e e @
-
3 |d|ld d d d d d d (c) ¢
Faults o o o

page stack E E E E
HiEEE

Page to replace

LT T]

i

LT
LT

Least Recently Used Page Replacement
Implementation

+ Maintain a “stack” of recently used pages

Time oj1 2 3 4 6 7 8 10
Requests c a d b b a b d
»wn 0JajJa a a a a a a a a a
&S 1 |blb b b b b b b b b b
ESZCcccc@eeee@
LC
3 |d]ld d d d d d d (c) ¢
Faults . . .
W HEIERMEME
N O EME M EEEN
pag | e [a] Lo Lod Led Led L] [o]
L O Lo [a] [a] [df [d] [e] [a]
pege toreptace [(] [(] [e] (]] [(o] =]

+ What is the goal of a page replacement algorithm?
» A. Make life easier for OS implementer
» B. Reduce the number of page faults
» C. Reduce the penalty for page faults when they occur
» D. Minimize CPU time of algorithm

The Clock algorithm

Approximate LRU Page Replacement

Pa

resid

used bi

fram

number

+ Maintain a circular list of pages resident in memory
» Use a clock (or used/referenced) bit to track how often a page is accessed
» The bit is set whenever a page is referenced

+ Clock hand sweeps over pages looking for one with used bit =0

» Replace pages that haven’t been referenced for one complete revolution
of the clock

func Clock Replacement
begin
while (victim page not found) do
if (used bit for current page =0) then
replace current page
else
reset used bit
end if
advance clock pointer
end while
end Clock Replacement

10

1{d

O|b|[1]|b|[O]|b||[1]|b]|[1][b]|Ob

O|c

Ofc

1lfe
lic

lle

llal|l{al|l|al]|Ofa

lle

1lle
Oflc

0|d|(0|d||0|d]||O]|d

lle

a
1|b
1

c
1|d

Clock Page Replacement

Example

|l o 0| o @de
]
c
D)
< | © o o ©T o < | o © o o ©
(]
m|loc|l ©« 2 o © g m|oc]l 8 2 o ©
c|lalolo o
AN | © T O o © [} AN | © C O o ©
—A| || 0%
| O T O o © . @ —A| O @ O o ©
wn un
v D (@)]
£2 S
o c o o T c o O o o C O o ©T
D =
v & X O
@ =3 O E 2
gl e & N o < = o3 2lo 4 o ™
v =S = o 2 C_.v_m | S
E| & Sawelo 3l o= | E|l & sawel4
F| e abed Vi e (A = abed

Page table entries
for resident pages:

Faults

Optimizing Approximate LRU Replacement
The Second Chance algorithm

+ There is a significant cost to replacing “dirty” pages

+« Modify the Clock algorithm to allow dirty pages to always survive one
sweep of the clock hand

» Use both the dirty bit and the used bit to drive replacement

Second Chance Algorithm
Before clock After clock
swee swee
Page 1: m[d 5 2 2
used dirty used dirty
0 0 replace page
0 1 0 0
Page 3:[1|1\J 9 : 1 0 0 0
resid ntbit—T 1 1 0 1
used bit
dirty pit 17
The Second Chance Algorithm
Example
Time 0J]1 2 3 4 5 6 7 8 9 10
Requests c a¥d bv e b a¥ b c d
0 alJa a a a
(72]
22 1|b|bb b b
T S
- 2Q1cl]c c c c
3|ldjdd d d
Faults
[
Page tabl oja
age table
entries |10 D
for resident (10| ¢
ages:
PagES: o[d

The Second Chance Algorithm
Example
Time 0l1 2 3 4 5 6 7 8 9 10
Requests c a¥d bv e b a¥ b c d
OJala a a a a a a a a a
(72]
22 1|blbbbb b b b b b (@
T ©
af 2| clcccc (&) e e e e e
3|dfdd dd d d d d () ¢
Faults . . .
[
Page table 1| 5 11]a | |oofa*| |oofa | |11]a 11]a| |oola*
entries for —
resident |10| b 11| b | |00|b*| [10[b| |10/ b 10|b | |10/ d
Pages: |1o| ¢ 10/ c |10/ e]| |10| e 10| e 10| e| oo e
10|d 10{d | |oo[d | (oo|d | |oofd 10{ c | |00| c
I T
The Problem With Local Page Replacement
How much memory do we allocate to a process?
Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Requests a b ¢ d a b ¢ d a b ¢ d
o 0
o D
D&
gs 1 |P
L2]c
Faults
I
0 a
o3 1 b
25
i 2 c
3 —_
Faults
5%

The Problem With Local Page Replacement
How much memory do we allocate to a process?

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Requests a b ¢ d a b ¢ d a b ¢ d
+8 0 |a @ d d @ c ¢ (b)b b
2= 1]lblb b b b (@A a a (@ d d(c) ¢
o —

L 21clc ¢ ¢ ¢ ¢ @ b b @ a a @
FaUItS ° ° ° ° ° ° ° ° °
|

0 a a a a a a a a a a a

(7]

%g 1 b|lb b b b b b b b b b b b
a® 2 lclc ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

LC

3 |- () d d d d d d d d

Faults
[

Page Replacement Algorithms
Performance

+ Local page replacement
» LRU — Ages pages based on when they were last used
» FIFO — Ages pages based on when they’re brought into memory
+ Towards global page replacement ... with variable number of
page frames allocated to processes

The principle of locality

> 90% of the execution of a program is sequential

» Most iterative constructs consist of a relatively small number of
instructions

» When processing large data structures, the dominant cost is sequential
processing on individual structure elements

» Temporal vs. physical locality

Optimal Page Replacement

For processes with a variable number of frames

accesses

+ Example: 7=4

+ VMIN — Replace a page that is not referenced in the next ¢

Time oj1 2 3

Requests c ¢ d

Pagea | o
Pageb | -
Pagec | -
Page d
Page e

_ Pages
In Memory

Faults

Optimal Page Replacement

For processes with a variable number of frames

accesses

+ Example: r=4

+ VMIN — Replace a page that is not referenced in the next ¢

Time oj12 2 3

Requests c ¢ d

Pagea | o .| - - -
Pageb | - | - - -
Pagec | - l@ C C
Page d
Page e

_ Pages
in Memory

Faults .

Explicitly Using Locality
The working set model of page replacement

¢+ Assume recently referenced pages are likely to be referenced again
soon...

+ ... and only keep those pages recently referenced in memory (called
the working set)

» Thus pages may be removed even when no page fault occurs
» The number of frames allocated to a process will vary over time

A process is allowed to execute only if its working set fits into
memory
» The working set model performs implicit load control

&

Working Set Page Replacement
Implementation

+ Keep track of the last rreferences
» The pages referenced during the last z memory accesses are
the working set
» ris called the window size

+ Example: Working set computation, = 4 references:

Time 0J]12 2 3 4 5 6 7 8 9 10
Requests c ¢ d b ¢c e ¢c e a d
Page a
Pageb | -
Pagec | -
Page d
Page e

—~o
1
o

_ Pages
in Memory

~
>

Faults

Working Set Page Replacement
Implementation

+ Keep track of the last rreferences
» The pages referenced during the last z memory accesses are
the working set
» ris called the window size

+« Example: Working set computation, 7 = 4 references:
» What if zis too small? too large?

Time 0J1 2 3 4 5 6 7 8 9 10
Requests c d b ¢c e ¢c e a d
E\ Page ajged-° . . - - - - - @ .
8 g Page b - - - - @ . (] . . - -
%q_) Page C - @
QE Page d t.: 1 ° . . . ° - - - - @
[
- Page e t.: 2) - - - - O . .))
Faults

Page-Fault-Frequency Page Replacement
An alternate working set computation

+ Explicitly attempt to minimize page faults
» When page fault frequency is high — increase working set
» When page fault frequency is low — decrease working set

Algorithm:
Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault
Record the time, #,,,, of the last page fault

Iff’rhe time between page faults is “large” then reduce the working

se
If t.uprent = Tust> T, Then remove from memory all pages not
referenced in [1., Toyrrenr]

If the time between page faults is "small” then increase working set

If t.iprent = Tusr ¢ T, then add faulting page to the working set

Page-Fault-Frequency Page Replacement
Example, window size =2

= I to rent — Last > 2, remove pages not referenced in [t,q;, teyrrent 1 from
the working set

I tourent — tast < 2, just add faulting page to the working set

Time 011 2 3 4 5 6 7 8 9 10
Requests c ¢ d b ¢c e ¢c e a d
> Pageal
gg Pageb | -
29 Pagec | -
= Paged | *
[
= Pagee | °
Faults
tcur_tlast

Page-Fault-Frequency Page Replacement
Example, window size =2

+ Iftorent — tast > 2, remove pages not referenced in [t,q;, teyrent 1 from
the working set

o Iftoren — tast < 2, just add faulting page to the working set

Time 0oj1 2 3 4 5 6 7 8 9 10
Requests c ¢ d b ¢c e ¢c e a d
> Pagea| s |- . . - - _ - . @ .
8 g Page b - - - - @ o o
gq) Page Cc o @
D‘z Page d . . o o . . o o . - @
c
— Page e - - O
Faults . J . . .
tour — Last 1 3 2 3 1

Load Control
Fundamental tradeoff

+ High multiprogramming level

> MPL,o = number of page frames

minimum number of frames required for a process to execute

+ Low paging overhead
» MPL,;,=1process

+ Issues
» What criterion should be used to determine when to increase or
decrease the MPL?

> Which task should be swapped out if the MPL must be reduced?

Load Control
How not to do it: Base load control on CPU utilization

/10 _
Device
¢ Assume memory is nearly full | -

& A chain of page faults occur =
aging

» A queue of processes forms at | INg__|
the paging device Device

& CPU utilization falls

Operating system increases MPL
» New processes fault, taking memory away from existing processes

CPU utilization goes to 0, the OS increases the MPL further...

]

*

*

System is thrashing — spending all of its time paging

Load Control
Thrashing

4

Thrashing can be ameliorated by local page replacement

Better criteria for load control: Adjust MPL so that:
> mean time between page faults (MTBF) = page fault service time
(PFST)

> X WS, = size of memory

1.0 I \ 1.0

MTBF
PFST

CPU
Utilization

Nmax NI/O-BALANCE
Multiprogramming Level

Load Control
Thrashing

Physical
Memory

susgded E E E r

queue semaphore/condition queues

+ When the multiprogramming level should be
dec?reased, which process should be swapped
out?

> Lowest priority process?
» Smallest process?
> Largest process?
» Oldest process?
» Faulting process?
Paging Disk

