
File Systems:
Consistency Issues

1

File Systems: Consistency Issues

File systems maintain many data structures
Free list/bit vector
Directories
File headers and inode str ct resFile headers and inode structures
Data blocks

All data structures are cached for better performance
Works great for read operations
… but what about writes?

If modified data is in cache, and the system crashes all modified data
can be lost

2

Solutions:
Write-through caches: Write changes synchronously consistency at
the expense of poor performance
Write-back caches: Delayed writes higher performance but the risk of
loosing data

What about Multiple Updates?

Several file system operations update multiple data structures

Examples:p
Move a file between directories

Delete file from old directory
Add file to new directory

Create a new file
Allocate space on disk for file header and data
Write new header to disk
Add new file to a directory

3

What if the system crashes in the middle?
Even with write-through, we have a problem!!

Consistency: Unix Approach

Meta-data consistency
Synchronous write-through for meta-data
Multiple updates are performed in a specific order
When crash occurs:

Run “fsck” to scan entire disk for consistency
Check for “in progress” operations and fix up problems
Example: file created but not in any directory delete file; block
allocated but not reflected in the bit map update bit map

Issues:
Poor performance (due to synchronous writes)

4

p (y)
Slow recovery from crashes

Consistency: Unix Approach (Cont’d.)

Data consistency
Asynchronous write-back for user data

Write-back forced after fixed time intervals (e g 30 sec)Write back forced after fixed time intervals (e.g., 30 sec.)
Can lose data written within time interval

Maintain new version of data in temporary files; replace older
version only when user commits

What if we want multiple file operations to occur as a
unit?

Example: Transfer money from one account to another

5

Example: Transfer money from one account to another
need to update two account files as a unit
Solution: Transactions

Which is a metadata consistency problem?

A Null double indirect pointerA. Null double indirect pointer
B. File created before a crash is missing
C. Free block bitmap contains a file data
block that is pointed to by an inode
D. Directory contains corrupt file name

6

Transactions

Group actions together such that they are
Atomic: either happens or does not
Consistent: maintain system invariants
Isolated (or serializable): transactions appear to happen one after
another. Don’t see another tx in progress.
Durable: once completed, effects are persistent

Critical sections are atomic, consistent and isolated, but not
durable

Two more concepts:

7

Two more concepts:
Commit: when transaction is completed
Rollback: recover from an uncommitted transaction

Implementing Transactions

Key idea:
Turn multiple disk updates into a single disk write!

Example:
Begin TransactionBegin Transaction

x = x + 1
y = y – 1

Commit

Sequence of steps:
Write an entry in the write-ahead log containing old and new values
of x and y, transaction ID, and commit
Write x to disk

Create a write-ahead log for
the transaction

8

Write y to disk
Reclaim space on the log

In the event of a crash, either “undo” or “redo” transaction

Transactions in File Systems

Write-ahead logging journaling file system
Write all file system changes (e.g., update directory, allocate
blocks, etc.) in a transaction log
“Create file”, “Delete file”, “Move file” --- are transactions

Eliminates the need to “fsck” after a crash

In the event of a crash
Read log
If log is not committed, ignore the log
If log is committed, apply all changes to disk

Advantages:

9

g
Reliability
Group commit for write-back, also written as log

Disadvantage:
All data is written twice!! (often, only log meta-data)

Where on the disk would you put the journal for a journaling file
system?

1 Anywhere1. Anywhere
2. Outer rim
3. Inner rim
4. Middle
5. Wherever the inodes are

10

Transactions in File Systems: A better way

Log-structured file systems
Write data only once by having the log be the only copy of data and
meta-data on disk

Challenge:
How do we find data and meta-data in log?

Data blocks no problem due to index blocks
Meta-data blocks need to maintain an index of meta-data blocks
also! This should fit in memory.

Benefits:
All writes are sequential; improvement in write performance is

11

important (why?)

Disadvantage:
Requires garbage collection from logs (segment cleaning)

File System: Putting it All Together

Kernel data structures: file open table
Open(“path”) put a pointer to the file in FD table; return indexOpen(path) put a pointer to the file in FD table; return index
Close(fd) drop the entry from the FD table
Read(fd, buffer, length) and Write(fd, buffer, length) refer to the
open files using the file descriptor

What do you need to support read/write?
Inode number (i.e., a pointer to the file header)
Per open file data (e g file position)

12

Per-open-file data (e.g., file position, …)

Putting It All Together (Cont’d.)

Read with caching:
ReadDiskCache(blocknum, buffer) {

ptr = cache.get(blocknum) // see if the block is in cache
if (ptr)

C blk i b t f th t t b ffCopy blksize bytes from the ptr to user buffer
else {

newBuf = malloc(blksize);
ReadDisk(blocknum, newBuf);
cache.insert(blockNum, newBuf);
Copy blksize bytes from the newBuf to user buffer

}

Simple but require block copy on every read

13

Simple but require block copy on every read

Eliminate copy overhead with mmap.
Map open file into a region of the virtual address space of a process
Access file content using load/store
If content not in memory, page fault

Putting It All Together (Cont’d.)

Eliminate copy overhead with mmap.
mmap(ptr, size, protection, flags, file descriptor, offset)
munmap(ptr, length)

Vi t l ddVirtual address space

Refers to contents of mapped file

14

void* ptr = mmap(0, 4096, PROT_READ|PROT_WRITE,
MAP_SHARED, 3, 0);
int foo = *(int*)ptr;

foo contains the first 4 bytes of the file referred to by file
descriptor 3.

