
1

Parallel Computing

Basics of Parallel Computers
Shared Memory
SMP / NUMA Architectures
Message Passing
Clusters

1

Why Parallel Computing

No matter how effective ILP/Moore’s Law, more is
better

M t t lti l li ti i lt lMost systems run multiple applications simultaneously
Overlapping downloads with other work
Web browser (overlaps image retrieval with display)

Total cost of ownership favors fewer systems with multiple
processors rather than more systems w/fewer processors

Peak performance increases linearly

2

P
ric

e

Performance

2P+M
2P+2M

P+M

with more processors

Adding processor/memory much
cheaper than a second complete system

2

What about Sequential Code?

Sequential programs get no benefit from multiple processors,
they must be parallelized.

Key property is how much communication per unit of computation.
The less communication per unit computation the better the scalingThe less communication per unit computation the better the scaling
properties of the algorithm.
Sometimes, a multi-threaded design is good on uni & multi-
processors e.g., throughput for a web server (that uses system
multi-threading)

Speedup is limited by Amdahl’s Law
Speedup <= 1/(seq + (1 – seq)/proc)

3

as proc -> infinity, Speedup is limited to 1/seq
Many applications can be (re)designed/coded/compiled to
generate cooperating, parallel instruction streams – specifically
to enable improved responsiveness/throughput with multiple
processors.

Performance of parallel algorithms is NOT limited by
which factor

Th d t h i k d diff t1. The need to synchronize work done on different
processors.

2. The portion of code that remains sequential.
3. The need to redesign algorithms to be more

parallel.
4. The increased cache area due to multiple

processors.

4

3

Parallel Programming Models

Parallel programming involves:
Decomposing an algorithm into parts
Distributing the parts as tasks which are worked on by multiple
processors simultaneously
Coordinating work and communications of those processors

Synchronization
Parallel programming considerations:

Type of parallel architecture being used
Type of processor communications used

No automated compiler/language exists to automate this

5

p g g
“parallelization” process.

Two Programming Models exist…..
Shared Memory
Message Passing

Process Coordination
Shared Memory v. Message Passing

Shared memory
Efficient, familiar
Not always available

process foo
begin

process bar
begin

global int x

Not always available
Potentially insecure

Canonical syntax:

g
:
x := ...
:

end foo

g
:
y := x
:

end bar

Message passing
Extensible to communication in distributed systems

6

send(process : process_id, message : string)
receive(process : process_id, var message : string)

4

Shared Memory Programming Model

Programs/threads communicate/cooperate via
loads/stores to memory locations they share.

Communication is therefore at memory access speed
(very fast), and is implicit.

Cooperating pieces must all execute on the same
system (computer).

7

OS services and/or libraries used for creating tasks
(processes/threads) and coordination
(semaphores/barriers/locks.)

Shared Memory Code

fork N processes
each process has a number, p, and computes

istart[p], iend[p], jstart[p], jend[p]
for(s=0;s<STEPS;s++) {for(s 0;s<STEPS;s++) {
k = s&1 ; m = k^1 ;
forall(i=istart[p];i<=iend[p];i++) {
forall(j=jstart[p];j<=jend[p];j++) {

a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +
c3*a[m][i+1][j] + c4*a[m][i][j-1] +
c5*a[m][i][j+1] ; // implicit comm

}

8

}
}
barrier() ;

}

5

Symmetric Multiprocessors

Several processors share
one address space

conceptually a shared
memory

Communication is implicit
read and write accesses to
shared memory locations

Synchronization
via shared memory
locations

spin waiting for non-zero
At i i t ti

P

M

Network

P P

9

Atomic instructions
(Test&set, compare&swap,
load linked/store
conditional)
barriers

Conceptual Model

Non-Uniform Memory Access - NUMA
CPU/Memory busses cannot

support more than ~4-8 CPUs
before bus bandwidth is
exceeded (the SMP “sweet
spot”).

To provide shared memory MPs

P1 P2

$ $

PN

$

Pn

$
To provide shared-memory MPs

beyond these limits requires
some memory to be “closer
to” some processors than to
others.

The “Interconnect” usually includes
a cache-directory to reduce snoop traffic

Interconnect

M M

10

a cache-directory to reduce snoop traffic
Remote Cache to reduce access latency (think of it as an L3)

Cache-Coherent NUMA Systems (CC-NUMA):
SGI Origin, Stanford Dash, Sequent NUMA-Q, HP Superdome

Non Cache-Coherent NUMA (NCC-NUMA)
Cray T32E

6

Message Passing Programming Model

“Shared” data is communicated using “send”/”receive” services
(across an external network).

Unlike Shared Model shared data must be formatted intoUnlike Shared Model, shared data must be formatted into
message chunks for distribution (shared model works no matter
how the data is intermixed).

Coordination is via sending/receiving messages.

Program components can be run on the same or different
systems, so can use 1,000s of processors.

“S d d” lib i i l

11

“Standard” libraries exist to encapsulate messages:
Parasoft's Express (commercial)
PVM (standing for Parallel Virtual Machine, non-commercial)
MPI (Message Passing Interface, also non-commercial).

Message Passing Issues
Synchronization semantics

When does a send /receive operation terminate?

OS KernelSender ReceiverBlocking (aka Synchronous):
Sender waits until its message is received

Non-blocking (aka Asynchronous):
Send operation “immediately” returns
Receive operation returns if no message is

Sender waits until its message is received
Receiver waits if no message is available

12

Partially blocking/non-blocking:
send()/receive() with timeout

available (polling)

OS KernelSender Receiver

How many buffers?

7

Clustered Computers designed for Message Passing

A collection of computers (nodes)
connected by a network

computers augmented with fast
f

Node
network interface

send, receive, barrier
user-level, memory mapped

otherwise indistinguishable from
conventional PC or workstation

One approach is to network
workstations with a very fast
network

Often called ‘cluster computers’

P

M

P

M

P

M

Network

13

Often called cluster computers
Berkeley NOW
IBM SP2 (remember Deep Blue?)

Network

Which is easier to program?

1. Shared memory
2 Message passing2. Message passing

14

