
Distributed Coordin tionDistributed Coordination

1

Topics

Event Ordering
Mutual Exclusion
Atomicity of Transactions– Two Phase Commit (2PC)
Deadlocks

Avoidance/Prevention
Detection

The King has died. Long live the King!

2

Event Ordering

Coordination of requests (especially in a fair way)
requires events (requests) to be ordered.
Stand alone systems:Stand-alone systems:

Shared Clock / Memory
Use a time-stamp to determine ordering

Distributed Systems
No global clock
Each clock runs at different speeds

How do we order events running on physically

3

g p y y
separated systems?
Messages (the only mechanism for communicating
between systems) can only be received after they
have been sent.

Event Ordering: Happened Before Relation

1. If A and B are events in the same process, and A
executed before B, then A → B.

2. If A is a message sent and B is when the message is
received, then A → B.

3. A → B, and B → C, then A → C

4

Happened-Before Relationship

p3

p4

P

q3

q4

q5

r2

r3

Q R

time

p0 q0

p1

p2

q1

q2

q3

r1

r0 message

U d d (C t) t

5

Ordered events
p1 preceeds ___
q4 preceeds ___
q2 preceeds ___
p0 preceeds ___

Unordered (Concurrent) events
q0 is concurrent with ___
q2 is concurrent with ___
q4 is concurrent with ___
q5 is concurrent with ___

Happened Before and Total Event Ordering

Define a notion of event ordering such that:
1. If A → B, then A precedes B.
2 If A and B are concurrent events then nothing can be said2. If A and B are concurrent events, then nothing can be said

about the ordering of A and B.
Solution:

1. Each processor i maintains a logical clock LCi

2. When an event occurs locally, ++ LCi

3. When processor X sends a message to Y, it also sends LCx in
the message.

6

4. When Y receives this message, it:
if LCy < (LCx + 1) LCy = LCx + 1;

Note: If “time” of A precedes “time” of B, then ???

If A->B and C->B does A->C?

1. Yes1. Yes
2. No

7

Mutual Exclusion – Centralized Approach

One known process in the system coordinates mutual
exclusion

Cli tClient:
Send a request to the controller, wait for reply
When reply comes, back – enter critical section
When finished, send release to controller.

Controller:
Receives a request: If mutex is available, immediately

d l (d k t b ith li t id)

8

send a reply (and mark mutex busy with client id).
Otherwise, queue request.
Receives a release from current user: Remove next
requestor from queue and send reply. Otherwise, mark
mutex available.

Example: Centralized Approach

P1 P2Coordinator
request

request
reply

Critical
Section

Critical
Section

reply
release

9

release

Advantages? Disadvantages?

Mutual Exclusion – Decentralized Approach

Requestor K:
Generate a TimeStamp TSk.
S d t (K TS) t llSend request (K, TSk) to all processes.
Wait for a reply from all processes.
Enter CS

Process K receives a Request:
Defer reply if already in CS
Else if we don’t want in, send reply.
(We want in) If TS < TS send reply to R

10

(We want in) If TSr < TSk, send reply to R.
Else defer the reply.

Leave CS, send reply to all deferred requests.

Example – Decentralized Approach

P1 P3P2
request (1)

request (2)

reply

Critical
Section

reply

reply

reply

11

Advantages? Disadvantages?
Lost reply hangs entire system

Critical
Section

reply

Distributed control vs. central control

1. Distributed control is easier, and more fault tolerant than central
control.

2. Distributed control is harder, and more fault tolerant than central
control.

3. Distributed control is easier, but less fault tolerant than central
control

4. Distributed control is harder, but less fault tolerant than central
control

12

Generals coordinate with link failures

Problem:
Two generals are on two separate mountains
Can communicate only via messengers; but messengers
can get lost or captured by enemy
Goal is to coordinate their attack

If attack at different times they loose !
If attack at the same time they win !

A B
Is 11AM OK? Even if all previous

 h h
Even if all previous

 h h

13

K

11AM sounds good!

11AM it is, then.

Does A know that
this message was
delivered?

messages get through,
the generals still can’t
coordinate their actions,
since the last message
could be lost, always requiring
another confirmation
message.

messages get through,
the generals still can’t
coordinate their actions,
since the last message
could be lost, always requiring
another confirmation
message.

General’s coordination with link failures: Reductio

Problem:
Take any exchange of messages that solves the
general’s coordination problem.
Take the last message mn . Since mn might be lost, but
the algorithm still succeeds, it must not be necessary.
Repeat until no messages are exchanged.
No messages exchanged can’t be a solution, so our
assumption that we have an algorithm to solve the
problem must be wrong.

Distributed consensus in the presence of link

14

Distributed consensus in the presence of link
failures is impossible.

That is why timeouts are so popular in distributed
algorithms.
Success can be probable, just not guaranteed in bounded
time.

Distributed concensus in the presence of link
failures is

1. possible
2. not possible

15

Distributed Transactions -- The Problem

How can we atomically update state on two different systems?
Generalization of the problem we discussed earlier !

Examples:
Atomically move a file from server A to server BAtomically move a file from server A to server B
Atomically move $100 from one bank to another

Issues:
Messages exchanged by systems can be lost
Systems can crash

Use messages and retries over an unreliable network to synchronize
the actions of two machines?

16

The two-phase commit protocol allows coordination under reasonable
operating conditions.

Two-phase Commit Protocol: Phase 1

Phase 1: Coordinator requests a transaction
Coordinator sends a REQUEST to all participants

Example: C S1 : “delete foo from /”
C S2 : “add foo to /quux”q

On receiving request, participants perform these actions:
Execute the transaction locally
Write VOTE_COMMIT or VOTE_ABORT to their local logs
Send VOTE_COMMIT or VOTE_ABORT to coordinator

Failure case Success case
S1 decides OK; writes “rm /foo; S1 and S2 decide OK and write

17

VOTE_COMMIT” to log; and
sends VOTE_COMMIT

S2 has no space on disk; so
rejects the transaction; writes
and sends VOTE_ABORT

updates and VOTE_COMMIT to
log; send VOTE_COMMIT

Two-phase Commit Protocol: Phase 2

Phase 2: Coordinator commits or aborts the
transaction

Coordinator decidesCoordinator decides
Case 1: coordinator receives VOTE_ABORT or times-out
coordinator writes GLOBAL_ABORT to log and sends
GLOBAL_ABORT to participants
Case 2: Coordinator receives VOTE_COMMIT from all
participants coordinator writes GLOBAL_COMMIT to log and
sends GLOBAL_COMMIT to participants

Participants commit the transaction

18

p
On receiving a decision, participants write GLOBAL_COMMIT
or GLOBAL_ABORT to log

Does Two-phase Commit work?

Yes … can be proved formally

Consider the following cases:Consider the following cases:
What if participant crashes during the request phase before
writing anything to log?

On recovery, participant does nothing; coordinator will timeout
and abort transaction; and retry!

What if coordinator crashes during phase 2?
Case 1: Log does not contain GLOBAL_* send
GLOBAL ABORT to participants and retry

19

GLOBAL_ABORT to participants and retry
Case 2: Log contains GLOBAL_ABORT send
GLOBAL_ABORT to participants
Case 3: Log contains GLOBAL_COMMIT send
GLOBAL_COMMIT to participants

Limitations of Two-phase Commit

What if the coordinator crashes during Phase 2
(before sending the decision) and does not wake up?

All participants block forever!All participants block forever!
(They may hold resources – eg. locks!)

Possible solution:
Participant, on timing out, can make progress by asking
other participants (if it knows their identity)

If any participant had heard GLOBAL_ABORT abort
If any participant sent VOTE ABORT abort

20

y p p _
If all participants sent VOTE_COMMIT but no one has heard
GLOBAL_* can we commit?

NO – the coordinator could have written GLOBAL_ABORT to its
log (e.g., due to local error or a timeout)

Two-phase Commit: Summary

Message complexity 3(N-1)
Request/Reply/Broadcast, from coordinator to all other
nodesnodes.

When you need to coordinate a transaction across
multiple machines, …

Use two-phase commit
For two-phase commit, identify circumstances where indefinite
blocking can occur
Decide if the risk is acceptable

21

If two-phase commit is not adequate, then …
Use advanced distributed coordination techniques
To learn more about such protocols, take a distributed
computing course

Can the two phase commit protocol fail to terminate?

1. Yes
2. No

22

Who’s in charge? Let’s have an Election.

Many algorithms require a coordinator. What happens
when the coordinator dies (or at startup)?

Bully algorithm

23

Bully Algorithm

Assumptions
Processes are numbered (otherwise impossible).
Using process numbers does not cause unfairness.

Algorithm idea
If leader is not heard from in a while, assume s/he crashed.
Leader will be remaining process with highest id.
Processes who think they are leader-worthy will broadcast
that information.
During this “election campaign” processes who are near the
top see if the process trying to grab power crashes (as
evidenced by lack of message in timeout interval)

24

evidenced by lack of message in timeout interval).
At end of time interval, if alpha-process has not heard from
rivals, assumes s/he has won.
If former alpha-process arises from dead, s/he bullies their
way to the top. (Invariant: highest # process rules)

Bully Algorithm Details

Bully Algorithm details
Algorithm starts with Pi broadcasting its desire to become
leader. Pi waits T seconds before declaring victory.
If, during this time, Pi hears from Pj, j>i, Pi waits another U
seconds before trying to become leader again. U?

U ~ 2T, or T + time to broadcast new leader
If not, when Pi hears from only Pj, j<i, and T seconds have
expired, then Pi broadcasts that it is the new leader.
If Pi hears from Pj, j<i that Pj is the new leader, then Pi starts
the algorithm to elect itself (Pi is a bully).

25

If Pi hears from Pj, j>i that Pj is the leader, it records that
fact.

In the bully algorithm can there every be a point
where the highest number process is not the leader?

Y1. Yes
2. No

26

Byzantine Agreement Problem

N Byzantine generals want to coordinate an attack.
Each general is on his/her own hill.
Generals can communicate by messenger, and messengers
are reliable (soldier can be delayed, but there is always
another foot soldier).
There might be a traitor among the generals.

Goal: In the presence of less than or equal to f
traitors, can the N-f loyal Generals coordinate an
attack?

Y if N ≥ 3*f 1

27

Yes, if N ≥ 3*f+1
Number of messages ~ (f+1)*N2

f+1 rounds
(Restricted form where traitorous generals can’t lie about
what other generals say does not have N bound)

Byzantine Agreement Example

N = 4 m = 1
Round 1: Each process Pi broadcasts its value Vi.

E.g., Po hears (10, 45, 74, 88)E.g., Po hears (10, 45, 74, 88)
Vo = 10

Round 2: Each process Pi broadcasts the vector of
values, Vj, j!=i, that it received in the first round.

E.g., Po hears from P1 (10,45,74,88),
from P2 (10,66,74,88) [P2 or P1 bad]
from P3 (10,45,74,88)

28

(, , ,)

Can take all values and vote. Majority wins. Need
enough virtuous generals to make majority count.
Don’t know who virtuous generals are, just know that
they swamp the bad guys.

Byzantine Agreement Danger

N = 3 m = 1
Round 1: Each process Pi broadcasts its value Vi.

E.g., Po hears (10, 45, 75) [P2 is lying]
Round 2: Each process Pi broadcasts the vector of
values, Vj, j!=i, that it received in the first round.

E.g., Po hears from P1 (10,45,76),
from P2 (10,45,75)

Either
R1: P2 told Po 75
R1: P2 told P1 76

29

P1 is trustworthy, P2 lies about P1
OR

R1: P2 told Po 75
R1: P2 told P1 75
P2 is trustworthy, P1 lies about P2 in R2

Po can’t choose between 75 and 76, even if P1 non-faulty

Byzantine fault tolerant algorithms tend to run quickly.

1 Yes1. Yes
2. No

30

